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Abstract

It is shown that higher-weighted representations of rotation groups can be con-
structed using multilinear functions in geometric algebra. Methods for obtaining
the irreducible representations are found, and applied to the spatial rotation group,
SO(3), and the proper Lorentz group, SO+(1, 3). It is also shown that the represen-
tations can be generalised to non-linear functions, with applications to relativistic
wave equations describing higher-spin particles, such as the Rarita-Schwinger equa-
tions. The internal spin degrees of freedom and the external spacetime degrees of
freedom are handled within the same mathematical structure.

PACS: 02.10.Sp; 02.20.Sv; 03.65.Fd; 03.65.Pm.

1 Introduction

The vector and spinor representations of rotation groups are well known. In this paper
we show that it is possible to extend these to higher-weighted representations by using
multilinear functions of vector variables. Our representations are constructed using the
language of geometric algebra, an introduction to which is given in the following subsec-
tion.

First we show how to construct the representations of an arbitrary rotation group
SO+(p, q) and demonstrate the methods for finding their irreducible components. The
most important method is monogenic decomposition [1], which can be refined by consider-
ing the symmetry between the arguments of the function. A monogenic function belongs
to the null space of the vector derivative (the Dirac operator). Analysis of the monogenic
properties of functions forms an important part of Clifford analysis.

We use these methods to find the irreducible representations of the rotation group of
Euclidean 3-space SO(3) and the proper Lorentz group SO+(1, 3). In both cases we show
how to find all the integral- and half-integral-spin representations of the groups. These
are useful in constructing wave equations describing higher-spin particles.

In the last section we examine the Dirac equation and its generalisations to higher-spin
wave equations, such as the Rarita-Schwinger equations. We show that the multilinear
representations can be extended to encompass non-linear functions, and these can be used
to construct the wavefunctions. This provides a unified method for describing the internal
and external degrees of freedom of a higher-spin particle. In using geometric algebra we
are able to overcome one of the deficiencies in the matrix formulation of linear algebra,
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that it is not easily able to relate linear and non-linear methods. Polynomial projection [1]
enables us to immediately construct the non-linear functions which form the basis of the
spacetime part of the wavefunction from the multilinear functions derived earlier for the
spin part of the wavefunction.

1.1 Geometric Algebra

Geometric algebra is based upon Clifford algebra with emphasis on the geometric inter-
pretation of elements of the algebra rather than their matrix representations. Here we
present a brief introduction to geometric algebra and the conventions that are used in this
paper. More comprehensive introductions can be found in Hestenes and Sobczyk [2] and
Gull, Lasenby and Doran [3].

Geometric algebra is a graded algebra in which the fundamental product is the geo-
metric product. Vectors, which have grade 1, will be written in lower case Roman letters
(a,b, etc.). The geometric product of vectors ab can be split into its symmetric and anti-
symmetric parts

ab = a·b+ a∧b (1)

where

a·b ≡ 1
2 (ab+ ba)

a∧b ≡ 1
2 (ab− ba)

(2)

The inner product a ·b is scalar-valued (grade 0). The outer product a∧b represents a
directed plane segment produced by sweeping a along b. This new element is called a
bivector and has grade 2. By introducing more vectors, higher-grade elements can be
constructed, trivectors (grade-3) a∧b∧c represent volumes, and so on, up to the dimension
of the space under consideration. A grade-r element of the algebra is called an r-vector
and a general element of the geometric algebra, possibly consisting of many grades, is
called a multivector. If we multiply an r-vector Ar by an s-vector Bs the geometric
product can be expanded as follows

ArBs = 〈ArBs〉r+s + 〈ArBs〉r+s−2 + . . .+ 〈ArBs〉|r−s| , (3)

where 〈C〉t denotes projecting out the grade-t elements of C. The notation for inner and
outer products is retained for the lowest and highest grade elements in this expansion,

Ar∧Bs ≡ 〈ArBs〉r+s ,

Ar ·Bs ≡ 〈ArBs〉|r−s| .
(4)

We use the convention that inner and outer products take precedence over geometric
products in expressions.

In addition we define the commutator product, which is equal to half the commutator
bracket

A×B = 1
2 (AB −BA) = 1

2 [A,B]. (5)

Reversion is the operation by which the order of vectors in a geometric product is reversed,
it is defined by

ÃB = B̃Ã, (6)

where a vector reverses to give itself, ã = a.
Although geometric algebra can be constructed in an entirely basis-free form, in many

applications it is useful to introduce a set of basis vectors. The geometric algebra with
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signature (p, q) which will be denoted as Gp,q has n = p + q orthonormal basis vectors,
ei, i = 1, . . . , n which obey

ei ·ej =


1 i = j = 1, . . . , p

−1 i = j = p+ 1, . . . , p+ q

0 i 6= j

(7)

The grade-r space in this algebra is denoted Grp,q.
The highest-grade element that can be formed from this basis has grade n and is called

the pseudoscalar. It is defined by

I ≡ e1∧e2∧. . .∧en = e1e2 . . . en. (8)

All grade-n elements must be a scalar multiple of the pseudoscalar.
This paper makes use of some results of geometric calculus, which is based on the

vector derivative. If we write a vector in terms of its components, a = aiei, then the
vector derivative with respect to a is defined as

∂a ≡ ei
∂

∂ai
(9)

where the reciprocal vectors are defined by

ei ≡ (−1)i−1(e1∧. . .∧ěi∧. . .∧en)I−1 (10)

and the check on ěi denotes that it is omitted from the product. The vector derivative,
besides being an operator, also inherits the properties of a vector from a. The vector
derivative with respect to position x is given the symbol ∇,

∇ ≡ ∂x. (11)

This paper uses the properties of multilinear functions which are functions in geometric
algebra that are linear in all of their arguments. A function

M(a1, . . . , ak) (12)

which takes values in any part of the geometric algebra and is linear in its k vector
arguments will be called k-linear.

There are two geometric algebras, the Pauli algebra and the spacetime algebra, which
for reasons of convention have their own notation.

