
Bayesian inference and geometric algebra:
an application to camera localization

AUTHORS
Chris Doran

In E. Bayro and G. Sobczyk eds.
Geometric algebra: a geometric approach to computer vision, neural and quantum
computing, robotics and engineering
Birkhauser, 172 (2000)

1

Abstract

Geometric algebra provides a number of powerful tools for the treatment
of rotations in three dimensions. Rotations are parameterised by rotors, which
are normalised multivectors in a 4-d subalgebra of the 3-d geometric algebra.
This parametrisation can be exploited to simplify both extrapolation and
optimisation problems involving rotations. A number of these are considered
in the context of computer vision.

2

1 Introduction
Geometric algebra is an extremely powerful language for solving complex geometric
problems in engineering [4, 8]. Its advantages are particularly clear in the treatment
of rotations. Rotations of a vector are performed by the double-sided application
of a rotor, which is formed from the geometric product of an even number of unit
vectors. In three dimensions a rotor is simply a normalised element of the even
subalgebra of G3, the geometric algebra of three dimensional space. In this paper
we are solely interested in rotations in space, and henceforth all reference to rotors
can be assumed to refer to the 3-d case. Rotors have a number of useful features.
They can be easily parameterised in terms of the bivector representing the plane of
rotation. Their product is a very efficient way of computing the effect of compound
rotations, and is numerically very stable.

Rotors are normalised elements in a 4-d algebra (the even subalgebra of G3),
so they can be represented by points on the unit sphere in 4-d. This is called a 3-
sphere, and is the rotor group manifold [2, 5]. The simple structure of this manifold
makes it very easy to extrapolate between rotations, which is useful in many fields
including finite element analysis and rigid body dynamics. The extrapolation
method can be easily understood in terms of relaxing the normalisation constraint
and working with unnormalised rotors, and normalising the result at the end of a
computation. This is also the key to simplifying the problem of differentiating with
respect to rotations. Ordinarily, a function of a rotation is viewed as taking its
value on the group manifold. Derivatives of this function take their values in the
tangent space to the group manifold. This is mathematically rigorous, but rather
cumbersome computationally. A better idea is to move off the group manifold and
work in the 4-d linear space, where the rules of calculus are much simpler [3, 4, 8].
Used properly, this trick can significantly simplify optimisation problems involving
rotations.

The main applications considered here are to variations of the camera localization
problem in computer vision [7, 8, 10, 11, 13, 14]. Suppose that a number of cameras
are placed in unknown positions and they observe the same scene. In order to
reconstruct the scene, we need to determine the relative positions and orientations
of the cameras. Given a sufficient number of point matches between the cameras,
this information can be accurately recovered without any external measurements.
For most cases this problem can be reduced to a least squares minimisation over
a set of rotations and translations, and this can be simplified considerably using
the techniques of rotor calculus. The least squares likelihood functions used here

3

are derived from a simple Bayesian probabilistic model, which helps to expose
some of the underlying assumptions in the choice of likelihood function [12]. This
is useful in pointing the way to constructing improved models. In this paper
we assume a projective camera model, and will further assume that the internal
camera parameters are all known. A preliminary discussion of how geometric
algebra can be used to estimate these internal parameters is contained in [9]. The
basic techniques described here can be generalised in a number of ways to deal with
more complex situations and at various points we discuss how one might exploit
this. In particular, the extension beyond two cameras is straightforward. This is
an area where more traditional tensor-based approaches run into difficulties.

2 Geometric algebra in three dimensions
The geometric algebra of three-dimensional space is generated by a right-handed
orthonormal set of vectors {e1, e2, e3}. Their geometric product satisfies

eiej = δij + Iεijkek (2.1)

where I is the pseudoscalar

I = e1 ∧ e2 ∧ e3 = e1e2e3. (2.2)

The full algebra is spanned by

1 {ei} {Iei} I

1 scalar 3 vectors 3 bivectors 1 trivector. (2.3)

The dot and wedge symbols have their usual meaning as inner and outer products,
and for vectors

a · b = 1
2(ab+ ba) a ∧ b = 1

2(ab− ba). (2.4)

The geometric product for general multivectors is denoted simply by juxtaposition,
and throughout inner and outer products take precedence over geometric products.
Angled brackets 〈 〉n are used for the projection onto grade operation, and the
scalar part of a multivector A is denoted simply by 〈A〉. The scalar part satisfies
the cyclic reordering property

〈AB · · ·C〉 = 〈B · · ·CA〉. (2.5)

4

The reverse of a multivector is formed by reversing the order of geometric products
of vectors in the multivector and is denoted with a tilde. An arbitrary multivector
M can be decomposed as

M = α + a+B + βI, (2.6)

where α and β are scalars, a is a vector and B is a bivector. The reverse of M is

M̃ = α + a−B − βI. (2.7)

