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Abstract
We consider topological contributions to the action integral in a gauge

theory formulation of gravity. Two topological invariants are found and are
shown to arise from the scalar and pseudoscalar parts of a single integral.
Neither of these action integrals contribute to the classical field equations. An
identity is found for the invariants that is valid for non-symmetric Riemann
tensors, generalising the usual GR expression for the topological invariants.
The link with Yang-Mills instantons in Euclidean gravity is also explored.
Ten independent quadratic terms are constructed from the Riemann tensor,
and the topological invariants reduce these to eight possible independent
terms for a quadratic Lagrangian. The resulting field equations for the
parity non-violating terms are presented. Our derivations of these results
are considerably simpler that those found in the literature.
PACS: 04.20.Gz; 04.20.Fy; 04.20.Cv.
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1 Introduction
In the construction of a gravitational field theory there is considerable freedom in
the choice of Lagrangian. Einstein’s theory is obtained when just the Ricci scalar is
used, but there is no compelling reason to believe that this is anything other than
a good approximation. Since quadratic terms will be small when the curvature
is small one would expect them to have a small effect at low energies. However,
they may have a considerable effect in cosmology or on singularity formation when
the curvature gets larger. Quadratic terms may also be necessary to formulate a
sensible quantum theory.

In this paper we consider the effects of quadratic Lagrangians when gravity
is considered as a gauge theory. Topological invariants place restrictions on the
number of independent quadratic terms one can place in the Lagrangian. In the
gauge theory approach these invariants arise simply as boundary terms in the
action integral. The Bianchi identity means that these terms do not contribute to
the classical field equations, though they could become important in a quantum
theory. The invariants have a natural analog in Euclidean gravity in the winding
numbers of Yang-Mills instantons. These are characterised by two integers which
can be expressed as integrals quadratic in the Riemann tensor.

Here we investigate instantons and quadratic Lagrangians in Gauge Theory
Gravity (GTG) as recently formulated by Lasenby, Doran and Gull [1]. GTG
is a modernised version of ECKS or U4 spin-torsion theory where gravity corre-
sponds to a combination of invariance under local Lorentz transformations and
diffeomorphisms. With a Ricci Lagrangian GTG reproduces the results of General
Relativity (GR) for all the standard tests, but also incorporates torsion in a natural
manner. When quadratic terms are introduced into the Lagrangian the theories
differ markedly. In GR one obtains fourth order equations for the metric,[2] whereas
in GTG one has a pair of lower order equations. One of these determines the
connection, which in general will differ from that used in GR. A reason for these
differences can be seen in the way that the fields transform under scale transforma-
tions. In the GTG approach, all of the quadratic terms in the action transform
homogeneously under scalings. In GR the only terms with this property are those
formed from quadratic combinations of the Weyl tensor.

We start with a brief outline of GTG, employing the notation of the Spacetime
Algebra (STA) [3, 4]. This algebraic system, based on the Dirac algebra, is very
helpful in elucidating the structure of GTG. The simplicity of the derivations
presented here is intended in part as an advertisement for the power of the STA.
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We continue by constructing the topological invariants for the GTG action integral.
We show that the two invariants are the scalar and pseudoscalar parts of a single
quantity, and our derivation treats them in a unified way. The relationship with
instanton solutions in Euclidean gravity is explored. For instantons in Yang-Mills
theory, with the rotation gauge field becoming pure gauge at infinity, and the
topological invariants give rise to a pair of winding numbers. The differences
between the Euclidean and spacetime cases is shown to be due to the different sign
of the square of the pseudoscalar.

We construct irreducible fields from the Riemann tensor and use these to form
ten independent quadratic terms from the Riemann tensor. In an action integral
the two topological terms can be ignored, so only eight terms are needed. We
construct the field equations for the parity non-violating Lagrangian terms. Units
with h̄ = c = 8πG = 1 are used throughout.

