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Abstract
We discuss three applications of a gauge theory of gravity to rotating

astrophysical systems. The theory employs gauge fields in a flat Minkowski
background spacetime to describe gravitational interactions. The iron fluo-
rescence line observed in AGN is discussed, assuming that the line originates
from matter in an accretion disk around a Kerr (rotating) black hole. Gauge-
theory gravity, expressed in the language of Geometric Algebra, allows very
efficient numerical calculation of photon paths. From these paths we are
able to infer the line shape of the iron line. Comparison with observational
data allows us to constrain the black hole parameters, and, for the first time,
infer an emissivity profile for the accretion disk. The topological constraints
imposed by gauge-theory gravity are exploited to investigate the nature of
the Kerr singularity. This reveals a simple physical picture of a ring of matter
moving at the speed of light which surrounds a sheet of pure isotropic tension.
Implications for the end-points of collapse processes are discussed. Finally
we consider rigidly-rotating cosmic strings. It is shown that a solution in the
literature has an unphysical stress-energy tensor on the axis. Well defined
solutions are presented for an ideal two-dimensional fluid. The exterior
vacuum solution admits closed timelike curves and exerts a confining force.
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1 Introduction
The problem of formulating gravitational theory as a gauge theory has been
considered by several authors [1, 2]. In the previous Ericé lectures [3], some
of the present authors (with Stephen Gull) presented a gauge theory of gravity
which employed a pair of gauge fields defined over a flat (structureless) Minkowski
spacetime (see Lasenby et al. [4] for a complete treatment). This theory provides
a radically different picture of gravitational interactions from that of general
relativity. Despite this, the two theories agree in their predictions over a wide range
of phenomena. Important differences only start to arise over global issues such as
the role of topology and horizons, and the interface with quantum theory.

In this lecture we consider the application of this theory to three astrophysical
situations involving rotating matter. The first application is to the iron fluorescence
line from the accretion disk around a black hole. X-ray observations of MCG-6-
30-15 show that the iron lines for this Seyfert-1 galaxy are broad and skew [5, 6].
Fits to the line profile suggest that the lines originate from fluorescence of matter
from the surface of an accretion disk in the strong gravity region around a rotating
black hole. Modelling the line profile requires the integration of photon trajectories
in the region of spacetime outside the horizon. Since we are only concerned
with properties outside the horizon, the predictions of gauge-theory gravity and
general relativity coincide here, although the gauge theory approach provides much
improved machinery for performing these integrations.

The second application is a study of the nature of the singularity at the centre of
a Kerr black hole [7, 8]. This application fully exploits the fact that in gauge-theory
gravity, gravitational interaction is mediated by gauge fields defined over a flat
background spacetime with trivial topology. By integrating the stress-energy tensor
over the singular regions we reveal a surprising, but physically simple, structure to
the singularity. These predictions are quite different from the (maximally extended)
solution favoured by general relativity.

Our final application is a brief discussion of rigidly-rotating string solutions [9].
We restrict attention to solutions where the direction along the string axis drops out
of the dynamics entirely, so that we effectively model gravity in (2+1)-dimensions.
The solution of Jensen and Soleng [10] describing a finite width rotating string falls
into this class of solutions. However, we show that the stress-energy tensor derived
from their solution is unphysical since it is ill-defined on the string axis. This
problem is easily overcome, and we close by presenting a set of analytic solutions
for rigidly-rotating cosmic strings.
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We have found that the Geometric Algebra of spacetime — the Spacetime
Algebra (STA) [11] — is the optimal language in which to express gauge-theory
gravity. Employing the STA not only simplifies much of the mathematics, but it
often brings the underlying physics to the fore. We begin with a brief introduction
to Geometric Algebra, the STA and gauge-theory gravity. We employ natural units
(G = c = h̄ = ε0 = 1) throughout this lecture, except when expressing numerical
results.

2 Geometric Algebra
This brief introduction to Geometric (or Clifford) Algebra is intended to establish
our notation and conventions. More complete introductions may be found in
Lasenby et al. [4] and Hestenes [11]. The basic idea is to extend the algebra of
scalars to an algebra of vectors. We do this by introducing an associative (Clifford)
product over a graded linear space. We identify scalars with the grade 0 elements
of this space, and vectors with the grade 1 elements. Under this product scalars
commute with all elements, and vectors square to give scalars. If a and b are two
vectors, then we write the Clifford product as the juxtaposition ab. This product
decomposes into a symmetric and an antisymmetric part, which define the inner
and outer products between vectors, denoted by a dot and a wedge respectively:

a·b ≡ 1
2(ab+ ba)

a∧b ≡ 1
2(ab− ba).

(2.1)

It is simple to show that a·b is a scalar, but a∧b is neither a scalar nor a vector. It
defines a new geometric element called a bivector (grade 2). This may be regarded
as a directed plane segment, which specifies the plane containing a and b. Note that
if a and b are parallel, then ab = ba, whilst ab = −ba for a and b perpendicular.
This process may be repeated to generate higher grade elements, and hence a basis
for the linear space.