3 Rotors and Rotations
A rotor is a normalised element of the even subalgebra,

R = α +B, (3.8)

where α is a scalar and B is a bivector. The normalisation condition is that

RR̃ = R̃R = α2 −B2 = 1. (3.9)

Rotors generate rotations of vectors via the double-sided transformation law

a 7→ a′ = RaR̃. (3.10)

This same law holds for bivectors, since

(RaR̃) ∧ (RbR̃) = 1
2

(
RaR̃RbR̃−RbR̃RaR̃

)
= 1

2R(ab− ba)R̃
= Ra ∧ b R̃. (3.11)

It is also simple to check that rotors leave inner products invariant,

a′ · b′ = 〈RaR̃RbR̃〉 = 〈ab〉 = a · b. (3.12)

The rotor transformation law a 7→ RaR̃ also leaves trivectors invariant, so has
determinant +1 and must be a rotation.

5

Tangent plane

Figure 1: Tangent Space. At each point on the sphere one can attach a tangent
plane.

Rotors can be parameterised directly in terms of the plane of rotation by writing

R = exp(−B/2). (3.13)

The rotor R now generates a rotation through an angle |B| in the plane specified
by B, with the same orientation as B. In three dimensions we can also write

R = exp(−θIn̂/2) (3.14)

where θ = |B|, and n̂ = −IB/|B| is the unit vector representing the rotation axis.
The map between a vector n and the bivector In is called a duality transformation.
Bivectors can only be dualised to vectors in three dimensions, so the concept of an
axis of rotation only exists for three-dimensional space.

3.1 The Group Manifold
Rotors are elements of a four-dimensional space, normalised to 1. They can be
represented as points on a 3-sphere — the set of unit vectors in four dimensions.
This is the rotor group manifold. At any point on the manifold, the tangent space
is three-dimensional. This is the analog of the tangent plane to a sphere in three
dimensions (see Figure 1).

Rotors require three parameters to specify them uniquely. One common param-
eterisation is in terms of the Euler angles (θ, φ, ψ),

R = exp(−e1e2φ/2) exp(−e2e3θ/2) exp(−e1e2ψ/2). (3.15)

6

But often it is more convenient to use the set of bivector generators, with

|B2| ≤ π. (3.16)

The rotors R and −R generate the same rotation, because of their double-sided
action. It follows that the rotation group manifold is more complicated than the
rotor group manifold — it is a projective 3-sphere with points R and −R identified.
This is one reason why it is usually easier to work with rotors.

3.2 Extrapolating Between Rotations
Suppose we are given two estimates of a rotation, R0 and R1, how do we find the
mid-point? With rotors this is remarkably easy! We first make sure sure they have
smallest angle between them in four dimensions. This is done by ensuring that

〈R0R̃1〉 = cos θ > 0. (3.17)

If this inequality is not satisfied, then the sign of one of the rotors should be flipped.
The ‘shortest’ path between the rotors on the group manifold is defined by

R(λ) = R0 exp(λB), (3.18)

where
R(0) = R0, R(1) = R1. (3.19)

It follows that we can find B from

exp(B) = R̃0R1. (3.20)

The path defined by exp(λB) is an invariant construct. If both endpoints are
transformed, the path transforms in the same way. The midpoint is

R1/2 = R0 exp(B/2), (3.21)

which therefore generates the midpoint rotation. This is quite general — it works
for any rotor group (or any Lie group). For rotations in three dimensions we can
do even better. R0 and R1 can be viewed as two unit vectors in a four-dimensional
space. The path exp(λB) lies in the plane specified by these vectors (see Figure 2).

7

R

R

θ

0

1

Figure 2: The path between two rotors The rotors can be treated as unit vectors
in four dimensions. The path between them lies entirely in the plane of the two
rotors, and therefore defines a segment of a circle.

The rotor path between R0 and R1 can be written as

R(λ) = R0
(
cosλθ + sin λθ B̂

)
, (3.22)

where we have used B = θB̂. But we know that

exp(B) = cos θ + sin θ B̂ = R̃0R1. (3.23)

It follows that

R(λ) = R0

sin θ
(
sin θ cosλθ + sin λθ(R̃0R1 − cos θ)

)
(3.24)

= 1
sin θ

(
sin(1− λ)θ R0 + sin λθ R1

)
, (3.25)

which satisfies R(λ)R̃(λ) = 1 for all λ. The midpoint rotor is therefore simply

R1/2 = sin(θ/2)
sin θ (R0 +R1). (3.26)

This gives us a remarkably simple prescription for finding the midpoint: add the
rotors and normalise the result. By comparison, the equivalent matrix is quadratic
in R, and so is much more difficult to express in terms of the two endpoint rotation
matrices.

Suppose now that we have a number of estimates for a rotation and wanted
to find the average. Again the answer is simple. First one chooses the sign of the
rotors so that they are all in the ‘closest’ configuration. This will normally be easy
if the rotations are all roughly equal. If some of the rotations are quite different

8

then one might have to search around for the closest configuration, though in these
cases the average of such rotations is not a useful concept. Once one has all of the
rotors chosen, one simply adds them up and normalises the result to obtain the
average. This sort of calculation can be useful in computer vision problems where
one has a number of estimates of the relative rotations between cameras, and their
average is required.