1.2 The Pauli Algebra

The Pauli algebra G3,0 is the geometric algebra of three dimensional Euclidean space. The
three basis vectors are σ1, σ2 and σ3, which satisfy

σj ·σk = δjk. (13)

The pseudoscalar of the algebra is

i ≡ σ1σ2σ3. (14)

The algebra has eight basis elements

1 {σk} {iσk} i

1 scalar 3 vectors 3 bivectors 1 pseudoscalar

grade 0 grade 1 grade 2 grade 3

(15)
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1.3 The Spacetime Algebra

The spacetime algebra (STA) is the geometric algebra of Minkowski spacetime, G1,3. The
basis vectors are γ0, γ1, γ2 and γ3, which satisfy

γµ · γν = ηµν = diag(+−−−). (16)

We also define the bivectors,

σk = γkγ0 (k = 1, 2, 3), (17)

and the pseudoscalar,
i = γ0γ1γ2γ3 = σ1σ2σ3. (18)

These definitions are compatible with those for the Pauli algebra given above, because
the Pauli algebra is a sub-algebra of the STA. The STA has 16 basis elements,

1 {γµ} {σk, iσk} {iγµ} i

1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar

grade 0 grade 1 grade 2 grade 3 grade 4

(19)

Vectors in the STA have a projective relation to those in the Pauli algebra,

aγ0 = a0 + a (20)

where a0 = a·γ0 and a = a∧γ0. The bivector a in the STA corresponds to the vector in
the Pauli algebra relative to the frame defined by the unit timelike vector γ0.

2 Representations of Rotation Groups

In this section we shall develop the formalism we need to describe higher-weighted repre-
sentations of the rotation group SO+(p, q) and find its irreducible representations.

2.1 The Representations

Any rotation belonging to the group SO+(p, q) leaves the inner product of two vectors
in the geometric algebra Gp,q unchanged. Such a rotation is described by a rotor R, an
even-graded element of the algebra which satisfies

RR̃ = 1. (21)

Rotors are used to define the two types of representation of the the rotation group. The
one-sided representations, which will be denoted as ÛR, in which the rotor acts one-sidedly
on a multivector ψ,

ÛR[ψ] = Rψ, (22)

and the two-sided representations, which will be denoted as V̂R, in which the rotor R acts
two-sidedly on a multivector M ,

V̂R[M ] = RMR̃. (23)
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The group Spin+(p, q) of which the one-sided representations are members is a double
covering of the group SO+(p, q). This follows from the fact that in the two-sided rep-
resentations, the rotation represented by a rotor R could equally well be represented by
−R,

V̂(−R) = V̂R,

but this does not hold for the one-sided representations.
We extend the carrier spaces of these two types of representations to multilinear func-

tions of vector variables by defining their actions on k-linear functions to be

ÛR[ψ(a1, . . . , ak)] = Rψ(R̃a1R, . . . , R̃akR), (24)

V̂R[M(a1, . . . , ak)] = RM(R̃a1R, . . . , R̃akR)R̃. (25)

Most rotors can be written in the form

R = exp
(
1
2C
)
, (26)

where C is a bivector. If C is a simple bivector then it defines the plane in which the
rotation occurs. The algebra of the bivectors G2p,q, which is closed under the commutator
product (5), is equivalent to the Lie algebra so(p, q) of the rotation group [4].

By writing the operator ÛR in a form similar to (26) we can define the linear operator
L̂C which corresponds to C,

ÛR ≡ exp
(

1
2 L̂C

)
. (27)

Take for example a linear function ψ(a) which transforms under ÛR. In order to find the
action of L̂C on ψ(a) we write C = αB, where α is a scalar and use (26) to substitute for
R,

ÛR[ψ(a)] = exp
(

1
2αL̂B

)
ψ(a) = e

1
2αBψ(e−

1
2αBae

1
2αB). (28)

Differentiating with respect to α and setting α = 0, we find that

1
2 L̂Bψ(a) = 1

2Bψ(a) + ψ(a·B). (29)

The factors of 1
2 in this equation arise naturally from the definition of the rotor (26). The

set of operators L̂B form a representation of the Lie algebra which obeys the commutation
relation

[L̂B , L̂C ] = L̂[B,C], (30)

or writing the same expression using the commutator product,

L̂B×L̂C = L̂B×C . (31)

The geometric algebra Gp,q has 1
2n(n − 1) linearly-independent bivectors, thus SO(p, q)

has 1
2n(n− 1) generators.

Extending L̂B to act on functions with k arguments is straightforward

1
2 L̂B [ψ(. . .)] = 1

2Bψ(. . .) +

k∑
i=1

ψ(. . . , ai ·B, . . .), (32)

each argument makes a contribution of one term to the expression. A similar procedure
gives the action of L̂B on functions which transform two-sidedly,

1
2 L̂B [M(. . .)] = B×M(. . .) +

k∑
i=1

M(. . . , ai ·B, . . .). (33)
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2.2 Invariant Subspaces

We must find the irreducible representations of the rotation group. To this end we now
seek the invariant subspaces of the representations.

The simplest kind of invariant subspace is one in which elements have a definite sym-
metry among their arguments. An operator T̂ij can be defined which exchanges the ith
and jth arguments of a function,

T̂ijψ(. . . , ai, . . . , aj , . . .) = ψ(. . . , aj , . . . , ai, . . .), (34)

which is used to construct operators which symmetrise or antisymmetrise between the ith
and jth arguments of a function.

Ŝij ≡ 1
2 (1 + T̂ij),

Âij ≡ 1
2 (1− T̂ij).

(35)

These operators commute with the action of the group, so if a function has symmetric or
antisymmetric arguments, the action of the group does not change this property. Combi-
nations of Ŝij and Âij can be constructed to represent all distinct symmetries between the
arguments of a k-linear function. A general product of these operators will be denoted
as Ŷ. It can be shown that there is a one-to-one correspondence between these functions
and the order-k Young tableaux.

A two-sided representation preserves the grade of an object which it transforms. This
property can be shown by considering the action of V̂R on an r-vector Ar = a1∧a2∧. . .∧ar
where a1, a2, . . . , ar are vectors. Since RR̃ = 1,

V̂R[Ar] = RArR̃ = (Ra1R̃) ∧ (Ra2R̃) ∧ . . . ∧ (RarR̃) (36)

which is also be an r-vector, so V̂R preserves the grades of all r-vectors, formally,

V̂R[Grp,q] = Grp,q. (37)

A one-sided representation does not preserve the grade of an object, however, since
rotors are even-graded elements of the algebra, this representation separates the space of
multivectors into even and odd grades, formally,

ÛR[G+p,q] = G+p,q,

ÛR[G−p,q] = G−p,q.
(38)

We shall call an one-sided irreducible representation a spinor representation. A spinor
representation can also accommodate an ideal structure. A spinor or spinor-valued func-
tion ψ can be multiplied on the right by an idempotent element of the algebra E = E2 to
project it into a right ideal of the algebra,

ψ = ψE. (39)

The ideal structure is preserved by the action of ÛR since the rotor acts only on the left.
Another property that is not changed by the action of the group is that of monogenicity.

