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Abstract

The Spacetime Algebra provides an elegant language for studying the Dirac equation.
Cross section calculations can be performed in an intuitive way following a method
suggested by Hestenes!!) The S-matrix is replaced with an operator which rotates the
initial states into the scattered states. We show how the method neatly handles spin
dependence by allowing the scattering operator to become a function of the initial spin.
When the operator is independent of spin we can provide manifestly spin-independent
results. Spin basis states are not needed, and we do no spin sums, instead dealing with
the spin orientation directly. We perform some example calculations for single electron
scattering and briefly discuss more complicated cases in QED.

Introduction

Methods for calculating spinor cross sections are well known, however these often involve
complicated abstract calculations with gamma matrices. In this paper we show how to
calculate cross sections in a more transparent and intuitive way. Instead of using spin basis
states, summing over spins and using spin projection operators, we instead incorporate
the spin orientation directly. This greatly streamlines the calculation of spin dependent
results, and makes it clear when results are independent of spin. We first consider single
electron scattering, where our method is most naturally applied, and then briefly discuss
multi-particle scattering.

Spacetime Algebra (STA) is the geometric (Clifford) algebra of Minkowski spacetime,
first developed by Hestenes!' 3 The formulation of Dirac theory within the algebra replaces
the matrices of the conventional theory with multivectors. We introduce the STA form
of the Dirac equation, and show how the theory can be developed within the STA. Using
the STA formulation Hestened!! has demonstrated an elegant method for performing cross
section calculations. We extend and clarify this work, handling spin-dependence in a natural
way.

Throughout we make use of the Geometric Algebra. We present a brief summary of the
STA below to clarify our notation and conventions. Full details of Geometric Algebra can
be found elsewhere[? 4]

Spacetime Algebra

We shall use the four orthogonal basis vectors of spacetime 7,, where 7§ = 1, and 7§ = —1
for £ = 1,2,3. The Geometric Algebra has an associative product and the basis vectors
satisfy the Dirac algebra

Vu Ve = 5 (Vv + yu) = diag(+ — ——).
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The antisymmetric part of the product defines the outer product

TN = 5V — Yo Vu)-

By repeated multiplication of the basis vectors we can build up the 16 basis elements of
STA multivectors:

1 {'M} {ok, Ty} {I'M} I

scalar vectors bivectors pseudovectors pseudoscalar

The bivectors o = yx7vo are isomorphic to the basis vectors for Euclidean 3-space satisfying
00 = 0;;. Similarly the ¥ = Io}, are isomorphic to the basis bivectors of Euclidean
3-space. We define the highest grade element

I = 010203 = 717072707370 = Y0Y17273

which satisfies /2 = —1 and anticommutes with all vectors.

We usually take vy to be the lab frame velocity vector. The o then represent a frame
in space relative to the v vector. We can do a space-time split of a vector into the v frame
by multiplying by vo. Bold letters are now used for relative 3-vectors (spacetime bivectors).
The split is

ayo=ao+a

where ag = a-yp and @ = aA~vyy. We use natural units throughout, where c = ¢; = h = 1,
so, for example, the momentum p is split

PYo =PpYo+PpAve = F +p.

It is often useful to project out a particular grade from a multivector. Angled brackets
(A), are used to denote the grade r projection of A. For the scalar part r = 0 and we write
it just as (A). The inner and outer products for grade r and s multivectors are defined as
follows

AT -BS = <ATB5>|7~_5|
A, A Bg (ArBs)ris-

In the case where r = 1, so that a = A, is a vector, we have the relation
aB;, = aABg + a- By,

The symmetry of both the inner and outer product alternate with increasing grade of Bj:

(aBy)e_t = %(QBS — (~1)*B,a)

a-B;
1 S
aNB; = (aBg)eq1 = i(aBS + (—=1)°Bsa).
We adopt the useful convention that when the operands of the inner and outer product
are in bold type, and are therefore spatial vectors, the inner and outer products take their
three-dimensional meaning. _
Another important operation is that of reversion. We write the reverse of A as A, which

reverses all the vector products making up the multivector. It has the property that
(ABY = BA.