The lesson here is that problems involving rotations can be simplified by working
with rotors and relaxing the normalisation criteria. This enables us to work in a
four-dimensional linear space and is the basis for a simplified calculus for rotations.

4 Rotor Calculus
Any function of a rotation can be viewed as taking its values over the group
manifold. In most of what follows we are interested in scalar functions, though
there is no reason to restrict to this case. The derivative of the function with respect
to a rotor defines a vector in the tangent space at each point on the group manifold.
The vector points in the direction of steepest increase of the function. This can
all be made mathematically rigorous and is the subject of differential geometry.
The problem is that much off this is over-complicated for the relatively simple
minimisation problems encountered in computer vision. Working intrinsically on
the group manifold involves introducing local coordinates (such as the Euler angles)
and differentiating with respect to each of these in turn. The resulting calculations
can be long and messy and often hide the simplicity of the answer.

Geometric algebra provides us with a more elegant and simpler alternative. We
relax the rotor normalisation constraint and replace R by ψ — a general element
of the even subalgebra. There is a very simple derivative operator associated with
ψ. We first decompose ψ in terms of the {ei} basis as

ψ = ψ0 +
3∑

k=1
ψkIek (4.27)

where the {ψ0, . . . , ψ3} are a set of scalar components. We now define themultivector
derivative ∂ψ by

∂ψ = ∂

∂ψ0
−

3∑
k=1

Iek
∂

∂ψk
. (4.28)

9

This derivative is independent of the chosen frame. It satisfies the basic result

∂ψ〈ψA〉 = A (4.29)

where A is a constant, even-grade multivector. All further results for ∂ψ are built
up from this basic result and Leibniz’ rule for the derivative of a product.

The basic trick now is to re-write a rotation as

RaR̃ = ψaψ−1. (4.30)

This works because any even multivector ψ can be written as

ψ = ρ1/2R (4.31)

where R is a rotor, ρ = ψψ̃ and ρ = 0 if and only if ψ = 0. The inverse of ψ is then

ψ−1 = ρ−1/2R̃ (4.32)

so that
ψψ−1 = RR̃ = 1. (4.33)

The equality of equation (4.30) follows immediately. If one imagines a function over
a sphere in three dimensions, one can extend this to a function over all space by
attaching the same value to all points on each line from the origin. The extension
R 7→ ψ does precisely this, but in a four dimensional space.

We are now able to differentiate functions of the rotation quite simply. The
typical application is to a scalar of the type

(RaR̃) · b = 〈RaR̃b〉 = 〈ψaψ−1b〉. (4.34)

We now have
∂ψ〈ψaψ−1b〉 = aψ−1b+ ∂̇ψ〈ψaψ̇−1b〉 (4.35)

where the overdot denotes the scope of the differential operator (i.e. the term being
differentiated). We next require a formula for the inverse term. We start by letting
M be a constant multivector, and derive

0 = ∂ψ〈ψψ−1M〉 = ψ−1M + ∂̇ψ〈ψψ̇−1M〉. (4.36)

10

It follows that
∂̇ψ〈ψ̇−1Mψ〉 = −ψ−1M. (4.37)

But in this formula we can now let M become a function of ψ, as only the first
term, ψ−1, is acted on by the differential operator. We can therefore replace M by
Mψ−1 to obtain the useful formula

∂̇ψ〈ψ̇−1M〉 = −ψ−1Mψ−1. (4.38)

We can now complete the derivation started at (4.35) to find

∂ψ〈ψaψ−1b〉 = aψ−1b− ψ−1bψaψ−1. (4.39)

It is convenient to premultiply this expression by ψ to get

ψ∂ψ〈ψaψ−1b〉 = ψaψ−1b− bψaψ−1 = 2(RaR̃) ∧ b. (4.40)

The fact that the geometric product is formed between ψ and ∂ψ is important. This
product is invertible, so no information is lost. The fact that a bivector is formed
here is sensible. Bivectors belong to a three-dimensional space — the same number
of dimensions as the tangent space to the group manifold. The big advantage of
the approach used here is that one never leaves the geometric algebra of space,
and the resultant bivector is evaluated in the same space, rather than in some
abstract tangent space on the group manifold. The result (4.40) is also sensible if
one thinks about varying R in (RaR̃) · b while keeping the vectors a and b constant.
This function clearly has a maximum when RaR̃ is parallel to b, which is precisely
where the derivative vanishes.

This simple derivation turns out to be very useful in a range of applications,
including rigid body dynamics and point-particle models for fermions. Here we
have chosen to illustrate its use with some applications in computer vision.

