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Chapter 1

Applications of Geometric
Algebra in Physics and Links
with Engineering

Anthony Lasenby and Joan Lasenby

1.1 Introduction

While the early applications of geometric algebra (GA) were confined to
physics, there has been significant progress over recent years in applying
geometric algebra to areas of engineering and computer science. The beauty
of using the same language for these applications is that both engineers and
physicists should be able to understand the work done in each others fields.
It is the aim of this paper to give brief outlines of the use of GA in the ar-
eas of relativity, quantum mechanics and gravitation — all using tools with
which anyone working with GA should be familiar. Taking one particular
area, multiparticle quantum mechanics, it is shown that the same math-
ematics may have some interesting applications in the fields of computer
vision and robotics.

In this contribution, we review some of the physical applications in which
a geometric algebra formulation is particularly helpful. This includes elec-
tromagnetism, quantum mechanics and gravitational theory. Then we show
how some of these same techniques are of use and interest in engineering.
More generally, we show how the availability of a unified mathematical lan-
guage, able to span both disciplines, is an advantage in allowing profession-
als from each area to increase their understanding of previously inaccessible
material, and make contributions outside their usual areas of expertise. As
a case study involving new material, we examine a generalization to 4-d
space, of the new conformal representation of 3-d Euclidean space being
developed by Hestenes and collaborators (see e.g. chapter ??). This con-
formal representation is already finding application in robotics [2] and may
also be important in interpolation of rigid body motion [3]. We show how
the 4-d version has unexpected links with the mathematics of sophisticated
objects called ‘twistors’, and perhaps even more surprisingly, with multi-
particle quantum mechanics. These links then suggest a novel method for
carrying out such interpolation, allowing consideration of wvelocities as well
as positions in 3-d.
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In order to start the discussion of applications of geometric algebra in
physics, it is necessary to introduce the spacetime algebra or STA — the
geometric algebra of relativistic 4-dimensional spacetime. This may seem
overly complicated to someone who wishes to see examples of links be-
tween physics and engineering expressed in geometric algebra. It is true
that relativity theory impinges hardly at all on most engineering practice
and applications. However, we shall see below that setting up the STA at
the start is useful in areas as diverse as computer vision, quantum com-
puting and (as mentioned before) interpolation of rigid body motion. Also,
it is what will allow us to consider applications in physics such as electro-
magnetism and gravitational theory. Thus this contribution begins with an
introduction to the STA and shows briefly how a concept called the pro-
jective split allows an easy articulation between four dimensions and the
concepts of ordinary 3-dimensional geometric algebra.

1.2 The Spacetime Algebra

The spacetime algebra or STA is the geometric algebra of Minkowski space-
time. We introduce an orthonormal frame of vectors {v,}, # =0...3, such
that

Vo Vo = M = (+ — — =) (1.1)
The STA has the basis

1 {fwt  AwAnd {ivu} i = %717273
1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar

The pseudoscalar ¢ anti-commutes with vectors.

At this point we note that generally, when working with single particle
algebras, the standard has become to use I for the pseudoscalar; however,
here, we will use 7 to denote the pseudoscalar to avoid later confusion when
we discuss the multiparticle STA.

1.2.1 The spacetime split, special relativity and
electromagnetism

In special relativity (SR) we deal with a 4-dimensional space; the three
dimensions of ordinary Euclidean space, and time. Suppose we have a sta-
tionary observer with whom we can associate coordinates of space and time;
this observer will observe events from his spacetime position. Now suppose
that we have another observer travelling at a velocity v — he too will ob-
serve events from his continuously changing spacetime position. Relative
vectors for an observer moving with velocity v are modelled as bivectors,
s0 aAv gives the vector a seen in the v frame. Usually we take v = vy and
define
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Ok = YkY0 k= 1,2,3 (12)

The even subalgebra of the STA is then the algebra of relative space,
spanned by

1, {ok}, {iox}, i (1.3)

The distinction between relative vectors and relative bivectors is frame-
dependent and the process of moving between a vector a in the 4-d STA
and its representation a in the relative space is known as the spacetime
split;

a = aly (1.4)