Lorentz transformations are spacetime rotations and can be performed by use of a rotor,
which can be written R = +exp(B/2). Here B is a bivector in the plane of the rotation



and | B| determines the amount of rotation. The rotation of a multivector M is then given
by N
M — RMR.

Finally we need the vector derivative V. = ~#0,,, the derivative with respect to position.
Its definition implies that it has the spacetime split

V'yo:&f—v.

The Dirac Equation

The Hestenes STA form of the Dirac equation is entirely equivalent to the usual equation!”
However the STA approach brings out the geometric structure, leading to more physically
transparent calculations. Here we show that it is possible to arrive at the Dirac equation by
quantizing a classical equation. This ‘derivation’ has the advantage that the observables are
then clearly related to the classical parameters, and the geometric structure of the theory
is brought out.

Our classical model will consist of a small spinning symmetric top with four velocity v.
We can represent v as a boosted version of the lab frame time vector vq:

v = L'yof

where L is a boosting rotor. In this way the velocity can be represented by the rotor L.
Similarly we can use a spatial rotor U to encode the spin plane as a rotation of some fixed
reference plane. We write the rest spin of the top as

SO —UsU

where ¥ is some arbitrary constant reference bivector orthogonal to 79 (¥ = X3 is often
chosen). Since U is a spatial rotor it does not affect the v direction so the momentum can
be written

b= mR'mE

where R = LU. This equation for p squares to give p?> = m? which gives the Klein-Gordon
equation on quantization. However the rotor equation contains much more information
than the scalar equation given by its square.

As well as encoding the rotation of ¥ into the spin plane the spatial rotor U can also
include an arbitrary unobservable rotation in the reference plane 3. We can boost up S0
to define the relativistic spin bivector

S =187 = RER.

The rotor R now encodes everything about the four velocity and spin direction of the top,
plus some arbitrary unobservable rotation in the spin plane.

In the quantum version we wish to have probability densities. In the rest frame of the
top this corresponds to some probability density p of finding it at each point. We want this
to the v-J component of a four vector probability current .J, with the lab frame probability
density given by vo-J. We therefore define the four vector J = pv which can be written

J = pR'yoE.
We now wrap up p and R into a single even multivector 1 = p'/?R so that

J = Vv



and the rest frame probability density is given by p = 7,/)7:5 We now want to put the equation
for the momentum in terms of ¥. Multiplying the equation on the right by R we have

pR = mRv
= pY = mP7o.

This equation now contains all the ingredients for successful quantization. The usual pro-
cedure is to make the replacement p, — 7V, so we get

VY =myyo

as our form of the Dirac equation. For a plane wave 1(z) = 1e~IP” this just gives us back
our classical equation, as expected.

There is a remaining ambiguity in what j is. It could be a scalar imaginary, or could it
be something more physical? Multiplication by j should just affect the phase of the wave
function, we don’t want the spin or momentum to be affected. So for plane waves, writing
¥ = j1b, we want

S' = 'SP = yEY and J' = 'yl = Yoy
These can be satisfied if
V=g =25¢ or ¢ =jp=93,
and indeed for plane wave states these are equivalent since
Y% =1/pp S = S,

So the ‘complex’ phase factors of the form e/ just encodes rotations in the spin plane —
the rotations that were unobservable in the classical case.

Dirac Theory

Having ‘derived’ the Dirac equation we now take that equation as given and see what it
implies. For positive energy plane wave states all the classical results still hold. However
we now have two sets of plane wave solutions,

) =u(p)e” and ) = o(p)e

where
mu —puyo =0 and muv+ pvyy=0.

We therefore have positive and negative energy states, with energy projection operators
given by

1
AL (¥) = —(my £ pyo).
+(¥) = 5 (my %+ pyo)
Since 7,/)7:5 reverses to itself it can only contain scalar and pseudoscalar parts and we define
pe'® = yip
where 3 and p are scalars. So the general form for ¥ now is now

b= pl/QEIﬁ/QR.



In addition to encoding a rotation and a dilation, the spinor also contains a ‘3-factor’. This
determines the ratio of particle to anti-particle solutions since

As(T9) = TA4(4).