If a function M(a1, . . . , ak) is monogenic, it has the property

∂ajM(a1, . . . , ak) = 0 (40)
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for all j = 1, 2, . . . , k. This property is unchanged by the action of a rotor. Take, for
example, a function which transforms under ÛR

∂aj ÛR[M(a1, . . . , ak)] = ∂ajRM(a′1, . . . , a
′
k) (41)

where a′j = R̃ajR. Using the chain rule to rearrange the transformed function,

∂ajRM(a′1, . . . , a
′
k) = ∂aj (R̃ajR) · ∂a′

j
RM(a′1, . . . , a

′
k)

= R∂a′
j
M(a′1, . . . , a

′
k).

(42)

Thus, under the action of ÛR, the monogenic properties of a function are not changed,

ÛR[∂ajM(a1, . . . , ak)] = R∂a′
j
M(a′1, . . . , a

′
k). (43)

A similar argument applies to the double-sided transformation (25). From this, it can be
shown that monogenicity is also preserved under the action of elements of the Lie algebra.
We shall denote any monogenic function by the primary label M.

The grade-invariance property of the two-sided transformation and monogenic invari-
ance do not define mutually exclusive invariant subspaces and so cannot be used simul-
taneously to find the irreducible representations. We conclude that the irreducible rep-
resentations of rotation groups consist of basis functions which have distinct symmetry
among their arguments. For functions which transform one-sidedly, they correspond to
particular terms in the monogenic decomposition and possibly have an ideal structure or,
for functions which transform two-sidedly, they possess definite grade.

2.3 Monogenic decomposition

In the last section we proved that the monogenic properties of a function are not changed
by the action of the rotation group or its Lie algebra. Arbitrary k-linear functions can
be decomposed into monogenic and non-monogenic parts in a similar manner to Taylor
decomposition of functions in one dimension.

An inner product can be defined between two k-linear functions, ξ and η,

〈ξ|η〉 = 〈ξ(∂a1 , . . . , ∂ak)η̃(a1, . . . , ak)〉 (44)

which is invariant under the action of both types of representation of the rotation group. A
complex structure can always be added to this inner product. The functions are orthogonal
if 〈ξ|η〉 = 0. For simplicity it will be assumed that at least one of the functions is not null.
A function ψ(a1, . . . , ak) can be decomposed into a monogenic part and a part orthogonal
to it:

ψ(a1, . . . , ak) =M(a1, . . . , ak) +M(a1, . . . , ak) (45)

where

M(a1, . . . , ak) = a1ψ1(a2, . . . , ak) + a2ψ2(a1, a3, . . . , ak) + . . .

+akψk(a1, . . . , ak−1).
(46)

The fact that each term in M is orthogonal toM follows easily from the definition of the
inner product, since for any function ξ(a1, . . . , aj−1, aj+1, . . . , ak) which does not depend
on aj ,

〈ajξ(a1, . . . , aj−1, aj+1, . . . , ak)|M(a1, . . . , ak)〉 =〈
ξ(a1, . . . , aj−1, aj+1, . . . , ak)|∂ajM(a1, . . . , ak)

〉
= 0

(47)
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by the monogenic properties of M. Recursive use of the partial decomposition produces
the complete monogenic decomposition

ψ(a1, . . . , ak) =

k∑
l=0

Ml(a1, . . . , ak) (48)

where

M0(a1, . . . , ak) = M(a1, . . . , ak),

Ml(a1, . . . , ak) =
∑
π aπ(1) . . . aπ(l)Mπ(aπ(l+1), . . . , aπ(k)),

(49)

where the sum runs over all permutations π of the numbers 1, . . . , k. The decomposition
is unique and the Ml are orthogonal

〈Mj |Ml〉 = 0 for j 6= l. (50)

Under the action of ÛR, the function Ml transforms as

ÛR[Ml(a1, . . . , ak)] =
∑
π

aπ(1) . . . , aπ(l)ÛR[Mπ(aπ(l+1), . . . , aπ(k))], (51)

similarly for V̂R. This shows that only the monogenic part of the function is transformed,
the polynomial of vectors remaining unchanged.

We conclude that any arbitrary k-linear function can be constructed out of monogenic
functions as in (48).

The symmetry between the arguments can be used to refine the monogenic decompo-
sition,

ψ(a1, . . . , ak) =

k∑
l=0

∑
Ŷ

ŶMl(a1, . . . , ak) (52)

where Ml is defined as before (49) and the decomposition is summed over all possible
symmetries among the arguments, Ŷ. This is known as the Fischer decomposition [1].

3 Representations of SO(3)

In this section we will investigate the multilinear representations of the rotation group of
Euclidean space, SO(3).

3.1 Generators and Eigenstates

The Pauli algebra G3,0 has three linearly-independent bivectors, iσ1, iσ2 and iσ3, so SO(3)
has three generators, for which the following notation is introduced.

Ĵk ≡ 1
2 L̂iσk

(53)

for k = 1, 2, 3. Since iσ2
k = −1 these are compact generators. The {Ĵk} obey the commu-

tation relation
[Ĵk, Ĵl] = −εklmĴm. (54)

This relation differs from the usual convention because the generators are related to the
bivectors of the Pauli algebra, rather than the vectors as in more conventional treatments.

The representations will be classified as eigenstates of the generators. To do this we
need to introduce a complex structure, but rather than using the scalar imaginary we shall
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use an operation within the real geometric algebra to play the same role. The geometric
operation that we choose will be denoted by ̂.

The spin of a particle is described by two quantum numbers which give the total spin
and the spin in a particular plane. The ‘total spin’ operator is the Casimir operator of
the group,

Ĵ2 ≡ Ĵ1
2 + Ĵ2

2 + Ĵ3
2. (55)

Denoting this as the square of a vector is somewhat misleading, but we shall retain this
notation for the sake of convention. One of the generators must be chosen to complete
our commuting set of operators. The conventional choice is Ĵ3 which measures the spin in
the iσ3 plane. The states are described in terms of the eigenstates of these two operators,
the eigenvalues of which are s and m respectively. Acting on an abstract state |sm〉,

Ĵ2 |sm〉 = −s(s+ 1) |sm〉 , (56)

Ĵ3 |sm〉 = ̂m |sm〉 . (57)

The raising and lowering operators are the same as in conventional treatments,

Ĵ± = Ĵ1 ± ̂Ĵ2. (58)

The spin-s irreducible representation will be referred to as D(s). Products of the repre-
sentations obey the familiar Clebsch-Gordon decomposition,

D(s1)⊗D(s2) ≡ D(s1 + s2)⊕ . . .⊕D(|s1 − s2|). (59)

3.2 The Spin-1
2

Representation

The spin- 12 representation is the fundamental spinor representation which could take val-
ues in the even or odd sectors of the algebra. It is more convenient to let spinor ψ take
values in the even sub-algebra G+3,0, of which the basis elements are