5 Computer Vision
The main problem of interest in this paper is that of camera localization. Suppose
that we have different camera views of the same scene. Given point matches with
added noise, we want to find the relative translation and rotation between the
cameras. Once the camera geometry has been calculated like this, it is possible
to reconstruct the three-dimensional scene. Applications of this basic idea include

11

Camera 1 Camera 2

Object

X

t
t

1
2

t

O

Figure 3: The basic two camera setup. The same object is viewed from two different
directions. The cameras are related by a translation and a rotation. All vectors
are expressed relative to some arbitrary origin O. The relative vector between the
camera centres, t = t2 − t1, is independent of the origin.

fields such as motion analysis, reaching and neurocontrol, and robot control. Before
studying the more realistic case of a projective camera model (see Section 6) we
first study a simpler, toy problem whose solution is well known. This is the case
where the full 3-d position is measured for the point matches, including the range
data. This enables us to introduce some of the tools of Bayesian inference in a
simplified setting.

5.1 Known Range Data
Suppose that we know the full three-dimensional coordinates of each point match
(which is not very common in practice). The basic solution in this case is well
known for the two camera case and has been discussed by many authors [1, 6, 7, 11].
The derivation presented here is slightly different, however, in being based on an
underlying probabilistic model for the data, with the rotations and translation
recovered via a Bayesian argument. Relative to an arbitrary origin, O, the camera
centres are located at positions t1 and t2, and the point matches at positions Xk

12

e
3

f
1

f
3

f
2

R
1

e

e
1

Optical
Centre

Camera 1

2

Figure 4: The camera frame. Each camera has a frame {ei} attached to it, with the
3-axis representing the optical axis. The camera frame is related to an arbitrary
global frame {fi} by a rotor, with a separate rotor required for each camera. The
rotor taking the camera 1 frame onto the camera 2 frame is then R2R̃1, and this is
what we aim to find.

(see Figure 3). Throughout we use superscript indices to label the point matches,
and subscript Latin indices to label frame vectors, {ei}, or components of a vector,
xi. Which of these is intended should be obvious, as we only use ei and fi for frame
vectors. At various points, subscript Greek indices are used to label the cameras.

If we write the two camera frames as {e1i} and {e2i} respectively, then the data
we assume that we can record are a set of coordinates for the point matches,

xk1 i = e1i · (X − t1) (5.41)
xk2 i = e2i · (X − t2). (5.42)

We now introduce a third, arbitrary reference frame {fi}, which is related to the
two camera frames by

e1i = R1fiR̃1, e2i = R2fiR̃2. (5.43)

(See Figure 4). The advantage of working with separate rotors for the camera
frames, instead of the mutual rotation between them, is that it keeps all formulae
symmetric in the choice of frame, and ensures that the equations generalise easily
to the n-camera case. This also provides a useful check on the formalism — we
should only obtain equations for the mutual rotation between the camera frames,

13

and not the absolute rotations between the camera frames and the {fi}. In terms
of storing and manipulating the data, everything is done in terms of the {fi} frame,
which is usually chosen to coincide with the camera 1 frame. We next define the
vectors

xk1 = xk1 ifi, xk2 = xk2 ifi, (5.44)

which should be related by

Xk = R1x
k
1R̃1 + t1 = R2x

k
2R̃2 + t2, (5.45)

for all point matches k.
When we measure the position coordinates for a point match the measurements

will be subject to various forms of noise due to discretisation (from the conversion
to digital pixel coordinates), camera wobble, inexact point matches and many other
effects. We will assume that all of this noise can be modeled with a simple Gaussian
distribution, centred on the exact value. This is an enormous simplification and
is almost certainly incorrect. The main advantage in assuming Gaussian noise
is that the various marginalisation integrals can be performed analytically and
usually return simple, least squares functions to minimise. The point of adopting
a Bayesian framework is that these (often hidden) assumptions are brought out
clearly. This in turn suggests various improvements which can lead to more accurate
reconstruction.

Our assumed probability density function (pdf) is (ignoring the normalisation)

P (xk1 i) ∝ exp
(−1

2σ2

(
xk1 i − e1i · (Xk − t1)

)2
)

(5.46)

P (xk2 i) ∝ exp
(−1

2σ2

(
xk2 i − e2i · (Xk − t2)

)2
)
. (5.47)

The pdf for the vector xk1 is therefore simply

P (xk1) ∝ exp
(−1

2σ2 (R1x
k
1R̃1 + t1 −Xk)2

)
, (5.48)

with a similar result holding for xk2. The full joint probability distribution over all
point matches is therefore

P ({xk1, xk2}|{Xk}, R1, R2, t1, t2) ∝

exp
(−1

2σ2

∑
k

(R1x
k
1R̃1 + t1 −Xk)2 + (R2x

k
2R̃2 + t2 −Xk)2

)
. (5.49)

14

Bayes’ theorem [12] states that

P (X|Y, I) = P (Y |X, I)× P (X|I)
P (Y |I) ∝ P (Y |X, I)× P (X|I). (5.50)