The transformation properties of % are inherited from its component rotor, so we have
¥r(z) = RY(RzR).

We call an element of the STA which transforms as a rotor a spinor.
The Dirac equation can be obtained from the Lagrangian

L = (GViyot — mpi)

by using the multivector form of the Euler-Lagrange equations[® ] The Lagrangian is in-
variant under

& — el
corresponding to invariance under rotation in the spin plane. Using the multivector form
of Noether’s theorem,[G] we find the corresponding conserved probability current

J = ¢7OQZ7

in agreement with our classical definition. The Dirac equation ensures that V-.J = 0.

Plane waves and basis states

Using the decomposition R = LU of a rotor into a spatial rotation and a boost we can write
a spinor ¥ as
= pl/Qew/QLU.

Consider a positive energy spinor v = Ay (u) and a negative energy spinor v = A_(v). If
the particle is at rest we have

0 0

youlyo =u® and v’y = —v

which implies that
1/QUu and % = p}/lev.

2,9 —
U= py

We can find the more general form by performing a boost to momentum p. The boost
transforms m~g into the momentum p:

p= mL")/Oz — pL")/O —mlL =0
so that A_(L) = 0. A solution is therefore of the form L = AL (X). Choosing X equal to a

constant so that LL = 1 we have

_ m~+ pyo _ F+m+p
V2m(E+m)  \2m(E+m)

(1)

Normalizing so that p, = p, = 2m and performing the boost we get

u(p) = UP:JEIR(L% P )m

F4+m
v(p) = LUO:I\/E—}-TR(l-I-Eim) U,.
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In addition to the energy projection operators there are also the projection operators
X+ () = 5(¢ F Py
where P is a bivector with P? = —1. For a state a v satisfying 1) = x4 () we have
Y =FPyYX.

Multiplying on the right by y~) this gives p = ?FpPS' and so S = £P. The projection operator
therefore projects out parts corresponding the two spin orientations in the plane P. The
spin projection operators commute with the energy projection operators

A (9) = 5 (i pio)

since P -p = 0. We can therefore split an arbitrary spinor (eight real components) into
scalar and j multiples of four basis states

w1 = X+ (A+(u1)) uy = X— (A4 (u2))
v = x—(A—(v1)) vz = X4 (A= (v2))

With the normalization convention that uu = 2m the four basis states obey the orthogon-
ality relations

(u,us)s = 2md, (V,v5)s = —2md,

(u,v5)s =0 (Vyus)s =0

where (A)g represents the {1, 2} projection of A:
(A)s = (A) — (AX)X.
By writing 1 as a sum over basis states it’s easy to see that

Z up(r)s = pYyo + my  and Z v, (V,) 5 = phyo — m.

So we see that the usual basis state results of Dirac theory can be formulated in the STA
approach. However we shall now develop the scattering theory largely without resort to
basis states.

Feynman propagators
The minimally coupled Dirac equation can be written
Vo — mip = eAo
where e = —|e] is the electron charge. We need a Greens’ function for this equation satisfying
iVeSE(z — 2')(2")yo — mSp(z — 2 ) (2') = §*(z — ") ()

so that an integral solution can be found from

0le) = tila) + e [ dla'Sr(e =) AL 2)



where 1; satisfies the free-particle equation. Taking the Fourier transform we have

pSFE(p)Yy0 — mSr(p)Y =

where .
d p ~ ]
Sp(z—a")= | ——=Sp(p)e ==,
re=) = [ GRS 0)
Operating on both sides with the energy projection operator Ay we can solve for the mo-
mentum space Feynman propagator:

(p* = m*)Sp(p)Y = piryo+me
pyo + mip

= Sr(p)p = F———. 3

(p) e p———— (3)

The je ensures that the contour integral is in the 3 plane and that it is causal—positive

energy waves propagate into the future and negative energy waves into the past. Fourier
transforming back and performing the integral over dF we get

d3

Sp(z — 2)¢ = —2mj / Wigﬂ)g[eu — )AL ()e P Lo — )AL ()P ] (4)

where F = ++/p? + m?2.