{1, iσ1, iσ2, iσ3}. (60)

Translating the conventional representation into geometric algebra [5, 6] it is found that
the spin- 12 representation is complexified by right-multiplication by iσ3

̂ψ ≡ ψiσ3. (61)

The even sub-algebra is closed under this operation.
Using the raising and lowering operators (58) the spin-up and spin-down basis states

χ± are found to be

χ+ = 1,

χ− = iσ1.
(62)

Coefficients of these states are defined over the ‘complex’ field, {1, ̂} so a general state
takes values over the whole even sub-algebra. The convention for the basis states used here
differs slightly from those of Doran et al. [6] since we have adopted a different convention
for the generators.
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3.3 The Spin-1 Representation

The vector space of the Pauli algebra G13,0 has three basis vectors which could form a basis
for the spin-1 representation D(1). We cannot use the same complexification operation
as the spin- 12 representation here, but we note that the space of bivectors G23,0 could also
form a suitable basis for D(1). So to complexify this representation we employ an ad
hoc construction: the pseudoscalar i = σ1σ2σ3, which has a negative square, is used to
complexify the representation,

̂A ≡ iA. (63)

A consequence of this is that theD(1) representation is vector- and bivector-valued and has
3 complex or 6 real degrees of freedom. The complexification operations we have defined
for the spin- 12 and the spin-1 representations at first sight appear to be incompatible, but
later we shall show that they can be reconciled.

Using the raising and lowering operators the three basis states Asm can be constructed.

A1,1 = 1√
2
(σ1 + iσ2)

A1,0 = −iσ3
A1,−1 = 1√

2
(σ1 − iσ2)

(64)

the coefficients of which take values over the ‘complex’ field {1, ̂}.

3.4 Relating Spin-1
2

and Spin-1 Representations

Here we shall attempt to relate the spin- 12 representations to the spin-1 representations
and reconcile the differing complexification operators. This process will be very useful
later in constructing higher-spin representations.

We can attempt to construct a spin-1 state from two spin- 12 states, ψ1 and ψ2, in the
form

M = ψ1Γψ̃2, (65)

where Γ is a fixed multivector to be determined. If the spinors are transformed under ÛR

we find that,

ψ1Γψ̃2
R7−→ ÛR[ψ1]ΓÛR[ψ̃2] = Rψ1Γ(Rψ2)̃ = Rψ1Γψ̃2R̃ = V̂R[ψ1Γψ̃2], (66)

so M transforms like an integral-spin representation. Taking the product of the represen-
tations, M will transform as

D( 1
2 )⊗D( 1

2 ) = D(1)⊕D(0). (67)

Since Γ is a multivector, M will take values in all possible grades of the algebra. The
scalar and pseudoscalar parts can be identified with the spin-0 representation, since these
grades are invariant under rotation,

φ =
〈
ψ1Γψ̃2

〉
0,3

(68)

and the vector and bivector parts are identified with the spin-1 representation as in the
previous section,

A =
〈
ψ1Γψ̃2

〉
1,2
. (69)
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Inserting the spin- 12 basis states into (69), we find that Γ is

Γ ≡ (1 + σ3)σ1. (70)

The presence of the idempotent 1
2 (1 + σ3) in Γ ensures that the differing complexification

operators defined earlier are consistent.

3.5 Half-Integral-Spin Representations

To find a general half-integral-spin representation, we will be looking for spinor-valued
functions which transform under ÛR. The complexification operator for these functions
is the same as that for the spinor representation.

Consider a spinor-valued linear function, ψ(a), which transforms under ÛR. The
monogenic decomposition (48) can be used to analyse the transformation properties of
the function,

ψ(a) =M(a) + aχ (71)

where M(a) is the monogenic part of the function, and the second term is the residual
component which is defined by

χ = 1
3∂aψ(a) (72)

which will take values in the odd-graded part of the algebra G−3,0. This function will
transform as the

D( 1
2 )⊗D(1) = D( 3

2 )⊕D( 1
2 ) (73)

representation. Under the action of ÛR, ψ(a) transforms to

Rψ(R̃aR) = RM(R̃aR) + aRχ. (74)

It can be seen that the second term transforms with one rotor like the spin- 12 representa-
tion, so the monogenic part of the function can be identified with the spin- 32 representation.

To construct the higher-spin representations we will need some ‘complex’-valued func-
tions of a vector variable from which to construct the contributions of the arguments,

φ1(a) = 1√
2
(a·σ1 + a·σ2̂),

φ0(a) = −a·σ3̂,

φ−1(a) = 1√
2
(a·σ1 − a·σ2̂).

(75)

These are closely related to the spin-1 basis states. They have been written using ̂ since
they will be useful in constructing both integral and half-integral-spin states.

The spin- 32 multiplet can be constructed from these functions and the spin- 12 basis
states χ± (62),

ψ 3
2 ,

3
2
(a) = χ+φ1(a),

ψ 3
2 ,

1
2
(a) = 1√

3
(χ−φ1(a) +

√
2χ+φ0(a)),

ψ 3
2 ,−

1
2
(a) = 1√

3
(χ+φ−1(a) +

√
2χ−φ0(a)),

ψ 3
2 ,−

3
2
(a) = χ−φ−1(a).

(76)

These four basis states are monogenic functions. The associated spin- 12 doublet consists
of the residual functions from the monogenic decomposition,

ψ 1
2 ,

1
2
(a) = 1√

3
(
√

2χ−φ1(a)− χ+φ0(a)) = 1√
3
ai,

ψ 1
2 ,−

1
2
(a) = 1√

3
(−
√

2χ+φ−1(a) + χ−φ0(a)) = − 1√
3
aσ1.

(77)
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These functions are orthonormal under the functional inner product (44).
Now consider a spinor-valued bilinear function, ψ(a, b), which will transform under ÛR

as
D( 1

2 )⊗D(1)⊗D(1) = D( 5
2 )⊕ 2D( 3

2 )⊕ 2D( 1
2 ) (78)

The monogenic decomposition of ψ(a, b) is

ψ(a, b) =M(a, b) + aM′(b) + bM′′(a) + abξ1 + baξ2 (79)

The symmetry between the arguments need not be taken into account since there can-
not be any antisymmetric monogenic functions in G3,0. If there were such a monogenic
MA(a, b), it could be written as a function of a bivector MA(a∧b). By linearity,

∂aMA(a∧b) = ∂a(a∧b)·∂BMA(B) = 0, (80)

where the chain rule has been applied. Expanding B over the bivector basis elements,
this becomes

b·iσ1MA(iσ1) + b·iσ2MA(iσ2) + b·iσ3MA(iσ3) = 0, (81)

which must hold for all values of b. It is easy to show that this implies that each of
the components of MA(a∧b) vanishes. It follows that in 3 dimensions a k-linear mono-
genic cannot be antisymmetric in any two of its arguments, it therefore must be totally
symmetric.