This follows immediately from the product rule of probability theory. The final
term P (X|I) is called the prior and is chosen to reflect any knowledge we might
have about the quantity to be determined prior to any measurements being made.
In our case we have no such knowledge, so we assume uniform priors for the camera
frames and centres, and for the positions of the point matches. We can therefore
use Bayes’ theorem to invert our pdf to obtain

P ({xk1, xk2}|{Xk}, R1, R2, t1, t2) ∝ P (R1, R2, t1, t2, {Xk}|{xk1, xk2}), (5.51)

where we continue to ignore normalisation factors. The next step is to marginalise
over the actual positions Xk to get the pdf for the rotors Ri and positions ti in
terms of the data. This marginalisation process is performed by simply integrating
out the unwanted degrees of freedom,

P (R1, R2, t1, t2|{xk1, xk2})

∝
∫
d3X1 d3X2 · · · d3Xn P (R1, R2, t1, t2, {Xk}|{xk1, xk2}). (5.52)

The marginalisation integrals are straightforward once one employs the result

(X − a)2 + (X − b)2 = 2
(
X − 1

2(a+ b)
)2

+ 1
2(a− b)2. (5.53)

All that remains after the integral is therefore

P (R1, R2, t1, t2|{xk1, xk2}) ∝

exp
(−1

2σ2

∑
k

(R1x
k
1R̃1 −R2x

k
2R̃2 + t1 − t2)2

)
. (5.54)

Maximising this function therefore reduces to minimising the least squares difference

S =
∑
k

(R1x
k
1R̃1 −R2x

k
2R̃2 + t1 − t2)2, (5.55)

as has been discussed by many authors [1, 6, 7, 11].

15

5.2 Solution
The first point to note is that S of equation (5.55) is a function of t1 − t2 only, and
hence is independent of the absolute origin. This is precisely the behaviour we
expect. It follows that minimisation of S with respect to either t1 or t2 lead to the
same equation, which is simply that

t2 − t1 = R1x̄1R̃1 −R2x̄2R̃2 (5.56)

where
x̄1 = 1

n

n∑
k=1

xk1, x̄2 = 1
n

n∑
k=1

xk2. (5.57)

The vector t2 − t1 is simply the difference in the two centroids of the data, and
depends on the rotors Ri.

Now that we have found t2 − t1 we can substitute its value back into S to
express S as a function of the rotors only:

S =
∑
k

(
R1(xk1 − x̄1)R̃1 −R2(xk2 − x̄2)R̃2

)2
. (5.58)

On squaring this only the cross terms remain with any rotor dependence, and we
are left to maximise

S ′ =
∑
k

〈(xk1 − x̄1)R̃1R2(xk2 − x̄2)R̃2R1〉. (5.59)

This is a function of the relative rotor R̃1R2 only, again as expected. The same
equation is obtained if we differentiate S ′ with respect to R1 or R2. Using the
result of equation (4.40) we see that the equation to solve is

∑
k

(R1(xk1 − x̄1)R̃1) ∧ (R2(xk2 − x̄2)R̃2) = 0. (5.60)

Taking the inner product with the bivector e1i ∧ e1j produces the equation

Fij − Fji = 0 (5.61)

where
Fij =

∑
k

fi · (xk1 − x̄1) fj · (R̃1R2(xk2 − x̄2)R̃2R1). (5.62)

This is easily solved with a singular-value decomposition of Fij , as has been discussed

16

elsewhere [8].

5.3 Adding more cameras
The generalisation to n cameras is quite straightforward. Instead of two terms in
the pdf of equation (5.49) there are now n of them. The marginalisation integral
simply involves completing the square as follows:

n∑
α=1

(X − aα)2 = n
(
X − 1

n

n∑
α=1

aα

)2
+ 1
n

∑
α<β

(aα − aβ)2. (5.63)

The least squares expression to minimise therefore involves the sum over all n(n−
1)/2 combinations of different cameras,

S =
∑
α<β

∑
k

(Rαx
k
αR̃α −Rβx

k
βR̃β + tα − tβ)2, (5.64)

where the k sum runs over point matches, and α, β run over the camera pairs.
This result is sensible as it is totally symmetric on the camera labels and does not
depend on relating everything back to a preferred reference camera.

Minimising S with respect to each of the tα vectors gives the simple solution
for the relative translations

tα − tβ = Rαx̄αR̃α −Rβx̄βR̃β. (5.65)

Again, the total vector t1 + · · ·+ tn is unspecified. Substituting the values for the
relative vectors into S, we are left with the function

S =
∑
α<β

∑
k

(
Rα(xkα − x̄α)R̃α −Rβ(xkβ − x̄β)R̃β

)2
, (5.66)

which we want to minimise with respect to the n rotors Rα. As before, one only
obtains equations for the relative rotations between two cameras, and not the
absolute rotation from the global {fi} frame.