The photon propagator is the Greens’ function for Maxwell’s equations. In the Lorentz
gauge V-A = 0 we have V2A = J, so the Greens’ function must satisfy

ViDp(z —2') = §*(z — 2').

Taking the Fourier transform we can solve for the Feynman propagator

Electron scattering

For scattering calculations we write the wavefunction as the sum of an incoming plane wave
and a scattered beam, 1 = ©; + Yqi, where ¥qig is the solution at asymptotically large
times given by

| A d3p —in(p—a!
Yaiei(z) = —Qmje/d4$//W[\+ [A(2")p(2") 7o) e (=),

This can be written as a sum over final states

Yaifi(z) = / %@Mm)’

the final states being plane waves of the form
wﬂmzwwﬁ““z—ﬁ/ﬁ%ﬂmﬂfwms+meww»maﬁﬂﬁﬂ. (5)

With this definition the number of scattered particles is given by

Pp; [0 d*p
d3 *Jdif = / ! E/if N
/ 270 Jaif /QEf(Qﬂ)3 [ 28 ] 27, (2m)3
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where we have defined the number density per Lorentz invariant phase space interval to be

N, = Yoty _ Yo (Yry0¢y) _ Ps
1= 2k 28, 2m’

The Born series perturbative solution is generated by iterating (2). In the first order Born
approximation this amounts to simply replacing ¥ (z’) by v;(z’). For plane waves of particles
we have

U(x) = e T and  mapyo = py

so the final states become

b = i [ @A)+ AG P
= —JelpsAq) + Alg)pils

where ¢ = py — p;.
More generally we define
V= Spit
where Sy; is the scattering operator which rotates and dilates the initial states into the final
states. Here the f and 7 indices label the initial and final momenta and the initial spin,

so in general Sy; = Syi(py, pi, Si). However S¢; does not depend on the final spin—instead
the final spin is determined from the initial spin by a rotation encoded in Sy;. Since Sy;
consists of a rotation and dilation it is convenient to decompose it as

1/2
S :,Ofé Ry;

where Ry; is a rotor. There is no e!? part since we have particles scattering to particles,
not a mixture of particles and antiparticles. The cross section will be determined by the
psi factor, as detailed in the next section. The rotor Ry; rotates states with momentum p;
into states with momentum py. It also relates the initial and final spins by

S; = RySiRy;
so the rest spins are related by
S9=1;8¢Ly=LsRpiSiRypiLy = LyRpiLiSPLiRyiLy.
We therefore define the rest spin scattering operator
Ui = LiRyL;

so that ) s
5% =UysiS U

The rest spin scattering operator and the cross section contain all the information about
scattering of states with momentum p; and spin S; into states with momentum py.
The form of the external line Feynman propagator (4) ensures that S¢; is of the form

Sti=—j(psM + Mp;) (6)

where in the Born approximation example M = eA(q). However in general M can have
some j-dependence in which case we can write

St = =j(ps[M, + JM;] + [M, + jM;]p;)



where M; and M, are independent of j. Using ji; = ;3 = Sﬂbz and the fact that S; and
p; commute this can be written

Syi=—jlpsM + Mp;)

where

M = M, + M;S5;

now depends on the initial spin. We can thus replace dependence on the ‘imaginary’ j with
dependence on the spin bivector.
Using mL? = pyo we can obtain Uy, from

Ufz' X Lf")/OMLZ' + ffoyon-.

Positron scattering and pair annihilation

Adapting the above results to positron scattering is straightforward. We just consider a
negative energy plane wave coming in from the future and scattering into the past, so

Vi(x) = e’ and
Sty = =j(—p1 M; + M)

where p; is the incoming positron momentum and p; is the outgoing momentum. This then
gives
Syi = J(mM + Mpz),

amounting to the substitution py — —p1, pi = —pa.
The other case to consider is when the incoming electron gets scattered into the past,
corresponding to pair annihilation. In this case we have

Sti=—j(—p2M + Mpy)

where p; and p, are the incoming momenta of the electron and positron respectively. In
this case we can decompose Sy; as