2 Gauge Theory Gravity (GTG)
In this paper we employ the Spacetime Algebra (STA), which is the geometric
(or Clifford) algebra of Minkowski spacetime. For details of geometric algebra the
reader is referred to [1, 5, 4]. The STA is generated by 4 orthonormal vectors, here
denoted {γa}, a = 0 · · · 4. These are equipped with a geometric (Clifford) product.
This product is associative, and the symmetrised product of two vectors is a scalar:

1
2(γaγb + γbγa) = γa ·γb = ηab = diag(+−−−). (2.1)

Clearly the γa vectors satisfy the same algebraic properties as the Dirac matrices.
There is no need to introduce an explicit matrix representation for any of the
derivations presented here, however, and to do so would pointlessly over-complicate
matters. The antisymmetrised product of two vectors is a bivector, denoted with a
wedge ∧. For two vectors u and v we therefore have

uv = 1
2(uv + vu) + 1

2(uv − vu) = u·v + u∧v. (2.2)

These definitions extend to define an algebra with 16 elements:

1 {γa} {γa∧γb} {Iγµ} I

1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar
grade 0 grade 1 grade 2 grade 3 grade 4,

(2.3)
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where the pseudoscalar I is defined by

I = γ0γ1γ2γ3. (2.4)

The pseudoscalar satisfies I2 = −1, and generates duality transformations, inter-
changing grade-r and grade-(4− r) multivectors.

Gauge theory gravity, or GTG, was introduced in [1]. The notation there relied
heavily on the use of geometric calculus. Here we have chosen to adopt a different
notation which is closer to more familiar systems. These conventions are not as
elegant as those of [1, 5], but they should help to make the results more accessible.
The first of the gravitational gauge fields is a position-dependent linear function
mapping vectors to vectors. In [1] this was denoted by h(a). Here we will formulate
our equations in terms of the set of vectors

ha = h(γa). (2.5)

The reciprocal vectors are denoted by ha and satisfy1

ha ·hb = δba. (2.6)

The {ha} vectors have the property that

ha ·hb = gab, ha ·hb = gab (2.7)

where gab is the metric. Clearly the ha are closely related to a vierbein and this
relationship is explained in detail in [1]. One point to note is that only one type of
contraction is used in GTG, which is that of the underlying STA (2.3). Our use of
Latin indices reflects the fact that in many formulae these indices can also be read
as abstract vectors, which is closer to the notation of [1, 5].

The second gauge field is set of bivector-valued fields {Ωa}. These ensure
invariance under local Lorentz transformations, which are written in the STA using
the the double-sided formula

A 7→ LAL̃. (2.8)

Here A is an arbitrary multivector, L is a rotor — an even element satisfying
LL̃ = 1 — and the tilde denotes the operation of reversing the order of vectors in

1Following [1] we would write ha = h−1(γa).
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any geometric product. Under a Lorentz transformation the Ωa transforms as

Ωa → LΩaL̃− 2∇aLL̃, (2.9)

where ∇a = γa ·∇ is the derivative in the γa direction. It follows that Ωa takes its
values in the Lie algebra of the group of rotors, which in the STA is simply the
space of bivectors. Of course the Ωa are a form of spin connection, the difference
here being that it takes its values explicitly in the bivector subalgebra of the STA.

The Ωa are used to construct a derivative which is covariant under local
spacetime rotations. Acting on an arbitrary multivector A we define

DaA ≡ ∇aA+ Ωa×A (2.10)

where× is the commutator product, A×B = 1
2(AB −BA). The commutator of

these derivatives defines the field strength,

Rab ≡ ∇aΩb −∇bΩa + Ωa×Ωb. (2.11)

This is also bivector-valued, and is best viewed as a linear function of a bivector
argument (the argument being γa∧γb in this case). From this field strength we
define the covariant Riemann tensor

Rab ≡ Rcd γa ·hc γb ·hd. (2.12)

Again, Rab is best viewed as a linear map on the space of bivectors, and as such it
has a total of 36 degrees of freedom. We employ the convention that fully covariant
fields are written in calligraphic type. These covariant objects are at the heart of the
GTG formalism, and distinguish this approach to one based on differential forms.
Covariant objects such as Rab, or ha∇aα (where α is a scalar field), are elements
of neither the tangent nor cotangent spaces. Instead they belong in a separate
‘covariant’ space in which all objects transform simply under displacements. In
this space it is simple to formulate physical laws, and to isolate gauge invariant
variables.