2.1 The Spacetime Algebra (STA)
The Spacetime Algebra is the geometric algebra of spacetime. This is familiar to
physicists in the guise of the algebra generated from the Dirac γ-matrices. The
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STA is generated by four orthogonal vectors {γµ}, µ = 0 . . . 3, satisfying

γµ·γν ≡ 1
2(γµγν + γνγµ) = ηµν = diag(+ − − −). (2.2)

A full basis for the STA is provided by the set

1 {γµ} {σk, iσk} {iγµ} i

1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar
grade 0 grade 1 grade 2 grade 3 grade 4

(2.3)

where σk ≡ γkγ0, k = 1 . . . 3, and i ≡ γ0γ1γ2γ3 = σ1σ2σ3. The pseudoscalar i
squares to −1 and anticommutes with all odd-grade elements. The {σk} generate
the geometric algebra of Euclidean 3-space, and are isomorphic to the Pauli matrices.
They represent a frame of ‘relative vectors’ (‘relative’ to the timelike vector γ0

employed in their definition). The {σk} are bivectors in four-dimensional spacetime,
but 3-vectors in the relative 3-space orthogonal to γ0. We will often denote relative
vectors in bold typeface (the {σk} being the exception).

An arbitrary real superposition of the basis elements (2.3) is called a ‘multi-
vector’, and these inherit the associative Clifford product of the {γµ} generators.
For a grade-r multivector Ar and a grade-s multivector Bs we define the inner and
outer products via

Ar·Bs ≡ 〈ArBs〉|r−s|, Ar∧Bs ≡ 〈ArBs〉r+s, (2.4)

where 〈M〉r denotes the grade-r part of M . We shall also make use of the commu-
tator product,

A×B ≡ 1
2(AB −BA). (2.5)

The operation of reversion, denoted by a tilde, is defined by

(AB)̃ ≡ B̃Ã (2.6)

and the rule that vectors are unchanged under reversion. We adopt the conven-
tion that in the absence of brackets, inner, outer and commutator products take
precedence over Clifford products.

Vectors are usually denoted in lower case Latin, a, or Greek for basis frame
vectors. Introducing coordinates {xµ(x)} gives rise to a (coordinate) frame of
vectors {eµ} where eµ ≡ ∂µx. The reciprocal frame, denoted by {eµ}, satisfies
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eµ·eν = δνµ. The vector derivative ∇(≡ ∂x) is then defined by

∇ ≡ eµ∂µ (2.7)

where ∂µ ≡ ∂/∂xµ.
Linear functions mapping vectors to vectors are usually denoted with an un-

derbar, f(a) (where a is the vector argument), with the adjoint denoted with an
overbar, f(a). Linear functions extend to act on multivectors via the rule

f(a∧b∧ · · · ∧c) ≡ f(a)∧f(b)∧ · · · ∧f(c), (2.8)

which defines a grade-preserving linear operation. In the STA, tensor objects are
represented by linear functions, and all manipulations can be carried out in a
coordinate-free manner.

All Lorentz boosts or spatial rotations are performed with rotors. These are
even-grade elements R, satisfying RR̃ = 1. Any element of the algebra, M ,
transforms as

M 7→ RMR̃. (2.9)

A general rotor may be written as R = exp(B/2) where B is a bivector in the
plane of rotation.

2.2 Gauge Theory Gravity
Physical equations, when written in the STA, always take the form

A(x) = B(x), (2.10)

where A(x) and B(x) are multivector fields, and x is the four-dimensional position
vector in the (background) Minkowski spacetime. We demand that the physical
content of the field equations be invariant under arbitrary local displacements of
the fields in the background spacetime,

A(x) 7→ A(x′), x′ = f(x), (2.11)

with f(x) a non-singular function of x. We further demand that the physical
content of the field equations be invariant under an arbitrary local rotation

A(x) 7→ RA(x)R̃, (2.12)
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with R a non-singular rotor-valued function of x. These demands are clearly
equivalent to requiring covariance (form-invariance under the above transformations)
of the field equations. These requirements are automatically satisfied for non-
derivative relations, but to ensure covariance in the presence of derivatives we
must gauge the derivative in the background spacetime. The gauge fields must
transform suitably under (local) displacements and rotations, to ensure covariance
of the field equations. This leads to the introduction of two gauge fields: h(a) and
Ω(a). The first of these, h(a), is a position-dependent linear function mapping the
vector argument a to vectors. The position dependence is usually left implicit. Its
gauge-theoretic purpose is to ensure covariance of the equations under arbitrary
local displacements of the matter fields in the background spacetime [3, 4]. The
second gauge field, Ω(a), is a position-dependent linear function which maps the
vector a to bivectors. Its introduction ensures covariance of the equations under
local rotations of vector and tensor fields, at a point, in the background spacetime.

Once this gauging has been carried out, and a suitable Lagrangian for the
matter fields and gauge fields has been constructed, we find that gravity has
been introduced. Despite this, we are still parameterising spacetime points by
vectors in a flat background Minkowski spacetime. The covariance of the field
equations ensures that the particular parameterisation we choose has no physical
significance. The feature that is particularly relevant to this lecture is that we
still have all the features of the flatspace STA at our disposal. A particular choice
of parameterisation is called a gauge. Under gauge transformations, the physical
fields and the gauge fields will change, but this does not alter physical predictions
if we demand that such predictions be extracted in a gauge-invariant manner.

The covariant Riemann tensor R(a∧b) is a linear function mapping bivectors
to bivectors. It is defined via the field strength of the Ω(a) gauge field:

Rh−1(a∧b) ≡ a·∇Ω(b)− b·∇Ω(a) + Ω(a)×Ω(b). (2.13)

The Ricci tensor, Ricci scalar and Einstein tensor are formed from contractions of
the Riemann tensor:

Ricci Tensor: R(a) = γµ·R(γµ∧a) (2.14)
Ricci Scalar: R = γµ·R(γµ) (2.15)

Einstein Tensor: G(a) = R(a)− 1
2aR. (2.16)
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The Einstein equation may then be written as

G(a) = κT (a), (2.17)

where T (a) is the covariant, matter stress-energy tensor. The remaining field
equation gives the Ω-function in terms of the h-function, and the spin of the matter
field [3, 4]. However, this will not be required for this lecture.