1/2
Spi=p fé IRy
since Sy; must now contain a factor of I to map electrons into positrons. This also implies
SgiSfi=—pgi-
Cross sections

The scattering rate into the final states per unit volume per unit time is given by

LN _ 1 wds ey
VT T VT 2E; T 2mVT

Wi =

where p; is given simply by
pr=155l’pi = psipi-
Here we have defined

1S4il* = 1S4iSyil = £54:Sy



where plus sign corresponds to electron to electron and positron to positron scattering, the
minus sign to electron-positron annihilation. The cross section is defined as

_ Wyi
~ Target density x Incident flux’

do

When Sy; is of the form
Spi = —3(2m)*6* (Pr — P)Ty;
we have
|Spil? = VT (2m)'8* (Py — )| Tyl

Working in the J; frame the target density is just p;, so writing the incident flux as x we
have

1
do = ——(27)46*(Ps — P)| T2
o = 5 2m)'8" (Pr = P)ITyi

Alternatively we may have elastic scattering and
Sgi=—2mé(Ef — E)Ty;
in which case
|Spi|? = 2nTS(Ey — )| Tl
A target density of 1/V and an incident flux of |J;| = p;|p;|/m then gives
s
do = —68(E; — E)|Tyi>.
pil
Above we have considered the total number of particles scattered. If we are interested
in the final spin we can find it using the spin scattering operator. However we might also
like to consider the cross section when we only observe particles with final spins in a certain
plane S, (where S,-ps = 0). This is particularly relevant in examples like electron-positron
annihilation where 1 is actually an input state and we would like to calculate the cross
section for arbitrary initial spins.
The spin projection operators into the S, plane are

X+ (%) = (¥ F 5,95
and we are interested in scattering into
X+ (¥f) = X+ (Sfihi).

Now if S¢; is in the form (6) we have

X+ (Sph) = —

B |—=

[(ps M+ Mp) 6% & S, (ps M + Mpi) ]

{(pr + Mp)S; £ So(psM + Mpi)} Vi

|
D=

= -1 {pf(MSi + S,M) + (MS; + SOM)Z’Z} ;.
Defining x4+ (¢f) = S;—Lzzbz the scattering rate will be proportional to pi given by
[SEI? = ((m*M + pyMp)(M F $,MS,)). (7)

If we sum over final spins the S, term cancels out and we get the expected result for the
total pg;:

1S5i|? = ((psM + Mp;)(Mpy + piM)) = 2(m* MM + p; Mp; M) (8)
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Coulomb scattering

As our first simple example we consider the first Born approximation in electron Coulomb
scattering where we have an external field given by

—Je
A(z) = —— .
() 47r|a:|70

Taking the Fourier transform we have

2n /e
Alg) = - pe S(Ef— Ei)vo

and M = eA(q) in the first Born approximation. Writing
Sei=—2né(Ef — E)Ty;

and using energy conservation we have
Ze?
Ty = —?(QE +q)

so that the formula for the cross section becomes

d3pf

do = (Z—e) L (Ef — E)(4E* - QQ)W'

q? |Pi|

Using d3pf = |ps|FtdFEdQ; we recover the Mott cross section

do Z%a? Z%a? »
—— = 4E? — g% = 1— 32in2(0/2
(dﬂf)Mott q ( ) 4p? 3 sin4(0/2)( Frein(6/ ))7

where
¢’ =(p;—p;)?=2p"(1—cosh) and f=|p|/E.

The derivation is manifestly independent of initial spin, so the cross section is spin inde-
pendent. Of course the final and initial spins will be related by the rest spin scattering
operator Uy;, where

Ufi X LfLZ' + Zfiz x (E—I— m)2 —I—pfpi.
If Uy; rotates by an angle 4 in the B plane (B2 = —1) it is given by
Usi = B2 = cos(8/2) + Bsin(5/2).
So we see that the rotation is in the p;Ap, plane and by an angle ¢ given by

_ [WUri)al _ Py AP _ sin 6
tan(/2) = Uy ~ (E4+m)2+psp;  (E+m)/(E—m)+cosf

Similar derivations of these result using the STA approach have been given beforel'#!
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Compton scattering