In practical geometric problems occuring in computer vision and com-
puter graphics it is common to move up from our 3-d Euclidean space to
work in a 4-d projective space, where non-linear transformations become
linear and where intersections of lines, planes etc., are easy to compute. This
extra dimension is analogous to the 7g in the STA (although in projective
geometry one can have either a (+,+,+,+) or a (+,—,—, —) signature)
and moving between projective space and Euclidean space can similarly be
carried out using the projective split, given by

a= A% (1.5)
a-yo

Here we are again relating the vectors in relative space (3-d) with bivec-
tors in the higher (4-d) space. Alternatively, we can define the vector in
3-space, a as a’y;, j = 1,2,3 and the associated vector in the higher space,
a, by

a=ao(a’y; +), Jj=1,2,3 (1.6)
so that we have
a= (@A) (1.7)
a-"Yo

Both of the above interpretations have been used in the literature in
discussions of projective and conformal geometry, [5, 6].

Returning to the STA, one can conventionally derive a coordinate trans-
formation between the frames of two observers, and to move between
these two frames one applies a matrix transformation known as a Lorentz
Boost. Geometric algebra provides us with a beautifully simple way of
dealing with special relativistic transformations using the simple formula
for rotations that we will discuss below, namely o’ = RaR ([7, 8]).
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We have seen in other contributions in this volume that in any geometric
algebra, rotations are achieved by quantities called rotors. A rotor R can
be written as

R =+ exp(—B/2) (1.8)

where B is a bivector representing the plane in which the rotation takes
place. It is then easy to show that a rotation of a vector a to a vector a’ is
achieved by the equation

a' = RaR

In 3-d R is made up of scalar and bivector parts while in 4-d it has scalar,
bivector and pseudoscalar parts; in each case it has a double-sided action.
We should stress here that a rotor is simply part of the algebra and need
not have special operator status. We will see in the following sections that
rotors are crucial quantities in much of physics, in particular, we will see
that simple rotations in the STA will allow us to understand most of special
relativity and will play an important role in quantum mechanics.

The Lorentz boost turns out to be simply a rotor R which takes the time
axis to a different position in 4-d ; RyoR. So, in an elegant coordinate-free
way we are able to give the transformations of SR an intuitive geometric
meaning. All the usual results of SR follow very quickly from this starting
point.

Moving now to electromagnetism, the electromagnetic field strength is
given by the bivector

F = 1Py, Ay, (1.9)

where the Greek indices p and v run over 0, 1,2, 3. In the ~y frame this
decomposes into bivectors of the form ;v and v;y; (4,5,= 1,2,3,7 # j),
so that we can write

F=E+iB (1.10)

where E and B are the electric and magnetic fields and are given by
E = E*o;, = Y(F — vFv) and B = B*oj, = L(F + v F~). Here,
sandwiching between vy flips the sign of the «;vy bivectors but leaves the
v;7y; bivectors unaltered. This form of F' explains the usefulness of complex
numbers in electromagnetism. Now, let us define the 4-d gradient operator
as

d
=yt 1.11
V=atas (1.11)

It is not hard to show that the full Maxwell equations can then be written
simply as
VF =J (1.12)
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where J is the source current. The above formulation of electromagnetism
is also being used in several engineering applications, e.g. surface scattering
of EM waves from objects such as ships, antennae design etc.

As an example of the simplifications that this approach can afford, con-
sider what the electric and magnetic fields look like under a Lorentz boost.
The conventional complicated formulae for the transformation are now re-
placed by the result

E' +iB'=R(E +iB)R

where dashes denote transformed quantities and R is the rotation in the
STA representing the boost.