One can get the general feel of this equation structure considering three cameras
(Figure 5). The three equations from the three rotors reduce to

∑
k

(
R1(xk1 − x̄1)R̃1

)
∧
(
R2(xk2 − x̄2)R̃2 +R3(xk3 − x̄3)R̃3

)
= 0 (5.67)

17

R
12 R

23

t
31

t 23

t
12

Camera 1

Camera 2

Camera 3

R
31

Figure 5: The three camera setup. The relative vectors between the cameras
are given by tij = tj − ti. The relative rotations are Rij = RjR̃i. These satisfy
t12 + t23 + t31 = 0 and R31R23R12 = 1.

and
∑
k

(
R2(xk2 − x̄2)R̃2

)
∧
(
R3(xk3 − x̄3)R̃3 +R1(xk1 − x̄1)R̃1

)
= 0. (5.68)

The final equation is just the sum of the first two and contains no further information.
Again, this is to be expected as there are always n− 1 relative rotations to solve
for.

This equation structure is more complicated that the 2-camera case, and cannot
by solved simply with a singular-value decomposition. Rather than removing
the anti-symmetric component of a single tensor, one has to minimise the anti-
symmetric components of 3 independent tensors, using 2 independent rotors. This
problem should be numerically quite straightforward to solve, either at the level of
the equations, or through direct numerical minimisation of the S of equation (5.66).
This latter approach is simplified by the fact that the individual pairwise minimisers
for two of the pairs provide good starting points for any minimisation routine.

6 Unknown Range Data
In most computer vision applications we do not have access to the third coordinate
giving the direction to a point. Instead what we measure are pixel coordinates in
the camera plane (see Figure 6). Placing the origin at the camera centre, a world
point X has coordinates (X1, X2, X3) expressed in the camera frame. Adopting

18

1 e
3

e

eOptical
Centre

Camera 1

2

x

X

v

u f

Figure 6: Pixel Coordinates. In most applications in computer vision one only
measures the pixel coordinates of a point in the camera plane. Provided the camera
is calibrated, these can be converted to the image coordinates of x.

the projective pinhole camera model, the image point x has coordinates (x1, x2, f),
where f is the focal length. The pixel coordinates u = (u1, u2, 1) are related to the
image coordinates by a 3× 3 camera matrix C,

u = C(x/f), x/f = C−1u. (6.69)

(See [9] for more details). Provided the matrix C is known, we can recover the
vector x/f . For a projective pinhole camera, the components of this are simply the
homogeneous coordinates (X1/X3, X2/X3, 1) of the world point X.

For the 2-camera setup of Figure 3, the two coordinates we measure in the
Camera 1 system are

xk1 i = e1i · (Xk − t1)
e13 · (Xk − t1) . i = 1, 2. (6.70)

A simple model would be to assume is that the observed data is taken from a
Gaussian distribution centred on these values. The problem with this is that the
resulting marginalisation integral over the Xk cannot be performed analytically.
Instead we will use a different model in which the marginalisation integrals can be
performed. The result is a likelihood function which can be minimised very quickly
and efficiently. The results of this turn out to be reasonable, and geometrically
quite sensible.

19

Our choice of a simplified model, including modeling the combined effects of the
various sources of noise with a simple Gaussian distribution, is one of a number of
simplifying assumptions we will make in order to find a simple function to minimise.
Each of these assumptions can be challenged and modified to construct more
realistic models and give better reconstruction. This approach is quite different
from the standard alternative, based on the epipolar geometry and the fundamental
matrix [10, 14]. In this approach an assortment of least-squares optimisers are
considered, none with any underlying justification from a probabilistic model, and
an assortment of linear algebra techniques are used to find the mutual translation
and rotation. Many of these do not properly account for the structure of the
rotation group, which limits their accuracy. They do have some value, however,
in providing some fast algorithms to give initial points for the nonlinear schemes
developed here.

Our starting point is the pdf of equation (5.49). That is, we start by treating
all three coordinates in the same way. Again, we marginalise over the positions Xk

to get the 2-camera joint pdf, but this time we view the range data as an unknown
parameter and assign it a uniform prior. We therefore arrive at the distribution

P (R1, R2, t1, t2, {zk1 , zk2}|{xk1 i, x
k
2 i}) ∝

exp
(−1

2σ2

∑
k

(R1z
k
1x

k
1R̃1 −R2z

k
2x

k
2R̃2 + t1 − t2)2

)
, (6.71)

where i runs over the two coordinates in the camera plane, zkα is the unknown
range (α denotes the camera), and the vectors xk1, xk2 are formed directly from the
measured data by

xkα =
2∑
i=1

xkαifi + f3. (6.72)

The next step is to marginalise over the unknown ranges z1 and z2. Here we make
one final simplification by taking the range of the integrals from −∞ . . .∞. This
allows for points behind the camera to be considered, so is clearly unjustified, but
has the advantage that the integrals can be performed analytically. The integral
we require has the form