In this case there are two Feynman diagrams which give two terms of the form

My = ¢ / d'a’ / d'z" / T oy PALE) + AP oty i (-0
2 2
pr —m? 4+ je

where )
Az) = ceTike

is different at each vertex and ¢ = —1. Performing the integrations and summing the two
contributions we have

M = e2(2m) 464 (ps + ko — pi — ki) [ef(er Jatapi (P f)€f+€fp:|‘

2k;-p; ' —2p;-ky
Choosing p;-€; = p;-€; = 0 this is simply

hie;  €ikge
M = e2(2m)4s54 kf—pi—k; ik ).
e”(2m) (pf‘|’ f—Pp ) (Qki-pi + 2p;-ky

Writing
Spi=—j2m) 6 (ps+ kg — pi — ki) Ty

and using (8) we then have

Ts? =

4 erka-eiefkfei +prepkicipieskyey  preskigpiekicy  prekpespicskye;
€ 5 5 .
kipiks-p; 2(k;-pi) 2(ky-pi)
The identities we need to calculate are now the same as in the traditional approach, only
now we know that the result is independent of initial spin since we haven’t done a spin sum.
Using momentum conservation we know

prtky=pi+ki  kppi=ki-ps  pi-ki=psky.
Applying these the result becomes, after some work,
Lk piki
Tul? = et |4(e-¢ 2_2+p2 f—l— L
il (ei-€f) ik © piks

To calculate the cross section we work in the frame where the electron is initially at rest
(pi = m70). The incoming photon flux is 2k so we have

Tsil® _dky  dpy
2m2kY 2k (2m)3 2 (2m)%

do = (2m)** (ps + ky — pi — k;)

Now
0

Bk
/dSPdekf54(Pf thy = pi = ki) = (k)P — A0,

where we have done the integral over the final electron’s momentum since we are primarily
interested in the scattering of the photon. In the lab frame the result is therefore

do (k\? [Tl

dQ  \ ki) 4m2(4r)?
o (kg ky ki
2 (i T A(ese)? — 2
4m2(ki> [k +kf+ (er-)”

in agreement with the Klein-Nishina formula. Again, the difference is that this derivation
applies regardless of the initial electron spin. Of course if we had used circularly polarized
photons we would have introduced some j-dependence and the result would have become
spin-dependent.
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Pair annihilation

A process closely related to Compton scattering is electron-positron annihilation. We just
have to take account of the fact that the out state is a positron so the final states are of the
form

Ps(x) E%bfejpfm: —]e/d4' T=ps A (") + mA(z )¢($/)70]ejpf.(r_$f).

Writing
Spi = —j(=psM + Mp;)

we have two terms of the form

/d4 //d4 /,/ d4p A pAz( //)+A( )pl —]1‘ (pf—l—p)e]z (p—p;i)

p? —m?2 + je
where
A(z) = ee?*®
is different at each vertex and ¢ = —1. As for Compton scattering we now choose p;-€; =

pi-€2 = 0 and sum the two contributions to get

h k
M:€2(27T)454(pf +pi—k1—k2) (62 1a a 262) .

2ky-p;  2pi-ks

For general positron and electron spins we should use (7) to calculate the cross section.
However if either 9y or 1; are unpolarized the spin dependence will cancel out and the
12

average just introduces a factor of two into equation (8). In this case |Tf;|* is obtained from

the Compton case by the substitution py = —ps and k; =+ —k;, and an overall sign change
because T't;T¢; < 0 in this case:

4

€ pitka  pi-ky
Tyil* = =5 |4eies)” = 2= -

pi-k1 pi-ko

To get the cross section just divide by flux factors and perform the integral as usual.