Under the action of ÛR, ψ(a, b) transforms to

Rψ(R̃aR, R̃bR) = RM(R̃aR, R̃bR) + aRM′(R̃bR)

+bRM′′(R̃aR) + abRξ1 + baRξ2
(82)

Again it can be seen that it is the monogenic part which behaves as the irreducible
representation with the highest spin, in this case spin- 52 . There are also two spin- 32 and
two spin- 12 representations, as predicted in (78). The m = 5

2 state will be

ψ 5
2 ,

5
2
(a, b) = χ+φ1(a)φ1(b), (83)

and the remaining basis states of the D( 5
2 ) representation can be constructed using the

lowering operator.
The properties of a function which corresponds to a general half-integral-spin irre-

ducible representation can now be deduced. Consider a spinor-valued k-linear function

ψ(a1, . . . , ak) (84)

which transforms under ÛR as

D( 1
2 )⊗D(1)⊗ . . .⊗D(1)︸ ︷︷ ︸

k times

= D(k + 1
2 )⊕D(k − 1

2 )⊕ . . .⊕D( 1
2 ). (85)

The monogenic part of this function

M(a1, . . . , ak), (86)

which must be totally symmetric, will correspond to the D(k+ 1
2 ) irreducible representa-

tion. The m = k + 1
2 basis state will be

ψk+ 1
2 ,k+

1
2
(a1, . . . , ak) = χ+φ1(a1) . . . φ1(ak). (87)

The rest of the spin-(k + 1
2 ) basis states can be constructed from this using the lowering

operator.
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3.6 Integral-Spin Representations

In the same way as we constructed the spin-1 representation from the spin- 12 repre-
sentation, we can construct any integral-spin representation from the half-integral-spin
representations deduced above. A linear function which transforms under V̂R can be
constructed from a spinor-valued linear function ψ1(a) and a spinor ψ2.

M(a) = ψ1(a)Γψ̃2 (88)

where Γ = (1 + σ3)σ1 as before (70). M(a) will be multivector-valued, and it will belong
to the

D( 1
2 )⊗D(1)⊗D( 1

2 ) (89)

representation. If ψ1(a) is restricted to be monogenic M(a), then the function

M ′(a) =M(a)Γψ̃2 (90)

belongs to the
D( 3

2 )⊗D( 1
2 ) = D(2)⊕D(1) (91)

representation. This can be restricted further by selecting the vector and bivector part

A(a) = 〈M(a)Γψ̃2〉1,2. (92)

which will transform as the D(2) irreducible representation. The scalar and pseudoscalar
part of M ′(a) will transform as D(1). Inserting the D( 3

2 ) and D( 1
2 ) basis states from (62)

and (76) the basis states of the D(2) irreducible representation are

A2,2(a) = A1φ1(a),

A2,1(a) = 1√
2
(A1φ0(a) +A0φ1(a)),

A2,0(a) = 1√
6
(A1φ−1(a) +A−1φ1(a) + 2A0φ0(a)),

A2,−1(a) = 1√
2
(A−1φ0(a) +A0φ−1(a)),

A2,−2(a) = A−1φ−1(a).

(93)

where A1, A0 and A−1 are shorthand for the m = 1, m = 0 and m = −1 basis states of
the D(1) representation respectively.

This procedure can now be generalised to find the properties of a function which corre-
sponds to any integral-spin irreducible representation. Consider a k-linear function which
transforms under V̂R, constructed from a k-linear spinor-valued function ψ1(a1, . . . , ak)
and a spinor ψ2,

M(a1, . . . , ak) = ψ1(a1, . . . , ak)Γψ̃2. (94)

It will transform as

D( 1
2 )⊗D(1)⊗ . . .⊗D(1)︸ ︷︷ ︸

k times

⊗D( 1
2 ) = D(k + 1)⊕D(k)⊕ . . .⊕D(0) (95)

If ψ1(a1, . . . , ak) is restricted to be a monogenic then the function

M ′(a) =M(a1, . . . , ak)Γψ̃2 (96)

will transform as the
D(k + 1

2 )⊗D( 1
2 ) = D(k + 1)⊕D(k) (97)
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representation. Again if this is restricted to the vector and bivector parts, the resulting
function

A(a1, . . . , ak) = 〈M(a1, . . . , ak)Γψ̃2〉1,2 (98)

corresponds to the D(k + 1) irreducible representation.
We have now identified the functions which correspond to all of the irreducible repre-

sentations of SO(3) and in the process discovered many monogenic functions in the Pauli
algebra.

4 Representations of the Lorentz Group

We now turn our attention the the proper Lorentz group SO+(1, 3). The representations
we find in this section will be useful in describing relativistic wave equations.

4.1 Generators

The spacetime algebra has six linearly-independent bivectors, {σk, iσk}, therefore the
Lorentz group has six generators, for which we introduce the following shorthand notation,

Ĵk = 1
2 L̂iσk

, K̂k = 1
2 L̂σk

, (99)

where k = 1, 2, 3. These operators obey the commutation relations

[Ĵi, Ĵj ] = −εijkĴk, [K̂i, K̂j ] = εijkĴk, [Ĵi, K̂j ] = εijkK̂k. (100)

The {Ĵk} form a closed sub-algebra, which is identical to the Lie algebra of SO(3) in the
previous section. Again these relations differ slightly from conventional treatments.

4.2 Classification of Irreducible Representations

We shall introduce complex structure to the Lorentz group within the real STA, using
the operator ̂ to stand for the complexification operation and deducing its action on the
representations. The complex structure can be used to define two sets of generators from
the generators of the Lorentz group [7]

Âk = 1
2 (Ĵk + ̂K̂k), B̂k = 1

2 (Ĵk − ̂K̂k), (101)

where k = 1, 2, 3. These operators have the following commutation relations

[Âk, Âl] = −εklmÂm, [B̂k, B̂l] = −εklmB̂m, [Âk, B̂l] = 0. (102)

The operators form two uncoupled sets of generators which individually behave like the
generators of SO(3). The group generated by these uncoupled operators will therefore
behave as a direct product of two copies of SO(3). If sa is the spin of the Âk irreducible
representation and sb is the spin of the B̂k irreducible representation then their direct
product space, which can be described by a pair of spin weights (sa, sb), will have (2sa +
1)(2sb + 1) complex degrees of freedom. An eigenstate will be equivalent to the product
of two SO(3) eigenstates

|sa, sb,ma,mb〉 ∼= |sa,ma〉 ⊗ |sb,mb〉 . (103)
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The operators