The remaining field equation is

hb∧(Dbh
a) = T bhb ·γa, (2.13)

which defines the torsion bivector T a. This definition also ensures that T a is a
covariant tensor, in this case a map from vectors to bivectors. Since the torsion is not
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assumed to vanish, we cannot make any further assumptions about the symmetries
of the Riemann tensor. Specifically the ‘cyclic identity’ of GR, Rab ∧ γb = 0, no
longer holds.

From the Riemann tensor one forms two contractions, the Ricci tensor Ra and
the Ricci scalar R,

Ra = γb ·Rba R = γa ·Ra. (2.14)

The same symbol is used for the Riemann tensor, Ricci tensor and Ricci scalar,
with the number of subscripts denoting which is intended. Both of the tensors
preserve grade, so it is easy to keep track of the grade of the objects generated.
The Einstein tensor is derived from the Ricci tensor in the obvious way,

Ga = Ra − 1
2Rγa. (2.15)

These are all of the definitions required to study the role of quadratic Lagrangians
in GTG.

3 Topological invariants
We are interested in the behaviour of quadratic terms in the gravitational Lagrangian
in GTG. We start by constructing the following quantity (which is motivated by
instanton solutions in Euclidean gravity — see Section 4)

Z ≡ γa∧γb∧γc∧γdRcdRab = γa∧γb∧γc∧γd 1
2(RcdRab +RabRcd). (3.16)

This is a combination of scalar and pseudoscalar terms only, so transforms as a
scalar under restricted Lorentz transformations. From equation (2.12) we can write

Z = ha∧hb∧hc∧hdRcdRab = h γa∧γb∧γc∧γdRcdRab ≡ hZ (3.17)

where h is the determinant defined by

ha∧hb∧hc∧hd ≡ h γa∧γb∧γc∧γd (3.18)

and
Z ≡ γa∧γb∧γc∧γdRcdRab (3.19)
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The quantity Z also has just scalar and pseudoscalar terms. We can therefore form
an invariant integral that is independent of the ha field as

S ≡
∫
|d4x|h−1Z =

∫
|d4x|Z. (3.20)

From the definition of the Riemann tensor we find that

Z = γa∧γb∧γc∧γd(2∇cΩd + ΩcΩd)(2∇aΩb + ΩaΩb)
= −4γa∧γb∧γc∧∇(∇cΩaΩb + 1

3ΩaΩbΩc)
= 2γa∧γb∧γc∧∇(RacΩb + 1

3ΩaΩbΩc). (3.21)

The main step in this derivation is the observation that the totally antisymmetrised
product of 4 bivectors vanishes identically in 4-d. This proof that Z is a total
divergence is considerably simpler than that given in [6], where gamma matrices
were introduced in order to generate a similar ‘simple’ proof in the Riemann-Cartan
formulation. Here we have also treated the scalar and pseudoscalar parts in a single
term, which halves the work.

The fact that the integral (3.20) reduces to a total divergence is the GTG
equivalent of saying that the integral only contributes a topological term to the
action. This demonstrates that there is no difficulty in dealing with many topological
constructions with the (flat space) gauge theory approach to gravity. Similar
observations were made in [7], where cosmic string solutions were shown to have a
natural form in GTG, which nicely highlights their relationship to an Aharonov-
Bohm potential.