Some comments on gauge-theory gravity are now in order. Firstly, we note
that the theory is formally similar in its equations (hence local behaviour) to
the Einstein-Cartan-Kibble-Sciama spin-torsion theory [2], but it restricts the
Lagrangian type and the torsion type (R2 terms in the gravitational Lagrangian,
or torsion that is not trivector type, leads to minimally coupled Lagrangians giving
non-minimally coupled equations for quantum fields with non-zero spin [4]). As an
interesting aside, we note that self-consistent homogeneous cosmologies, based on a
classical Dirac field, require that k = 0 (the universe is spatially flat) [12].

If we restrict attention to situations where the gravitating matter has no spin,
then there are still differences between general relativity and the theory presented
here. These differences arise when time reversal effects are important (e.g. horizons),
when quantum effects are important, and when topological issues are addressed.
For example, there is no analogue of the Kruskal extension of the Schwarzschild
solution in our theory. These differences arise from the first-order derivative nature
of the theory, and its origin in a flat background spacetime [4].

Even in those cases where the gauge-theory predictions are completely in accord
with general relativity (all present experimental tests), we believe that our approach
offers real computational advantages over conventional methods. The ‘Intrinsic
method’ described in Lasenby et al. [3, 4] is a good example of the power of the
gauge-theory approach. This method allows the field equations to be solved in
variables which are covariant under displacement gauge transformations. The
first-order ‘rotor’ approach to calculating photon trajectories, discussed in the next
section, is another such example.

3 The Iron Fluorescence Line
The X-ray emission from AGN is believed to originate on an accretion disk around
a black hole. In particular, if the disk material absorbs continuum radiation with
energy > 7.2 keV, then a fluorescent iron line at 6.4 keV may result (the probability
for this absorption is high, ∼ 0.34 per incident photon). Such lines were observed by
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Figure 1: The ratio of data and model for the averaged 0.4–10 keV spectrum of
MCG-6-30-15. The data are obtained by integrating over the entire observation
(∼ 1.7× 105 s). The model is a single power-law with photon index 1.96, modified
by cold absorption, fitted to the data excluding the 0.7–2.5 keV and the 4.5–7.2 keV
bands. There is a clear absorption feature around 1 keV due to a warm absorber,
and a broad iron K emission line around 6 keV. Reproduced with permission from
Iwasawa et al.
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Figure 2: The 0.5–10 keV light curve from MCG-6-30-15. The epoch of the start
of the light curve is 1994 July 23 05:05:25. Each data bin is averaged over 128 s.
Reproduced with permission from Iwasawa et al.
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Figure 2: The 0.5{10keV light urve from MCG-6-30-15. The epoh of the start of the light urve

is 1994 July 23 05:05:25. Eah data bin is averaged over 128 s. Reprodued with permission from

Iwasawa et al.
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Figure 3: The observed iron-line ux from MCG-6-30-15 at minimum emission.
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Figure 3: The observed iron-line flux from MCG-6-30-15 at minimum emission.
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Pounds et al. [13] and Matsuoka et al. [14] in Seyfert-1 galaxies. Recent observations
of MCG-6-30-15 (z = 0.008) have shown that this line is both broad and skew [5, 6].
Figure 1 shows the line profile from Iwasawa et al. [6], which is averaged over the
1.7×105 s observation period, and normalised to a power-law model (which included
corrections for cold absorption). The broad iron K emission line lies around 6 keV.
Recent work on the variability in the line profile during the observation has shown
that the line shape varied with position on the light curve (see Figure 2 for the
observed light curve, reproduced from Iwasawa et al. [6]) and that at the minimum
emission, the lineshape broadened further. In particular, the lineshape extended
further to the red side and the blue wing disappeared. The line flux at minimum
emission is shown in Figure 3, which should be compared to the average line flux
over the entire observation (Figure 1). The redshift factor at the tail of the red
wing extends to around ∼ 0.5, showing that we are seeing the effects of very strong
gravity at the epoch of minimum emission. If this redshift were due to climbing
out of a Schwarzschild (non-rotating) black hole, then the emission would have to
occur from r ∼ 2.5GM/c2, where M is the mass of the black hole. However, the
minimum radius stable circular orbit in a Schwarzschild black hole is at 6GM/c2.
For a Kerr (rotating) black hole this minimum radius goes down to GM/c2 for
a corotating orbit. The most likely conclusion is that the black hole is rapidly
rotating.

We shall assume that the variability in line profile is due to flaring and that
at minimum emission, we are seeing only the effects of a uniform accretion disk.
Previous authors [15, 16] have calculated the predicted lineshape for a maximal Kerr
black hole, but in order to fit the lineshape properly we must predict the lineshape
for arbitrary angular momentum, inclination angle (angle between the line of sight
of the observer and the axis of rotation) and accretion disk parameters. This
problem was addressed by a collaboration including two of the present authors [17].

3.1 Predicting the lineshapes
In order to predict the lineshape, we require the redshift and point of intersection
with the accretion disk, for all those null geodesics passing through the observation
point and the accretion disk (in the past). Gauge-theory gravity is particularly
useful here, since we can employ a computationally efficient ‘rotor’ approach to
the problem. This approach arises naturally in several diverse settings, including
the motion of charged particles in electromagnetic fields [18], and the motion of
particles in gravitational fields (including torsion effects) [12]. The rotor approach
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is useful not only because of the computational efficiency of the resulting first-order
equations, but also because of their numerical stability. We have found that these
first-order techniques are generally faster and more accurate than direct integration
of the (second-order) geodesic equations.