Â2 = Â1
2 + Â2

2 + Â3
2, (104)

B̂2 = B̂1
2 + B̂2

2 + B̂3
2, (105)

are the Casimir operators of the group, where the ‘vector’ notation has again been used.
These can be written in terms of the Ĵk and K̂k operators by taking the sum and difference,

Â2 + B̂2 = 1
2 (Ĵ2 − K̂2), (106)

Â2 − B̂2 = −̂Ĵ·K̂. (107)

It will be found that a particular irreducible representation can be distinguished from
other representations with the same s = sa + sb by its grade or algebraic properties. We
shall refer to all such representations as spin-s representations, for example,

(
1
2 ,

1
2

)
and

(1, 0)⊕ (0, 1) are both spin-1 representations.
Because the representations have a direct product structure, the Lorentz group ana-

logue of the Clebsh-Gordon decomposition is quite simple,

(sa1 , sb1)⊗ (sa2 , sb2) =
∑
sa,sb

⊕(sa, sb) (108)

where the sum runs independently over the values

sa = sa1 + sa2 , sa1 + sa2 − 1, . . . , |sa1 − sa2 |,

sb = sb1 + sb2 , sb1 + sb2 − 1, . . . , |sb1 − sb2 |.
(109)

Now we have identified the irreducible representations, we can classify their basis
states. The basis states will be expressed as eigenstates of the operators Ĵ3 and K̂3 with
eigenvalues m and n respectively, because these are related to simple bivector generators.
These states will still be eigenstates of Â3 and B̂3, the eigenvalues are related by

m = ma +mb, (110)

n = ma −mb. (111)

The basis states are thus characterised by four spin quantum numbers, sa, sb, m and n.
Operating on an eigenstate |sasbmn〉 we find

Â2 |sasbmn〉 = −sa(sa + 1) |sasbmn〉 (112)

B̂2 |sasbmn〉 = −sb(sb + 1) |sasbmn〉 (113)

Ĵ3 |sasbmn〉 = ̂m |sasbmn〉 (114)

K̂3 |sasbmn〉 = n |sasbmn〉 (115)

The raising and lowering operators

Â± = Â1 ± ̂Â2

B̂± = B̂1 ± ̂B̂2

(116)

which raise and lower the ma and mb quantum numbers respectively can be used to move
between the basis states of the representation, which is show in terms of the m and n
states in Figure 1.
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|sa, sb,m, n〉

|sa, sb,m+ 1, n+ 1〉|sa, sb,m+ 1, n− 1〉

|sa, sb,m− 1, n+ 1〉|sa, sb,m− 1, n− 1〉

�
�
��

@
@
@R

@
@

@I

�
�

�	

Â+

Â−

B̂+

B̂−

Figure 1: Raising and Lowering Operators for Spin-s Irreducible Representation of the
Lorentz Group.

An alternative, incomplete method of classifying the irreducible representations of
the Lorentz group is to decompose them into representations of the subgroup SO(3), as

eigenstates of Ĵ2. The (sa, sb) representation contains the

D(sa)⊗D(sb) = D(sa + sb)⊕ . . .⊕D(|sa − sb|) (117)

representations of SO(3) and the (sa, sb)⊕ (sb, sa) representation will contain two copies
of each of these subgroup representations. The operator Ĵ3 will be used to find the
eigenstates of these subgroup representations. The alternative quantum numbers which
corresponds to the eigenstates of Ĵ2 and Ĵ3 are j and m,

(Ĵ2 − K̂2) |sasbjm〉 = −2(sa(sa + 1) + sb(sb + 1)) |sasbjm〉 (118)

Ĵ2 |sasbjm〉 = −j(j + 1) |sasbjm〉 (119)

Ĵ3 |sasbjm〉 = ̂m |sasbjm〉 (120)

These are not a complete set of operators because Ĵ2 does not commute with Ĵ·K̂. Also
K̂3 commutes with Ĵ3 but not with Ĵ2, so it does not behave as a lowering or raising
operator, but mixes the |sasbjm〉 state with all the other possible j eigenstates leaving
the eigenvalue s unchanged (Figure 2).

4.3 The Spin-1
2

Representation

The Lorentz group has one spin- 12 irreducible representation,
(
1
2 , 0
)
⊕
(
0, 12
)
. Translating

the Dirac spinor into the STA we find it most convenient if it takes values in the even sub-
algebra [5, 6]. The complexification operation is identical to that of the non-relativistic
spin- 12 representation, multiplication on the right by iσ3.

̂ψ ≡ ψiσ3. (121)

The basis states ψmn of this representation are,

ψ 1
2 ,

1
2

= 1
2 (1 + σ3) ψ 1

2 ,−
1
2

= 1
2 (1− σ3)

ψ− 1
2 ,

1
2

= iσ1
1
2 (1− σ3) ψ− 1

2 ,−
1
2

= iσ1
1
2 (1 + σ3)

(122)
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|sa, sb, j,m〉

|sa, sb, j,m+ 1〉

|sa, sb, j,m− 1〉

|sa, sb, j − 1,m〉 |sa, sb, j + 1,m〉-�

6

?

K̂3K̂3

Ĵ+

Ĵ−

Figure 2: Alternative Raising and Lowering Operators for Spin-s Irreducible Representa-
tion of the Lorentz Group.

These basis states have an ideal structure, therefore they correspond most closely to the
Weyl representation.

Decomposing the
(
1
2 , 0
)
⊕
(
0, 12
)

irreducible representation in terms of the SO(3) sub-
group,

( 1
2 , 0)⊕ (0, 12 ) ∼= D( 1

2 )⊕D( 1
2 ), (123)

there are two D( 1
2 ) doublets which are transformed into each other by the action of K̂3,

χ+ = 1,

χ− = iσ1,

K̂3←→
ξ+ = σ3,

ξ− = σ2.
(124)

The χ± doublet is identical to the D( 1
2 ) representation of SO(3), the ξ± doublet is new,

coming from the action of K̂3 on the χ± doublet.