Since the action integral reduces to a boundary term we expect that it should not
contribute to the field equations. This is simple to check. There is no dependence
on the ha field, so no contribution arises when this field is varied. When the Ωa

field is varied one picks up terms proportional to

γa∧γb∧γc∧γdDdRcb = 1
3γa∧γ

b∧γc∧γd(DdRcb +DbRdc +DcRdb) = 0, (3.22)

which vanishes by virtue of the Bianchi identity. Since the two topological terms
do not contribute to the field equations, and can therefore be ignored in any action
integral, is is useful to have expressions for these in terms of simpler combinations
of the Riemann tensor and its contractions. For the scalar term (denoted 〈Z〉) we
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find that

〈Z〉 = γa∧γb∧γc∧γdRcd∧Rab

= (γa∧γb∧γc)·[(γd ·Rcd)∧Rab +Rcd∧(γd ·Rab)]
= (γa∧γb)·[−RRab + 2Rc∧(γc ·Rab) + 2Rcd(γc∧γd)·Rab)]
= R2 + 2γa ·[γb ·Rc γ

c ·Rab − γb ·(γc ·Rab)Rc] + 2Rba ·R̄ab

= 2Rba ·R̄ab − 4Ra ·R̄a +R2, (3.23)

where the adjoint functions are defined by

(γa∧γb)·R̄cd ≡ (γc∧γd)·Rab γa ·R̄b = γb ·Ra. (3.24)

For the pseudoscalar term (denoted 〈Z〉4) we similarly obtain

〈Z〉4 = γa∧γb∧γc∧γdRcd ·Rab

= γa∧γb∧(R̄cd (γc∧γd)·Rab)
= −I(γc∧γd)·Rab (Iγa∧γb)·R̄cd

= 2IR∗cd ·Rcd (3.25)

where we have introduced the dual of the Riemann tensor defined by

R∗ab ≡ R(Iγa∧γb). (3.26)

We therefore have

S = 1
32π2

∫
|d4x|h−1

(
2Rba ·R̄ab − 4Ra ·R̄a +R2 + 2IR∗ab ·Rba

)
. (3.27)

This generalises the usual GR expressions for the topological invariants to the case
where the Riemann tensor need not be symmetric, as in the case when there is
torsion. Both of the scalar and pseudoscalar contributions can usually be ignored
in the action integral. The standard GR expressions are recovered by setting
R̄ab = Rab and R̄a = Ra.

4 Relation to Instantons
The derivation of topological terms in GTG has a Euclidean analog, which gives rise
to instanton winding numbers as found in Yang-Mills theory. For this section we
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assume that we are working in a Euclidean space. Most of the formulae go through
unchanged, except that now the pseudoscalar squares to +1. For this section we
therefore denote the pseudoscalar by E. The proof that the integral (3.20) is a
total divergence is unaffected, and so it can be converted to a surface integral. The
Riemann is assumed to fall off sufficiently quickly that we can drop the Rac term,
so

S = −2
3

∫
|d3x|n∧γa∧γb∧γc ΩaΩbΩc. (4.28)

For the Riemann to tend to zero the Ωa field must tend to pure gauge,

Ωa = −2∇aLL̃, (4.29)

where L is a (Euclidean) rotor. The integral is a topological invariant because, by
construction, it is invariant under continuous transformations of the rotor L. We
define

χ+ Eτ ≡ 1
6π2

∫
|d3x|n∧γa∧γb∧γc∇aLL̃∇bLL̃∇cLL̃ = 1

32π2S. (4.30)

The numbers τ and χ are instanton numbers for the solution, here given by the
scalar and pseudoscalar parts of one equation. The common origin of the invariants
is clear, as is the fact that one is a scalar and one a pseudoscalar. There are
two integer invariants because the 4-d Euclidean rotor group is Spin(4) and the
homotopy groups obey

π3(Spin(4)) = π3(SU(2)×SU(2)) = π3(SU(2))×π3(SU(2)) = Z×Z. (4.31)

Exhibiting the common origin of these invariants in Euclidean and Lorentzian
signatures shows that the gauge-theory approach has applications beyond just
gravitation theory. The derivations also highlight the differences between the
two signatures. Most of these result from the different sign of the square of the
pseudoscalar. In Euclidean 4-d space the pseudoscalar E squares to +1 and is used
to separate the bivectors into self-dual and anti-self-dual components,

B± = 1
2(B ±BE), EB± = ±B±. (4.32)

These give rise to the two separate instanton numbers, one for each of the SU(2)
subgroups. In spacetime, however, the pseudoscalar has negative square and instead
gives rise to a natural complex structure. The structure frequently re-emerges in
gravitation theory. The fact that the complex structures encountered in GR are
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geometric in origin is often forgotten when one attempts a Euclideanised treatment
of gravity.