We begin by parameterising the photon 4-momentum with the aid of two rotors,

R1 ≡ eαiσ3/2, R2 ≡ eβiσ2/2, (3.1)

where α and β are scalar functions of the affine parameter λ along the null geodesic.
We then form the rotor R ≡ R1R2, which directly controls the direction of the
photon 4-momentum p via

p = ΦR(γ0 + γ1)R̃, (3.2)

where Φ is another scalar function of λ, which equals the energy of the photon
relative to an observer with covariant 4-velocity γ0. Note that p is guaranteed to
be null since γ0 + γ1 is null.

The basic dynamical equations are [4]

ṗ = −Ω(ẋ)·p (3.3)
ẋ = h(p), (3.4)

where x is the spacetime position vector of the photon, and overdots denote
differentiation with respect to λ. For the h-function we use the form appropriate
to the Kerr black hole in Boyer-Lindquist form:

h(et) = r2 + a2

ρ∆1/2 et −
a

rρ
eφ, h(er) = ∆1/2

ρ
er

h(eφ) = −ar
2 sin2θ

ρ∆1/2 et + r

ρ
eφ, h(eθ) = r

ρ
eθ,

(3.5)

where
ρ ≡ r2 + a2 cos2θ, ∆ ≡ r2 − 2Mr + a2, (3.6)

a is the black hole angular momentum, and M is its mass. The vectors appearing
in (3.5) are the polar frame vectors associated with the polar coordinate system
{t, r, θ, φ}:

t ≡ x·γ0 cosθ ≡ x·γ3/r

r ≡
√

(x∧γ0)2 tanφ ≡ (x·γ2)/(x·γ1).
(3.7)
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The h-function given by (3.5) is singular where ∆ = 0. This therefore fails to
define a global solution. A global solution can be obtained by a (singular) gauge
transformation. The resulting solution would allow discussion of properties inside
the horizon (see Section 4), although the above form is adequate to describe the
spacetime exterior to the horizon. The Riemann tensor associated with (3.5) takes
the neat form

R(B) = −M
2(r − ia cosθ)3 (B + 3eretBeret), (3.8)

which is clearly non-singular over its domain of validity.
The model described here cannot discriminate a and M separately. Instead

the relevant black hole parameter is a∗ ≡ a/M . For an extreme Kerr black hole
a∗ = 1, whilst the most extreme stable system of hole and accretion disk probably
has a∗=0.998 [19]. The remaining parameters to which the line profile are sensitive
are the inclination angle i (this double usage of the symbol i should not cause any
confusion), and the radial emissivity profile ε(r).

3.2 Numerical results
The equations for ṗ and ẋ yield seven first-order differential equations in λ for the
quantities Φ, α and β (giving the photon 4-momentum), and the coordinates of the
photon t, r, θ and φ. These equations are not only easy to solve numerically, but
automatically conserve energy, angular momentum and Carter constant (see, for
example, Section 33.5 of Misner et al. [20] for a discussion of the (fourth) Carter
constant). For each photon path from the accretion disk to the observer, the
redshift may be calculated using

1 + z ≡ νem

νobs
= vem·pem

vobs·pobs
, (3.9)

where vem and vobs are the covariant 4-velocities of the emitting gas and a distant
observer respectively, and νem and νobs are emitted and observed frequencies. We
assume that the matter responsible for the fluorescent line lies on the (geometrically
thin) accretion disk and has velocity vem given by the velocity of a circular equatorial
geodesic. Figure 4 shows the predicted frequency contrast of the iron line in the
images of the disk, as seen by the distant observer. Light bending due to the strong
gravity near the black hole is clearly visible in the images at large inclination angles.

The fluorescent line is emitted with intensity Iem(νem) in the local rest frame
of the disk, and received with intensity Iobs(νobs) by the distant observer. These
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Figure 4: Images of the accretion disk observed in the iron-line by a distant observer.
The top row of images is for a Schwarzschild black hole (a∗ = 0). The middle row
shows the images for a Kerr black hole with a∗ = 0.5. The bottom row corresponds
to an extreme Kerr hole (a∗ = 0.998). For each value of a∗, the image is shown
for inclination angles 30◦, 75◦ and 90◦. The grey-scale indicates the variation of
redshift in the image.



15

intensities are related by the invariant along the photon path

Iobs(νobs)
ν3

obs
= Iem(νem)

ν3
em

. (3.10)

We may then integrate over the solid angle subtended at the observer, and the
frequency bins of the detector to obtain the flux. The emitted intensity Iem(νem) will
be a function of the radius of emission in the accretion disk. Typical assumptions
are that the disk continuum emissivity follows ε(r) ∝ r−q with q in the range
2–3, or that ε(r) follows the (more realistic) law of Page and Thorne [21]. We
make the assumption that the line emissivity follows the latter, with emission
starting at the radius of marginal stability. In Figure 5 we show nine predicted line
profiles for different values of a∗ and inclination angle. These suggest that for fixed
emissivity profile, the overall line shape is most sensitive to the inclination angle.
For sufficiently large inclination angles the spectrum is double peaked. This effect
is mainly due to Doppler shifts between the receding and approaching parts of the
disk [17]. The two-parameter (a∗ and i) predicted lineshapes may now be fitted
to the observed profile over the period of lowest luminosity. The χ2 confidence
contours in the parameter space are shown in Figure 6 along with the best-fit
to the observed line flux. The χ2 contours give relatively strong evidence for an
inclination angle of ∼ 25◦ – 30◦, and strongly favour an extreme Kerr black hole
(a∗ > 0.94).