Second order Coulomb scattering

Second order Coulomb scattering is interesting as it is spin-dependent and so provides
a good testing ground for our calculation techniques. To avoid problems with divergent
integrals the potential is replaced with the screened potential

e Nzl ze

4|z o

Az) = -
and the Coulomb result found in the limit A goes to zerol®'% For this potential the first
order analysis above can be applied with M given by

or Ze?
S (Er — B

To iterate to second order (5) is used, with the substitution

(') = e ipiw —|—e/d4 ”/ d4k kA ") —I_QA( ")p: L e ja''-(k=pi) p— ik’
—m? + Je
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giving the extra contribution to M

= [atar [t [ S A BT AR sty i o),
(2m)4 k? — m? + je

Carrying out the z’ and z” integrations and using one of the resultant -functions we have
M =2rn§(FE; — E;)Mr

where the extra contribution to My is

Ay FR.
and
ap(p) = /d?’me_p'z'yo cAz) = ﬁZ;Q.
Using

E*—m? =p? — k?

and the integrals

" - Pk 1+k
Wt = [ G o e T

we have
Mg = Z%e* [yox(p; + pf) 2 + (pi + 10E) 1] -

In the limit A — 0 our total My to second order is therefore

Mr = _qZ;Z Yo+ 2% [(Evo — 3lps + p)) L2+ (pi + 10 E) 1]
where the integrals arel!?]
h = 167r|p|3_sijn2(0/2) in 22 Si; A
I = 167r|p|33052(0/2) {ﬂ[zlzi(ni/(?/;) 1- Jln 2|/>)| } + 60521(10/2)'

We see that M has some j dependence, so writing I; = (A + C)j and I = B 4 Cj where
A, B, and C are scalars, and replacing the j-dependence with S;-dependence, this becomes

Ze? . . .
My = [_q_i + EZ% {B +(2C + A)SZ}] + 7% {pi(ASZ' - B) - LgB+CS)|.
The term proportional to ¢ does not contribute to 7;. Using

pipi+m’ = EQE+q) —p° — psp;
we have

Ze? R
Ty =(2E+ q) [—q—z + 2E22€4(A + C)SZ'] + 2264(])2 —I—pfpi)(B — AS)).

Keeping terms up to o the cross section is governed by

Z2et 47868

Tl = (B =q)" - == [EB@ +pyp) + mAinp;)-5
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where 5'? is the initial rest spin. As expected the divergent parts of the integrals have
cancelled out, and we are only left with the finite terms B and

~ Insin(6/2)

~ 167|p|3cos?(8/2)

The cross section for unpolarized scattering is found by averaging over the initial spin. This
gives the spin-independent part of the cross section since the spin dependent part averages
to zero. The o contribution is therefore

do ' 473e¢°BE |

o —W(P +Psp)
7wl ZPE[1 —sin(0/2)]
= T AP (0/2)

Hence the unpolarized cross section, including the second Born approximation but ignoring
radiative corrections, is

b et

in agreement with the result obtained by Dalitz[’] using the conventional matrices and
spin-sums approach.

Spin dependence and double scattering

As an example of handling spin dependence we can work out the asymmetry parameter
for double scattering from a Coulomb potential. The idea is that since the second order
correction to Coulomb scattering is spin dependent the scattered beam will be partially
polarized even with an unpolarized incident beam. The scattered beam can then impinge
on a second target, which leads to an observable asymmetry in the scattered intensity. The
asymmetry was first worked out by Mott[*!:12l

The first thing we need to know is the spin after the first scattering. This is given by

S‘f = RﬂSZ’Eﬁ
so we have

Z%et 273¢% A

Sy oo TpSiTy = g 2B+ q)Si(2E — q) — — (PP PP 2E - ),

where we have only kept the lowest order terms in the spin dependent and spin-independent
parts. We now define S° to be the polarization in the plane S°. This is just a bivector in
the plane of 5% with modulus equal to the polarization of the beam. Since the incoming
beam is taken to be unpolarized the resultant polarization plane will be given by the spin-
independent part of S'f deboosted to rest. To get the polarization we then just divide by
the magnitude of the spin-dependent part:

27e*q*A ~
i = g bt (P PRI CE - a), L
27e*q% A
= 22 9mpAp;.
(@B —q7) PP
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The spin-dependent part of the cross section for the second scattering is then given by

do ) 473emA,y 0
0) o A apy)-S
(de spin q%(Qﬂ-)z ! !
64(2m)*Z%atqim? A1 Ay
q3(4E* — qf)
where the 1 and 2 subscripts refer to the first are second scattering respectively (e.g. g, =
Py —Py). We see that the asymmetry will depend on the cosine of the angle ¢ between the

(PsAP2) - (PiAPy)

PsA\Py and p;Ap; planes. The asymmetry parameter ¢ is defined so that the final intensity
depends on ¢ through the factor
1+ écosao.