5 Quadratic Lagrangians
We now use the preceding results to construct a set of independent Lagrangian
terms for GTG which are quadratic in the field strength (Riemann) tensor Rab.
None of these terms contain derivatives of the ha, so all transform simply rescaling
of the ha vectors. Local changes of scale are determined by

ha 7→ e−αha, Ωa 7→ Ωa, (5.33)

where α is a function of position. The field strength transforms as

Rab 7→ e−2αRab, (5.34)

so all quadratic terms formed from Rab pick up a factor of exp(−4α) under scale
changes. It follows that all quadratic combinations contribute a term to the action
integral that is invariant under local rescalings. This situation is quite different
to GR, where only combinations of the Weyl tensor are invariant. As a result the
field equations from quadratic GTG (and ECKS theory) are very different to those
obtained in GR.

To construct the independent terms for a quadratic Lagrangian we need to
construct the irreducible parts of the Riemann tensor. To do this we write

Rab =Wab + Pab +Qab (5.35)

where
γaWab = 0 γaPab = γa∧Pab γa ·Qab = Rb. (5.36)

In the language of Clifford analysis, this is a form of monogenic decomposition of
Rab [8, 9]. To achieve this decomposition we start by defining [1]

Qab = 1
2(Ra∧γb + γa∧Rb)− 1

6γa∧γbR, (5.37)

which satisfies γa ·Qab = Rb. We next take the protraction of (5.35) with γa to
obtain

γa∧Rab − 1
2γ

a∧Ra∧γb = γa∧Pab. (5.38)
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We now define the vector-valued function

Vb ≡ −Iγa∧Rab = γa ·(IRab). (5.39)

The symmetric part of Vb is

V+
b = 1

2(Vb + γa Va ·γb)
= −I 1

2(γa∧Rab + γa γb∧γc∧Rca)
= −I(γa∧Rab − 1

2γ
a∧Ra∧γb) (5.40)

so we have
γa∧Pab = IV+

b . (5.41)

It follows that
Pab = −1

2I(V+
a ∧γb + γa∧V+

b ) + 1
6Iγa∧γbV (5.42)

where
V = γa ·Va. (5.43)

This construction of Pab ensures that the tensor has zero contraction, as required.
Splitting the Ricci tensor into symmetric and antisymmetric parts we can finally

write the Riemann tensor as

Rab =Wab + 1
2(R+

a ∧γb + γa∧R+
b )− 1

6γa∧γbR
+ 1

2(R−a ∧γb + γa∧R−b )− 1
2I(V+

a ∧γb + γa∧V+
b ) + 1

6Iγa∧γbV (5.44)

where + and − superscripts denote the symmetric and antisymmetric parts of a
tensor respectively. This decomposition splits the Riemann tensor into a Weyl
term (Wab) with 10 degrees of freedom, two symmetric tensors (R+

a and V+
a ) with

10 degrees of freedom each, and an anti-symmetric tensor (R−a ) with 6 degrees
of freedom. These account for all 36 degrees of freedom in Rab. The first three
terms in the decomposition are the usual ones for a symmetric Riemann tensor and
would be present in GR. The remaining terms come from the antisymmetric parts
of Rab and only arise in the presence of spin or quadratic terms in the Lagrangian.
One could proceed simply now to construct traceless tensors from V+

a and R+
a to

complete the decomposition into irreducible parts.
We can write the antisymmetric part of Ra as

R−a = a·A (5.45)
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where A = 1
2γ

a∧Ra is a bivector. Using this definition we can write down 10
independent scalar terms which are quadratic in the Riemann tensor:

{Wab ·Wab, Wab ·(iWab), R+a ·R+
a , R2,

A·A, A·(iA), V+a ·V+
a , V+a ·R+

a , V2, RV } (5.46)

Six of these are invariant under parity and four are parity violating. The two
topological invariants can be used to remove two terms, so there are only eight
possible independent quadratic terms for the gravitational Lagrangian. The classical
field equations arising from an equivalent set of terms is calculated in [10] where
the Einstein-Cartan formalism is used. The theory is physically the same as GTG.