The need for a high value of a∗ is so crucial to fitting the observed line profile,
that the observed line strongly constrains the emissivity profile ε(r). This allows
us to infer an emissivity profile for the first time. We have done this with the other
parameters a∗ and i held fixed at the values 0.998 and 30◦. The inferred profile is
shown in Figure 7. There is some evidence for a power law, with a value of q ∼ 3.5,
although it obviously becomes noisy at low flux levels.

4 The Nature of the Kerr Singularity
The problem we now wish to address concerns the endpoint of rotating collapsing
matter. In the previous section we assumed that the collapsed system at the centre
of the AGN was a Kerr black hole. For this reason it is of interest to look at the
nature of the singularity inside a Kerr black hole, and so determine whether it is
consistent with what we would expect for the end point of such a collapse. This
problem was considered in Doran [7] and Doran et al. [8].
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Figure 7: A log-log plot of the inferred emissivity profile, for a∗ = 0.998 and
inclination angle i = 30◦.
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Gauge-theory gravity allows an unambiguous answer to this problem, provided
that one accepts the basic premises of our theory. This is because the topological
constraints implied by the theory ensure that we have well defined surfaces over
which we may apply integral theorems. The results of this investigation will be
a gauge invariant description of the nature of the singularity, but so far we have
found that the problem is most tractable with a specific choice of gauge. We shall
employ the ‘Kerr-Schild’ gauge, in which the h-function takes the form

h(a) = a+ a·ll, (4.1)

where l is a null vector (l2 = 0). This h-function is globally valid, unlike the gauge
employed in the previous section. This is essential to study the nature of the
singularity, since this lies inside the horizon. A simple example of a solution in the
Kerr-Schild form is provided by a Schwarzschild black hole, which has

l =
√
M/r(γ0 − er). (4.2)

In this gauge, incoming radial photons follow straight lines in a (t, r) plot, and
terminate on the singularity at r = 0. Outgoing radial photons may only escape
from the black hole if they start outside the horizon (which lies at r = 2M). This
solution is geodesically incomplete and is not time-reverse symmetric. This forces
us to adopt the picture of the black hole being the end-point of a collapse process,
with the formation of the horizon capturing information about the direction of
time for which the collapse occurred [3, 4]

It is easy to show that for a general Kerr-Schild vacuum solution [7],

l·∇l ∝ l. (4.3)

We shall only consider matter fields for which this relation is also true (this clearly
restricts the matter fields that we may describe, but does include the Reissner-
Nordstrom and Vaidya ‘shining star’ solutions). It follows that we may write

l·∇l = φl, (4.4)

where φ is an arbitrary scalar function of position. The Einstein tensor then takes
the form

G(a) = ∇·[Ω(a)− a∧(γµ·Ω(γµ))], (4.5)
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where
ω(a) = ∇∧(a·ll) (4.6)

and the vector a is not differentiated. Equation (4.5) shows that for this class of
fields, the Einstein tensor is a total divergence in the background spacetime. For
stationary fields, it follows that the Einstein tensor is a total 3-divergence. This
allows us to convert integrals of G(a) over the singular regions of space to surface
integrals over well defined 2-surfaces enclosing the singularity.

For example, the Schwarzschild black hole (4.2) gives∫
r≤r0

d3xG(a) = 8πMa·γ0γ0, (4.7)

where r0 is any value > 0, since G(a) vanishes everywhere except at the origin. It
follows that the matter stress-energy tensor is given by

T (a) = Mδ(x)a·γ0γ0, (4.8)

where x ≡ x∧γ0. This is the stress-energy tensor appropriate to a point source of
matter (of mass M) following the world line r = 0. This technique is analogous to
the usual analysis of the singularity in the Coulomb field, due to a point charge.
Note that the integrals that we have performed are not gauge invariant, but we
have extracted gauge covariant information in the form of the stress-energy tensor.

4.1 The Reissner-Nordstrom solution
We now highlight a result obtained by one of us in Doran [7]. The Reissner-
Nordstrom solution describes a charged, non-rotating black hole. In the Kerr-Schild
gauge, the solution may be written in the form

h(a) = a+ ηa·e−e−, (4.9)

where,
η ≡ M

r
− q2

8πr2 , e− ≡ γ0 − er, (4.10)

and q is the charge of the source. Away from the origin, the stress-energy tensor
evaluates to

T (a) = −1
2FaF , (4.11)
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where F ≡ qerγ0/(4πr2). This is the expected form for the electromagnetic stress
tensor due to a point charge q at the origin. To study the behaviour in the singular
region, we return to equation (4.5) to obtain

∫
r≤r0

d3x T (a) = Ma·γ0γ0 + q2

24πr0
(a− 4a·γ0γ0). (4.12)

The first term on the right-hand side is the same as in the Schwarzschild case,
whilst the latter is the trace-free electromagnetic contribution. Concentrating on
the γ0-frame energy component, we find that

∫
r≤r0

d3x γ0·T (γ0) = M − q2

8πr0
. (4.13)

Something remarkable has happened here — due to the gravitational fields„ the
electromagnetic contribution to the energy is now negative and vanishes as we
extend the integral over all of space (r0 → ∞). This is in stark contrast to the
standard picture from classical electromagnetism, where the self-energy of the point
charge diverges. Inclusion of the gravitational fields has removed this divergence,
ensuring that the total electromagnetic self-energy vanishes. The manner in which
this regularisation is achieved is discussed in Doran [7].