I =
∫ ∞
−∞

dz1 dz2 exp
(
−(z1a1 − z2a2 + t)2

)
(6.73)

where a1 = R1x
k
1R̃1, etc. and t = t1 − t2. To carry out this integral we need the

20

result that ∫
dnx exp

(
− xixjTij + 2xibi

)
= N exp

(
bibjT−1

ij

)
(6.74)

where Tij is an n× n symmetric matrix, bi is an n-component vector and N is a
normalisation constant. For the integral (6.73) the matrix Tij is given by

Tij =
(

a1
2 −a1 · a2

−a1 · a2 a2
2

)
, (6.75)

and the vector bi is

bi =
(
−a1 · t
a2 · t

)
. (6.76)

It follows that
det Tij = a1

2a2
2 − (a1 · a2)2 = −(a1 ∧ a2)2, (6.77)

and
T−1
ij = − 1

(a1 ∧ a2)2

(
a2

2 a1 · a2

a1 · a2 a1
2

)
. (6.78)

Hence

bibjT−1
ij = − 1

(a1 ∧ a2)2

(
a1

2(a2 · t)2 + a2
2(a1 · t)2 − 2a1 · a2 a1 · t a2 · t

)
= − 1

(a1 ∧ a2)2 (a1 · t a2 − a2 · t a1)2

=
(
t · (a1 ∧ a2)
|a1 ∧ a2|

)2
, (6.79)

which assembles into a simple geometric function. Applying these results to the
pdf of equation (6.71), and remembering the final (t1 − t2)2 term, we arrive at the
log-likelihood function

S =
n∑
k=1

(
(t1 − t2) ∧

(
(R1x

k
1R̃1) ∧ (R2x

k
2R̃2)

))2

|(R1xk1R̃1) ∧ (R2xk2R̃2)|2
. (6.80)

This is now a simple function of the vectors tα and the rotors Rα. Again, only the
relative translation (t1 − t2) enters the problem, and the freedom to choose the fi
reference frame means that one of the rotors is arbitrary.

The function (6.80) has a simple geometric interpretation in terms of the
distance between the projective lines for a given point match (see Figure 7). Given

21

t -t
12

R
12

Line Distance

Camera 1

Camera 2

Figure 7: Line Distance. Given a point match in the two camera planes, the vectors
are extended out to three-dimensional space, and the distance between the lines is
found. The sum of the squares of these is minimised to find the best fit translation
and rotation.

22

a point match, the projective lines from the two cameras are extended into space.
The function then records the square of the distance between the lines (in units
on |t1 − t2|), and sums these over all point matches. This is certainly a sensible
error measure for this problem, and it is instructive to see how it arises from a
probabilistic model.

The function (6.80) is scale invariant, since no scale has yet been imposed on the
problem. As it stands, therefore, the function is minimised by setting t1 − t2 = 0.
To avoid this we need to impose a scale, which is most simply achieved by setting

(t1 − t2)2 = 1. (6.81)

This condition is imposed by including a Lagrange multiplier, so the function to
minimise becomes

S =
n∑
k=1

(
(t1 − t2) · nk

)2
− λ

(
(t1 − t2)2 − 1

)
, (6.82)

where
nk = I(R1x

k
1R̃1) ∧ (R2x

k
2R̃2)

|(R1xk1R̃1) ∧ (R2xk2R̃2)|
. (6.83)

Our final S (6.82) is still quadratic in the relative vector t = t1− t2, and minimising
gives the simple equation

n∑
k=1

t · nk nk = λt. (6.84)

We next construct the symmetric, positive definite function

F(a) =
n∑
k=1

a · nk nk, (6.85)

which is a function of the data and the rotation only. The translation t is an
eigenvector of this function, with the eigenvalue

λ = t · F(t) =
n∑
k=1

(t · nk)2 = S. (6.86)

So to minimise the error function S we need to choose t to be the eigenvector with
smallest eigenvalue. All we need do, then, is minimise the lowest eigenvalue of
F with respect to the rotor R. This is a fairly simple optimisation problem, as
we only need to search in the 3-parameter rotor space. Numerical studies of this

23

function reveal that it contains some local minima, but the global minimum lies in
a fairly deep valley and it is not hard to find this numerically.

7 Extension to 3 cameras
The Bayesian analysis presented here extends easily to the 3 camera case. A
simpler alternative, however, is to take the log-likelihood function of equation (6.80)
and sum this function over each of the camera pairs. Incorporating a Lagrange
multiplier to impose a suitable constraint, the function we need to minimise is

S3 =
n∑
k=1

(
(t1 − t2) · nk12

)2
+
(
(t2 − t3) · nk23

)2
+
(
(t3 − t1) · nk31

)2

− λ
(
(t1 − t2)2 + (t2 − t3)2 + (t3 − t1)2 − 1)

)
, (7.87)

where
nk12 = I(R1x

k
1R̃1) ∧ (R2x

k
2R̃2)

|(R1xk1R̃1) ∧ (R2xk2R̃2)|
etc. (7.88)