4.4 The Spin-1 Representations

The Lorentz group has two spin-1 representations,
(
1
2 ,

1
2

)
and (1, 0) ⊕ (0, 1). Like the

integral-spin representations of SO(3), we can construct the spin-1 representations from
the spinor representation. We use the same form,

M = ψ1Γψ̃2. (125)

where Γ is an arbitrary multivector to be chosen later. Since the STA and the Pauli Alge-
bra share the same pseudoscalar we can use the same construction as before to complexify
these representations,

̂M ≡ iM. (126)

In general, M will transform under V̂R as the[(
1
2 , 0
)
⊕
(
0, 12
)]
⊗
[(

1
2 , 0
)
⊕
(
0, 12
)]

= 2 (0, 0)⊕ 2
(
1
2 ,

1
2

)
⊕ [(1, 0)⊕ (0, 1)] (127)

representation.
The

(
1
2 ,

1
2

)
irreducible representation is obtained by choosing

Γ = γ1 + iγ2 (128)
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which restricts M to be vector- and trivector-valued. Inserting the
(
1
2 , 0
)
⊕
(
0, 12
)

basis

states from (122) it is found that the basis states Amn of the
(
1
2 ,

1
2

)
representation are

A0,1 = γ0 + γ3, A0,−1 = γ0 − γ3,

A1,0 = γ1 + iγ2, A1,−1,0 = γ1 − iγ2,
(129)

which is identical to the null tetrad (l, n,m, m̄) of Penrose and Rindler [8, 9].
If Γ is chosen to be

Γ = σ1 + iσ2 (130)

then M will be even-valued. Further restricting (125) to the symmetric part

F = 1
2 (ψ1Γψ̃2 + ψ2Γψ̃1) (131)

then F will be bivector-valued, which corresponds to the (1, 0)⊕ (0, 1) irreducible repre-
sentation.

We have chosen the operation (126) to perform the complexification. Multiplication
by the pseudoscalar, i, also generates the duality operation, so by this process we only
obtain the self-dual set of basis states for F . Inserting the spin- 12 basis states from (122)
the basis states Fmn are found to be

F1,1 = σ1 + iσ2,

F0,0 = iσ3,

F−1,−1 = σ1 − iσ2.

(132)

Instead, if we had chosen ̂M = −iM to be the complexification operation, which is
consistent with choosing Γ = σ1 − iσ2, we would obtain the anti-self-dual set of basis
states.

The corresponding antisymmetric part of (125)

φ = 1
2 (ψ1Γψ̃2 − ψ2Γψ̃1) (133)

is scalar- and pseudoscalar-valued, which is invariant under the action of V̂R. This corre-
sponds to the scalar (0, 0) irreducible representation.

Above, identifying the grades of a multivector with the representations, we have only
obtained half of the irreducible representations that should be contained in the decom-
position of the complete multivector representation (127). This is a consequence of the
minimalist route we have chosen, introducing complexification as a geometric operation.

4.5 Half-Integral-Spin Representations

We now search for half-integral-spin irreducible representations, which we expect to be
multilinear spinor-valued functions. Consider a linear spinor-valued function ψ(a) which
transforms under ÛR. Its monogenic decomposition is

ψ(a) =M(a) + aχ (134)

where the first term is monogenic and the second is the residual term in which χ defined
is by χ = 1

4∂aψ(a). The function ψ(a) belongs to the[(
1
2 , 0
)
⊕
(
0, 12
)]
⊗
(
1
2 ,

1
2

)
=
[(

1, 12
)
⊕
(
1
2 , 1
)]
⊕
[(

1
2 , 0
)
⊕
(
0, 12
)]

(135)
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representation. The second term of the monogenic decomposition (134) transforms like
the

(
1
2 , 0
)
⊕
(
0, 12
)

irreducible representation so the monogenic component is identified

with the
(
1, 12
)
⊕
(
1
2 , 1
)

irreducible representation, a ‘spin- 32 ’ representation:

(
1, 12
)
⊕
(
1
2 , 1
)
↔ M(a),(

1
2 , 0
)
⊕
(
0, 12
)
↔ χ.

The monogenic functions which form the basis states for the
(
1, 12
)
⊕
(
1
2 , 1
)

representation
can be constructed from the spin- 12 basis states and ‘complex’-valued linear functions
derived from the

(
1
2 ,

1
2

)
representation. For example,

ψ 1
2 ,

3
2
(a) = ψ 1

2 ,
1
2
φ0,1(a) (136)

is monogenic, where φ0,1(a) = a·(γ0 + γ3).

Now consider a bilinear spinor-valued function ψ(a, b) which transforms under ÛR. Its
monogenic decomposition is

ψ(a, b) =M(a, b) + aM′(b) + bM′′(a) + abχ1 + baχ2, (137)

which can be further refined by taking into account the symmetry between the arguments

ψ(a, b) = MS(a, b) +MA(a, b) + aM′S(b) + bM′S(a)

+aM′A(b)− bM′A(a) + a·bχS + a∧bχA,
(138)

where the subscripts S and A denote the symmetric and antisymmetric parts respectively,

MS(a, b) = MS(b, a),

MA(a, b) = −MA(b, a).
(139)

The function ψ(a, b) belongs to the[(
1
2 , 0
)
⊕
(
0, 12
)]
⊗ ( 1

2 ,
1
2 )⊗ ( 1

2 ,
1
2 ) =[(

3
2 , 1
)
⊕
(
1, 32
)]
⊕
[(

3
2 , 0
)
⊕
(
0, 32
)]
⊕ 2

[(
1, 12
)
⊕
(
1
2 , 1
)]
⊕ 2

[(
1
2 , 0
)
⊕
(
0, 12
)] (140)

representation. The are two new terms in this decomposition compared to that of a linear
spinor-valued function,

(
3
2 , 1
)
⊕
(
1, 32
)

and
(
3
2 , 0
)
⊕
(
0, 32
)
. Counting the degrees of freedom,

we make the following identifications:(
3
2 , 1
)
⊕
(
1, 32
)
↔ MS(a, b),(

3
2 , 0
)
⊕
(
0, 32
)
↔ MA(a, b),(

1, 12
)
⊕
(
1
2 , 1
)
↔ M′S(a),M′A(a),(

1
2 , 0
)
⊕
(
0, 12
)
↔ χS , χA.

We can now proceed to find a general half-integral-spin representation. Consider a
spinor-valued k-linear function

ψ(a1, . . . , ak) (141)
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which will transform under the action of the group as[(
1
2 , 0
)
⊕
(
0, 12
)]
⊗
(
1
2 ,

1
2

)
⊗ . . .⊗

(
1
2 ,

1
2

)︸ ︷︷ ︸
k times

. (142)

The highest-spin representation in the decomposition will be a symmetric monogenic
function which will correspond to the

(
k+1
2 , k2

)
⊕
(
k
2 ,

k+1
2

)
irreducible representation. This

is confirmed by counting the degrees of freedom in this function. A symmetric spinor-

valued function in 4 dimensions has 8 (k+3)!
3!k! real degrees of freedom. A monogenic version

of the same therefore has

8

(
(k + 3)!

3!k!
− (k + 2)!

3!(k − 1)!

)
= 4(k + 2)(k + 1) (143)

real degrees of freedom which is exactly the number contained in the
(
k+1
2 , k2

)
⊕
(
k
2 ,

k+1
2

)
irreducible representation.