For calculational purposes it is easier to use the six parity invariant terms

{Rab ·Rba, Ra ·Ra, R̄a ·Ra, R2, Va ·Va, V2 } (5.47)

and the four parity violating terms

{Rab ·(iRba), Ra ·Va, R̄a ·Va, RV } (5.48)

which are linear combinations of the irreducible components. The topological
invariants can be used to remove one term from each set. If we consider just the
parity invariant terms and use the topological invariant to remove R̄a ·Ra we can
calculate the field equations from

LR2 = 1
4ε1R2 + 1

2ε2Ra ·Ra + 1
4ε3Rab ·Rba + ε4

1
4V

2 + ε5
1
2V

a ·Va (5.49)

The field equations for the ha give a modified Einstein tensor of the form

G ′a = Ga + ε1G1a + ε2G2a + ε3G3a + ε4G4a + ε5G5a (5.50)

where

G1a = R(Ra − 1
4γaR) (5.51)

G2a = γbRb ·Ra +Rab ·Rb − 1
2γaR

b ·Rb (5.52)
G3a = γbRbc ·Rca − 1

4γaR
bc ·Rcb (5.53)

G4a = V(Va − 1
4γaV) (5.54)

G5a = γb Vb ·Va + (IRab)·Vb − 1
2γa V

b ·Vb. (5.55)
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These tensors all have zero contraction, as expected from scale invariance.
The field equations for Ωa give the generalized torsion equation of the form

Na = Sa (5.56)

where Na is the (generalized) torsion tensor and Sa is the matter spin tensor. Both
of these are bivector-valued functions of their vector argument. To simplify the
expressions for the various contributions to Na it is useful to introduce the full
covariant derivative Da, defined by

Da = hb ·γaDb. (5.57)

It is also convenient to define employ the over-dot notation for the covariant
derivative of tensors,

ḊaṪb = DaTb − Tc γc ·(Daγb), (5.58)

which has the property of commuting with contractions. This definition extends in
the obvious manner for tensors with higher numbers of indices. The contributions
to Na from the five terms in the action integral are concisely written as

N1a = −R γb ·(γa∧Tb) + γa∧γbDbR (5.59)
N2a =

(
(γb∧γc)·(γa∧Tc)

)
∧Rb + γa∧(ḊbṘb)− γb∧(ḊbṘa) (5.60)

N3a = ḊbṘa
b + (γb∧γc)·TcRab − 1

2Rbc (γc∧γb)·Ta (5.61)
N4a = I γb ·(γa∧Tb)V − I γa∧γbDbV (5.62)
N5a = I

(
(γc∧γb)·(γa∧Tc)

)
∧Vb + I γb∧(ḊbV̇a)− I γa∧(ḊbV̇b). (5.63)

More elegant expressions can be obtained if one uses the full, index-free notation
and conventions of geometric algebra [1].

6 Conclusions
We have shown that in gauge theory gravity topological terms are simply dealt with
and reduce to boundary integrals which do not alter the (classical) field equations.
These topological terms have a natural analog in the winding numbers for instanton
solutions Euclidean gravity. The differences between the two constructions are
due to the opposite signs of the squares of the pseudoscalars. This difference is
nicely highlighted by working with the scalar and pseudoscalar invariants in a
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unified way. In the Euclidean setup the pseudoscalar drives duality transformations,
which reduce the Spin(4) group to two SU(2) subgroups. In Minkowski spacetime,
however, the pseudoscalar has negative square, and is responsible for the frequently
made observation that there is a natural complex structure associated with the
gravitational field equations [11].

We constructed ten possible terms for a quadratic Lagrangian, which the
topological invariants then restrict to eight independent terms. The field equations
for these have been derived elsewhere, but the derivations and formulae presented
here are considerably simpler than in previous approaches. A detailed account
of how to translate between the results of other approaches and flat space gauge
viewpoint adopted here will be provided elsewhere.
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