We only get independent equations from minimising with respect to two of the
three translation vectors. Taking these to be t1 and t2 the equations we arrive at
are

n∑
k=1

(t1 − t2) · nk12 n
k
12 − (t3 − t1) · nk31 n

k
31 = λ(2t1 − t2 − t3) (7.89)

n∑
k=1

(t2 − t3) · nk23 n
k
23 − (t1 − t2) · nk12 n

k
12 = λ(2t2 − t3 − t1). (7.90)

If we now set
a = 2t1 − t2 − t3, b = 2t2 − t3 − t1, (7.91)

then we recover a 6× 6 eigenvalue problem of the form(
F12 + 2F31 F31 − F12

F23 − F12 2F23 + F12

)(
a

b

)
= 3λ

(
a

b

)
(7.92)

where
F12(a) =

n∑
k=1

a · nk12 n
k
12, etc. (7.93)

24

As in the 2 camera case, the eigenvalue λ returns the value of S3 that we are trying
to minimise. The minimisation problem therefore reduces to finding a pair of rotors
which minimises the lowest eigenvalue of a 6× 6 matrix. Numerical implementation
of this algorithm will be presented elsewhere.

8 Conclusions
Geometric Algebra is an extremely powerful tool for handling rotations in three
dimensions. Vectors and the quantities which act on them are united in a single
algebra, which has a number of computational advantages. Relaxing the normalisa-
tion condition for rotors provides a simplified calculus for rotations which avoids
having to work in the tangent space to the group manifold. As a result, many
extremisation problems involving rotations can be studied and solved without ever
leaving the geometric algebra of 3-d.

The applications to the camera localization problem given here illustrate the
various advantages that geometric algebra can provide. This is particularly so
when combined with Bayesian inference techniques. The models considered here
are highly simplified, though still quite useful. Much work remains in order to
construct robust, accurate algorithms to use with real cameras. The effects of
the camera matrix must be included, particularly as the cameras often require re-
calibrating after they are moved significantly. Similarly, more realistic noise models
are required. Discretisation errors, for example, are certainly not well modeled as
Gaussian process. In addition, we need to be able to work with arbitrary numbers
of cameras, allowing for occlusion effects where point matches may only be shared
by a subset of all of the cameras. When tackling each of these problems, however,
there seems little doubt that the combination of geometric algebra and Bayesian
reasoning advocated here will turn out to be the best way to proceed.

Acknowledgements
CD gratefully acknowledges the support of the EPSRC.

References
[1] K. Arun, T.S. Huang, and S.D. Blostein. Least squares fitting of two 3-D

point sets. IEEE Trans. PAMI, 9:698–700, 1987.

25

[2] J.F. Cornwell. Group Theory in Phsics II. Academic Press Ltd., London,
1984.

[3] C. J. L. Doran. Geometric Algebra and its Application to Mathematical Physics.
PhD thesis, Cambridge University, 1994.

[4] C.J.L. Doran, A.N. Lasenby, S.F. Gull, and J. Lasenby. Lectures in geometric
algebra. In W.E. Baylis, editor, Clifford (Geometric) Algebras, pages 65–236.
Birkhauser, Boston, 1996.

[5] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus. Reidel,
Dordrecht, 1984.

[6] B.K.P. Horn. Closed-form solution of absolute orientation using unit quater-
nions. J. Opt. Soc. Am., 4:629–642, 1987.

[7] T.S. Huang and A.N. Netravali. Motion and structure from feature correspon-
dences: A review. Proc. of the IEEE,, 82(2):252–268, 1994.

[8] J. Lasenby, W.J. Fitzgerald, A.L. Lasenby, and C.J.L. Doran. New geomet-
ric methods for computer vision: An application to structure and motion
estimation. Int. J. Comp. Vision, 26(3):191, 1998.

[9] J. Lasenby and A. Stevenson. Using geometric algebra in optical motion
capture. In E. Bayro and G. Sobczyk, editors, Geometric algebra: A geometric
approach to computer vision, neural and quantum computing, robotics and
engineering. Birkhauser, 2000.

[10] J. Ponce and Y. Genc. Epipolar geometry and linear subspace methods: A
new approach to weak calibration. Int. J. of Comp. Vision, 28(3):223–243,
1998.

[11] B. Sabata and J.K. Aggarwal. Estimation of motion from a pair of range
images: A review. CVGIP: Image Understanding, 54(3):309–324, 1991.

[12] D.S. Sivia. Data Analysis, A Bayesian tutorial. Oxford University Press, 1996.

[13] J. Weng, T.S. Huang, and N. Ahuja. Motion and structure from two perspective
views: Algorithms, error analysis and error estimation. IEEE Trans. Pattern
Anal. Mach. Intelligence, 11(5):451–476, 1989.

26

[14] Z. Zhang. Determining the epipolar geometry and its uncertainty: A review.
Int. J. of Comp. Vision, 27(2):161–195, 1998.