4.2 The Kerr solution
The Kerr solution describes a rotating, uncharged black hole. A remarkable complex
harmonic structure underlying this solution was found by Schiffer et al. [22]. We
define ‘complex’ numbers γ and ω via

γ ≡ α + iβ, ω ≡ γ−1, (4.14)

where α and β are scalars. Not that the ‘i’ appearing in equation (4.14) is the
spacetime pseudoscalar. This element is the generator of duality transformations.
For example, the STA statement of the self-duality of the Weyl tensor is

W(iB) = iW(B), (4.15)

where B is an arbitrary bivector. We obtain an axisymmetric solution of Kerr-Schild
form if we can solve the two equations

∇2γ = 0, (∇ω)2 = 1, (4.16)
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where ∇ ≡ γ0∧∇ is the derivative operator in the space orthogonal to γ0. Any
solution of these equations generates a Kerr-Schild type solution of the form (4.1),
with l given in terms of γ and γ0 [8].

As a simple example, the Schwarzschild solution is obtained by setting ω = r.
We can obtain the Kerr solution by a ‘complex translation’ of the Schwarzschild
solution:

ω = (x2 + y2 + (z − iL)2)1/2, (4.17)

where L is a scalar constant, and {x, y, z} are Cartesian coordinates. The Riemann
tensor for this solution evaluates to

R(B) = − M

2ω3 (B + 3σγBσγ), (4.18)

with the unit bivector σγ given by

σγ ≡
x− Liσ3

ω
. (4.19)

The Riemann tensor is only singular where ω = 0 which occurs on the ring
ρ = L, z = 0 (ρ ≡ (x2 + y2)1/2). For this reason, it has been widely believed that
the Kerr singularity is a ring only.

We can analyse the nature of the Kerr singularity in a similar manner to
the Schwarzschild and Reissner-Nordstrom cases treated earlier. We begin by
integrating over a spatial region which fully encloses the central disk. We find that∫

d3x T (a) = Ma·γ0γ0, (4.20)

where M is the mass of the hole (this constant appears when relating ω to l), and
the integral is taken over any region enclosing the central disk. This is the same
result as in the Schwarzschild case. We can also integrate the (orbital) angular
momentum tensor x∧T (a) (x being the spacetime position vector) over the region
enclosing the disk to obtain∫

d3x x∧T (a) = ML[−a·γ0iσ3 + 1
2(a∧γ0)×iσ3]. (4.21)

This clearly identifies ML as the total angular momentum in the fields, as expected
from their long-range behaviour.

To examine the matter distribution for ρ ≤ L, we integrate the Einstein tensor
over cylindrical 3-volumes normal to the disk. The calculations are lengthy and
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great care must be taken over the choice of branch for the complex square roots.
Details are given in Doran et al. [8], where it is shown that for ρ < L,

G(γ0) = −δ(z) 2Mρ

L(L2 − ρ2)3/2 [ργ0 + Lφ̂]

G(φ̂) = δ(z) 2M
(L2 − ρ2)3/2 [ργ0 + Lφ̂]

G(eρ) = δ(z) 2M
L(L2 − ρ2)1/2 eρ

G(γ3) = 0.

(4.22)

The vectors eρ and φ̂ are unit spacelike basis vectors in the cylindrical polar
coordinate system. This form for the Einstein tensor clearly shows that matter is
not located solely on the ring at ρ = L, but also over a disk in the plane z = 0,
which has the ring as its boundary. We see immediately that T (a) is symmetric,
showing that there are no hidden sources of torsion in the disk. This contribution
to the Einstein tensor describes a rigidly-rotating, massless disk of pure isotropic
tension in the plane of the disk. The tension is given by M/[4πL(L2 − ρ2)1/2]. The
angular velocity is 1/L so that the edge of the disk follows a lightlike trajectory.
Remarkably, this tension field has a simple non-gravitational explanation. The
special-relativistic equations governing a massless, rigidly-rotating membrane (with
a ring of particles attached to the edge) reproduce exactly the functional form with
ρ just found for this tension. The fact that the disk has vanishing energy density
but generates a tension means that it violates the weak energy condition.

The integral of the Ricci scalar over the interior of the disk yields 8πM , which
is equal to the value deduced from integrals enclosing the entire singular region.
It follows that any matter in the ring at ρ = L makes no contribution to the
Ricci scalar, and hence that the contribution to the stress-energy tensor from
the ring singularity must have vanishing trace. Furthermore, the disk of pure
isotropic tension can make no contribution to the angular momentum of the fields,
so the angular momentum must come solely from the ring singularity. From these
considerations, we may deduce that the matter in the ring follows a lightlike
trajectory. These conclusions are gauge invariant, since they are inferred from the
eigenvalue structure of covariant tensors.

We see that within the framework of gauge-theory gravity, the Kerr singularity
is composed of a ring of matter, moving at the speed of light, which surrounds a disk
of pure isotropic tension. The tension in this disk has precisely the form expected
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on the basis of special-relativistic arguments. The rotating ring of matter is a
perfectly satisfactory endpoint for matter collapsing with angular momentum — the
proper radius coincides with the minimum size allowed by special relativity, for an
object with angular momentum ML. However, the presence of the disk of tension
is problematic — no baryonic matter can have a tension but vanishing energy
density. If baryonic matter cannot form this disk, then what is the status of the
Kerr solution as the endpoint of the collapse process? The answer to this question
must await the discussion of realistic collapse processes within the framework of
gauge-theory gravity.