In the case where p;-p; = p;-py = 0 (p;"py = —p?cos @) we find that the first non-zero
contribution to the asymmetry factor is

5 - 64(27)2Z%a*m?A? q*
(AET—q%) ' Z2a2(1E% - q7)
2 2
_ (g2 =5
= Z%a*(In2) CRIE

in agreement with the answer quoted by Dalitz!® It is of course only the first approximation,
and for large Z nuclei higher order corrections will be far from negligible.

The partial spin-sum approach

The above formalism seems to work well for single particle scattering. Here we show how
we can adapt a more traditional approach in more complicated cases, demonstrating the
flexibility of the STA formalism. The scattering operator approach could equally well be
used in the more complicated case, as we show below.

We use the two basis states u, to write (5) as

Vo= e / d*a"y " ur(pg) (@ (pg) A’ ) hivo) se™!
r
= Z ur(pf) Sy
"
where S}i is the traditional S-matrix. The total number density per Lorentz invariant phase

Nf = Z|5§2|2

As an example we consider electron-muon scattering in which A is given by

space interval is then

Az) = /d4m’DF($ —z')J (')
and J(z') is the ‘complex’ conserved current given by

Jo = 6<‘ﬂs%'¢270>5-

Defining T7* as usual we have

2
rs € e o a
T = _q_2<ur%¢170>5<’us’7 ¥270)s-
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where ¢ = p| — p1 = p2 — p), and dashed variables correspond to the final states. Summing
over r and s

N

€
¢t
2¢*p1p2

— be ! a a ’
 mymagt [W (P17 +7"p1)p1) (Ve(PaYa + YaP2)P2)

T2 = = (votr* (917" +7°p1) 1) s{10%27s (PyYa + Yap2)2)s

— (PP + v 1) 1St (s (PyYa + Yap2)p2Sa)

2e*p1p2
= ——— | P\ -Papr-p2 + Ph-pipa- Py — miph-p2 + map) pr + 2mim?
mimaq

— [g-(S1Ap)]-[g- (S2Ap2)] |-

This approach differs from the normal one in that we have only done one spin sum over
the final spins. We can therefore explicitly retain information about the initial spins, and
calculations that are spin-independent will be manifestly so. Spin averaging simply amounts
to removing spin dependent terms in the cross-section.

The same result could be obtained using the scattering operator approach using

M = eDF'y“Ja

and summing over the final spin of the other particle. One ends up with exactly the
same equation. However the scattering operator approach may be better for calculating
spin effects. If we are interested in the spin dependence of a particular fermion line the
scattering operator approach works well once we have summed over the spins of the other
particles. For example we can calculate the final spin and polarization in the same way
as we did for Coulomb scattering. In this approach we still have to perform a spin sum,
but only over the spins of the other particles. We could of course introduce spin projection
operators to single out particular spins of the other particles if necessary.

Conclusions

We have seen how Hestenes’ STA formulation of Dirac theory provides a useful and elegant
method of performing cross section calculations. Spin is handled in a simple manner,
and the logic of calculating cross sections is simplified considerably. We don’t perform
unnecessary spin sums and spin dependence is manifest in the spin bivector dependence
of the scattering operator. It’s a simple matter to calculate spin precessions, polarizations
and spin dependent results, and the results are automatically expressed in terms of physical
spin bivectors and the other scattering parameters. We can perform unpolarized calculations
simply by averaging over spins.

In the multiparticle case things are more complicated. We don’t have a neat method for
performing arbitrary spin dependent calculations, and still have to resort to spin sums over
terms involving complex conserved currents. However we can still write down a scattering
operator for any given fermion line, retaining the benefits of the scattering operator for
calculations involving the spin of the particle.
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