4.6 Integral-Spin Representations

Again the integral-spin representations can be constructed from half-integral-spin repre-
sentations. Consider a multivector-valued linear function constructed in the form

T (a) = ψ1(a)Γψ̃2. (144)

In general, T (a) will belong to the[(
1
2 , 0
)
⊕
(
0, 12
)]
⊗
(
1
2 ,

1
2

)
⊗
[(

1
2 , 0
)
⊕
(
0, 12
)]

(145)

representation. If ψ1(a) is restricted to be monogenic, then the function will belong to
the [(

1, 12
)
⊕
(
1
2 , 1
)]
⊗
[(

1
2 , 0
)
⊕
(
0, 12
)]

(146)

representation which contains the (1, 1) and
(
3
2 ,

1
2

)
⊕
(
1
2 ,

3
2

)
irreducible representations as

the highest-spin irreducible representations. Using Γ = γ1 + iγ2 projects out the vector
and trivector part which corresponds to the (1, 1) representation,

A(a) = ψ1(a)(γ1 + iγ2)ψ̃2, (147)

and choosing Γ = σ1+iσ2 and projecting out the bivector part corresponds to the
(
3
2 ,

1
2

)
⊕(

1
2 ,

3
2

)
representation,

F (a) = 〈ψ1(a)(σ1 + iσ2)ψ̃2〉2. (148)

We can now generalise to to an arbitrary integral-spin representation

T (a1, . . . , ak) = ψ1(a1, . . . , ak)Γψ̃2 (149)

which belongs to the[(
1
2 , 0
)
⊕
(
0, 12
)]
⊗
(
1
2 ,

1
2

)
⊗ . . .⊗

(
1
2 ,

1
2

)︸ ︷︷ ︸
k times

⊗
[(

1
2 , 0
)
⊕
(
0, 12
)]

(150)

representation. If we select the monogenic, totally-symmetric part of the function, we can
restrict it to the [(

k+1
2 , k2

)
⊕
(
k
2 ,

k+1
2

)]
⊗
[(

1
2 , 0
)
⊕
(
0, 12
)]

(151)
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representation which contains the
(
k+1
2 , k+1

2

)
and

(
k+2
2 , k2

)
⊕
(
k
2 ,

k+2
2

)
irreducible repre-

sentations as the highest-spin irreducible representations, which again correspond to the
vector-trivector and bivector parts respectively. These are both ‘spin-(k + 1)’ representa-
tions.

We have now found the method for identifying the irreducible representations of the
Lorentz group with multilinear functions.

5 Wave Equations

So far we have restricted our attention to describing higher-weighted representations of
rotation groups with multilinear functions. The wavefunction describing a quantum-
mechanical particle depends in an arbitrary non-linear fashion on the position vector x.
The method described in this paper can be generalised to include non-linear arguments,
and thus handle these ‘external’ spatial or spacetime degrees of freedom within the same
mathematical structure as the ‘internal’ spin degrees of freedom.

Consider a function which transforms under ÛR which has linear arguments a1, . . . , ak
and non-linear arguments x1, . . . , xl, we shall separate the linear and non-linear arguments
with a semi-colon,

ψ(a1, . . . , ak;x1, . . . , xl). (152)

The non-linear arguments transform under rotation in the same manner as the linear ones,

ÛR[ψ(a1, . . . , ak;x1, . . . , xl)] = Rψ(R̃a1R, . . . , R̃akR; R̃x1R, . . . , R̃xlR), (153)

but the action of the Lie group is modified,

1
2 L̂B [ψ(. . . ; . . .)] = 1

2Bψ(. . . ; . . .) +
∑k
i=1 ψ(. . . , ai ·B, . . . ; . . .)

−
∑l
i=1B ·(xi∧∂xi)ψ(. . . ; . . .).

(154)

Each non-linear argument xi makes a contribution

−B ·(xi∧∂xi) = (xi ·B)·∂xi (155)

to 1
2 L̂B . If xi were a linear argument then this would reduce to the same form as for

a linear argument, so this generalisation is consistent with our earlier definitions. This
operator (155) could also be interpreted as finding the component of angular momentum,
−̂(x∧∇), in the plane defined by B.

A similar generalisation can be made for functions which transform under V̂R, only the
external transformation properties of the function differ from those transforming under
ÛR.

The Dirac equation written in the STA is

∇ψ(x)iσ3 = mψ(x)γ0. (156)

This has been investigated extensively elsewhere [10, 6]. The wavefunction ψ(x) is a spinor
function of position x. Some of the functions which form a basis for the Dirac wavefunction
can be obtained from multilinear functions by polynomial projection [1]. The l-th order
contribution can be made by setting all the arguments of a l-linear function equal to x,

ψl(x) =

l∏
i=1

(x·∂ai)ψ(a1, . . . , al). (157)
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Only the symmetric part of the function will survive this procedure, the antisymmetric
parts vanish. The complete wavefunction can be expressed as a sum over all orders of
these functions.

Using the representations of the Lorentz group we found earlier, we can investigate
higher-spin wave equations. The Rarita-Schwinger equations [11] describe half-integral
spin particles. Translating these into geometric algebra, the equation describing a spin- 32
particle becomes

∇ψ(a;x)iσ3 = mψ(a;x)γ0, (158)

with the additional condition
∂aψ(a;x) = 0 (159)

which ensures that the spin part of ψ(a;x) belongs to the
(
1, 12
)
⊕
(
1
2 , 1
)

representation.
In general, a spinor-valued k-linear wavefunction which is symmetric in its arguments
represents a spin-(k + 1

2 ) particle, it obeys

∇ψS(a1, . . . , ak;x)iσ3 = mψS(a1, . . . , ak;x)γ0, (160)

∂a1ψS(a1, . . . , ak;x) = 0 (161)

where the additional condition restricts the spin part of the wavefunction to the
(
k+1
2 , k2

)
⊕(

k
2 ,

k+1
2

)
representation.

The basis functions of the k-linear wavefunction can also be obtained by polynomial
projection. The l-th order contribution to the wavefunction is obtained by setting l
arguments of a suitable (k + l)-linear function equal to x,

ψl(a1, . . . , ak;x) =

l∏
i=1

(x·∂a(k+i)
)ψ(a1, . . . , ak+l). (162)

The symmetry among the first k arguments must be correct for the wavefunction that is
being described. Again, the complete wavefunction will be a sum over all orders of these
functions.

Different relativistic wave equations with spin corresponding to different represen-
tations of the Lorentz group can be explored by selecting the appropriate multilinear
wavefunctions. This presents opportunities for further investigation.
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