5 Rigidly-Rotating Cosmic Strings
As a final topic, we shall turn to a situation with cylindrical symmetry. We shall
restrict attention to string solutions in which the direction along the string axis
plays no part in the dynamics of the string. Imposing this restriction means that
the solutions which include pressure will violate the boost invariance, which is
usually demanded of all cosmic string solutions. However, these solutions may still
be of use for rotating strings in (3+1)-dimensions, where it is not clear that one
can impose boost invariance.

We adopt a cylindrical polar coordinate system {t, ρ, φ, z}:

t ≡ x·γ0 tanφ ≡ (x·γ2)/(x·γ1)
ρ ≡
√

[−(x∧σ3)2] z ≡ x·γ3.
(5.1)

The vectors {et, eρ, eφ, ez} comprise the associated coordinate frame, with et ≡ γ0

and ez ≡ γ3. The reciprocal frame vectors are denoted as {et, eρ, eφ, ez}. We shall
consider solutions described by an h-function of the form

h(et) = f1e
t + ρf2e

φ h(eρ) = eρ

h(eφ) = ρh1e
φ + h2e

t h(ez) = ez.
(5.2)

We require that the h-function (and the Ω-function) be well defined on the string
axis (z = 0). This requires that f2, ρh1 and h2 all vanish smoothly on the axis.
These requirements replace the notion of ‘elementary flatness’ employed in the
general relativity literature [23]. This is an area where gauge-theory gravity offers
clear advantages over general relativity — since we deal solely with linear functions
defined over a (flat) background spacetime, there is never any doubt about the
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conditions that these functions should satisfy.

5.1 The solution of Jensen and Soleng
The first published solution describing the interior of a finite width rotating string
was that of Jensen and Soleng [10]. Their solution may be generated from an
h-function of the form (5.2) with

h1 = 1
A

coshu f1 = coshu− M

A
sinhu

h2 = 1
A

sinhu f2 = sinhu− M

A
sinhu,

(5.3)

where
A = 1√

λ
sin(
√
λρ), (5.4)

and
M = 2α

(
(ρ− ρs) cos(

√
λρ)− 1√

λ
sin(
√
λρ) + ρs

)
. (5.5)

Here λ is a positive constant, α is a constant with α ≤ 1, and ρs is the radius of
the string. The parameter u appearing in (5.3) is arbitrary up to the constraint
that u = 0 on the axis of the string (so that the h-function is well defined there).
Analysing the solution in the gauge in which u = 0 everywhere, we find that

G(et) = −α2et + αλφ̂, (5.6)

where α2 is a function whose explicit from we do not require. The vector φ̂ is given
by

φ̂ ≡ eφ/ρ = − sinφγ1 + cosφγ2. (5.7)

If we now consider an observer with covariant velocity et passing through the axis
of the string, it is clear that the 3-momentum density he measures on the axis is
ill-defined.

The conclusion is that the solution of Jensen and Soleng does not define a
physically acceptable matter distribution. This is surprising, since the solution
does satisfy the criteria of elementary flatness. This point illustrates a further
advantage of the gauge theory approach over general relativity; the gauge theory
focuses attention on the physically relevant quantities, such as the eigenvalues of
the stress-energy tensor. In such an approach, it quickly becomes apparent if a
solution has unphysical properties.
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5.2 Rigidly-rotating strings
It is not difficult to find rotating string solutions with a physically acceptable
matter distribution. The simplest model is that of a two dimensional ideal fluid,
with stress-energy tensor

T (et) = µet

T (eρ) = −peρ
T (eφ) = −peφ
T (ez) = (µ− 2p)ez.

(5.8)

The covariant 4-velocity of the fluid is et, the energy density is µ(ρ) and the isotropic
pressure in the iσ3 plane is p(ρ). The coefficient of G(ez) is restricted to µ − 2p
by the Einstein equations, and the assumed form for the h-function (5.2). This
stress-energy tensor is well defined on the axis, provided that the pressure and
energy density are finite there.

A rigidly-rotating (shear-free) solution is given by

h1 = λ

sinλρ f1 = 1 + A

A+ cosλρ

h2 = 0 f2 = −B(f1
2 − 1)

λ(1 + A) sinλρ,
(5.9)

where λ is an arbitrary positive constant, and the constant A satisfies A < −1. It
is simple to show that this linear function is well defined on the axis. The pressure
and energy density evaluate to

8πp = K2 −GT (5.10)
8πµ = 3K2 + λ2, (5.11)

where the functions G,K and T are given by

G = λ cosλρ
sinλρ K = B

(A+ cosλρ)2 T = λ sinλρ
A+ cosλρ, (5.12)

with B a further constant. The functions G,K and T arise naturally in the rotation-
gauge field. The boundary of the string occurs where p = 0, and this must be
reached before ρ > π/λ.
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This interior solution matches onto the exterior vacuum solution given by

f1 = −(1 + A)(α/B)1/2[(ρ+ ρ0)2 − α2]−1/2 (5.13)

h1 = (α/B)1/2λ2 [(ρ+ ρ0)2 − α2]1/2

(ρ+ ρ0) (5.14)

f2 = α

f1(ρ+ ρ0)(f1
2 − 1) (5.15)

h2 = 0. (5.16)

The constants ρ0 and α must be determined by the matching conditions at the
string boundary. This class of vacuum solution does not appear to correspond
to anything given previously in the literature. There is a confining force in the
vacuum meaning that no particle can escape from the string, regardless of the
initial velocity that it is given.

The line element associated with this external solution is

ds2 = B

α(1 + A)2

(
(ρ+ ρ0)2 − α2

)
dt2 − B2(ρ+ ρ0)2

(1 + A)2α2λ4

(
f1

2 − f2
2
)
dφ2

+ 2B
λ2(A+ 1)

(
1− B

α(1 + A)2

(
(ρ+ ρ0)2 − α2

))
dt dφ− dρ2 − dz2. (5.17)

This class of rigidly-rotating strings is of particular interest because these solutions
always admit closed timelike curves at some distance from the string. This follows
from the fact that for large ρ, f1 varies as 1/ρ whereas f2 tends to a constant
value. Beyond the point where the magnitude of f2 exceeds that of f1, a closed
circular path around the string becomes timelike. The long-range properties of
these solutions make them ultimately unphysical, but there is no reason to suppose
that the solutions will not be relevant near a string of finite length.

Acknowledgements
We thank K. Iwasawa for permission to reproduce Figure 2 and A.C. Fabian, K.
Iwasawa and C. Reynolds for permission to quote from joint results [17] before
publication.



28

References
[1] R. Utiyama. Invariant theoretical interpretation of interaction. Phys. Rev.,

101(5):1597, 1956.

[2] T.W.B. Kibble. Lorentz invariance and the gravitational field. J. Math. Phys.,
2(3):212, 1961.

[3] A.N. Lasenby, C.J.L. Doran, and S.F. Gull. Astrophysical and cosmological
consequences of a gauge theory of gravity. In N. Sánchez and A. Zichichi,
editors, Advances in Astrofundamental Physics, Erice 1994, page 359. World
Scientific, Singapore, 1995.

[4] A.N. Lasenby, C.J.L. Doran, and S.F. Gull. Gravity, gauge theories and
geometric algebra. Phil. Trans. R. Soc. Lond. A356, 487–582, 1998.

[5] Y. Tanaka, K. Nandra, A.C. Fabian, H. Inoue, C. Otani, T. Dotani,
K. Hayashida, K. Iwasawa, T. Kii, H. Kunieda, F. Makino, and M. Mat-
suoka. Gravitationally redshifted emission implying an accretion disk and
massive black-hole in the active galaxy MCG-6-30-15. Nature, 375:659, 1995.

[6] K. Iwasawa, A.C. Fabian, C.S. Reynolds, K. Nandra, C. Otani, H. Inoue,
K. Hayashida, W.N. Brandt, T. Dotani, H. Kunieda, M. Matsuoka, and
Y. Tanaka. The variable iron K emission line in MCG-6-30-15. Mon. Not. R.
Astron. Soc., 283:1038, 1996.

[7] C.J.L. Doran. Integral equations and Kerr-Schild fields I. Spherically-symmetric
fields. In preparation, 1996.

[8] C.J.L Doran, A.N. Lasenby, and S.F Gull. Integral equations and Kerr-Schild
fields II. The Kerr solution. In preparation, 1996.

[9] C.J.L. Doran, A.N. Lasenby, and S.F. Gull. The physics of rotating cylindrical
strings. Phys. Rev. D 54(10), 6021–6031, 1996.

[10] B. Jensen and H.H. Soleng. General-relativistic model of a spinning cosmic
string. Phys. Rev. D, 45(10):3528, 1992.

[11] D. Hestenes. Space-Time Algebra. Gordon and Breach, New York, 1966.

[12] A.D. Challinor, A.N. Lasenby, C.J.L. Doran, and S.F. Gull. Massive, non-ghost
solutions for the self-consistent Dirac field. General Rel. Grav. 29:1527, 1997



29

[13] K.A. Pounds, K. Nandra, G.C. Stewart, I.M. George, and A.C. Fabian. X-ray
reflection from cold matter in the nuclei of active galaxies. Nature, 344:132,
1990.

[14] M. Matsuoka, L. Piro, M. Yamauchi, and T. Murakami. X-ray spectral
variability and complex absorption in the Seyfert-1 galaxies NGC-4051 and
MCG-6-30-15. ApJ, 361:440, 1990.

[15] A. Laor. Line-profiles from a disk around a rotating black-hole. ApJ, 376:90,
1991.

[16] Y. Kojima. The effects of black-hole rotation on line-profiles from accretion
disks. Mon. Not. R. Astron. Soc., 250:629, 1991.

[17] Y. Dabrowski, A.C. Fabian, K. Iwasawa, A.N. Lasenby, and C.S. Reynolds.
The profile and equivalent width of the X-ray iron emission-line from a disk
around a Kerr black hole. Submitted to Mon. Not. R. Asron. Soc., 1996.

[18] D. Hestenes. Proper dynamics of a rigid point particle. J. Math. Phys.,
15(10):1778, 1974.

[19] K.S. Thorne. Disk-accretion onto a black hole II. Evolution of the hole. ApJ,
191:507, 1974.

[20] C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. W.H. Freeman
and Company, San Francisco, 1973.

[21] D.N. Page and K.S. Thorne. Disk-accretion onto a black hole I. Time averaged
structure of accretion disk. ApJ, 191:499, 1974.

[22] M.M. Schiffer, R.J. Adler, J. Mark, and C. Sheffield. Kerr geometry as
complexified Schwarzschild geometry. J. Math. Phys., 14:52, 1973.

[23] J.L. Synge. Relativity: The General Theory. North-Holland Publishing,
Amsterdam, 1964.