To illustrate this explicitly, and to make the link with the standard for-
mulae, we consider a boost with velocity parameter u (so the actual velocity
is tanhw) in the z direction, where the original field is E = Eo,, i.e. an
electric field in the y direction only with no magnetic field component. We
have R = e2%% and so

E' +iB' = Ee:%gy e 27
= Ee"*g, = E(coshu + 0, sinhu)oy,
= E(coshuoy + io, sinhu) (1.13)

We can clearly see a B field is induced in the z-direction, with ampli-
tude Esinhu. Note the electromagnetic invariants arise immediately via
the relation

F'? = RFRRFR = RF’R = F? (1.14)

since F? contains only scalar and pseudoscalar parts. Specifically we have

Scalar part of F2 = E?— B?
Pseudoscalar part of F2 = 2iE-B (1.15)

and so E? — B? and E-B are invariant under any Lorentz transformation
(as may be checked for the example above).

The complicated tensor formula for the electromagnetic stress energy
tensor becomes extremely simple in the STA. We find the flow of en-
ergy/momentum through a hypersurface normal to the vector n is given
by

T(n) = %Fnﬁ‘ (1.16)

That is, we just rotate n by F'!
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This then easily leads to the standard Heaviside and Poynting formulae
for the energy density and momentum flow in a given frame (e.g. the g
frame). (For further examples and details see e.g. [8, 9, 10] and [11].) The
STA really does seem to capture the essence of electromagnetism in a very
compact and useful formalism!

1.3 Quantum mechanics

In non-relativistic quantum mechanics there are important quantities known
as Pauli spinors — using these spinors we are able to write down the Pauli
equation which governs the behaviour of a quantum mechanical state in
some external field. The equation involves quantities called spin operators
which are conventionally seen as completely different entities to the states.
Using the 3-d geometric algebra we are able to write down the equivalent
to the Pauli equation where the operators and states are all real-space mul-
tivectors — indeed the spinors become proportional to rotors of the type we
have discussed earlier. The algebra of the {c;} is isomorphic to the algebra
of Pauli spin matrices.

To see how this works in a simple context, we consider the case of an
electron in a magnetic field. A conventional quantum Pauli spinor [¢)),
which is normally written as a two component complex column ‘vector’, is
put into 1-1 correspondence with a GA spinor ¢ (an even element of the
geometric algebra of 3-d space) via:

0 in3
W= (BTN ) v @ rdtin (117

(Note the symbol j is used for the unit scalar imaginary of quantum me-
chanics). We are interested in how the electron spin behaves, and will ignore
any spatial variation. It is then easy to show that the GA form of the Pauli
equation for this setup is
dy

— = 57viB 1.18
o = 2ViBY (1.18)
Here B is the magnetic field as described in the previous section and v
is the ‘gyromagnetic ratio’. (v & e/m for an electron, where e and m are
the electon charge and mass.) Any Pauli spinor can be decomposed as

P = p%R, where p is a scalar and R is a rotor. Substituting this form into
(1.18), multiplying by % and denoting time derivatives by an overdot, we
obtain

1p+pRR = }pviB (1.19)

It is straightforward to show that RR = 1 implies RR is a bivector. The
right hand side of (1.19) is also a bivector, so we deduce p = 0. The scale
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thus drops out of the problem and the dynamics reduces to the rotor equa-
tion
R = 1viBR (1.20)

The conventional approach is unable to work with this single rotor equa-
tion, but instead has to work with two coupled complex equations, one
for each of the components of the quantum state. Although the underly-
ing physics is the same, the rotor form is often significantly easier to solve
(e.g., for a constant field B = Byos along the z-axis, we can immediately
intergrate to find ¥(t) = exp(yBotios/2)1o) and makes the analogue with
the corresponding classical system much more transparent.

Relativistic quantum mechanics is conventionally described by the Dirac
algebra, where the Dirac equation again tells us about the state of the
particle in an external field. Here we use the 4-d spacetime geometric alge-
bra with the algebra of the {v,} isomorphic to that of the Dirac matrices.
Again the wavefunction in conventional quantum mechanics becomes an
instruction to rotate a basis set of axes and align them in certain directions
— analogous to the theory of rigid body mechanics! We see therefore that
there is a significant shift in interpretation; in GA, the states and opera-
tors no longer live in different spaces but are instead simply multivector
elements of the geometric algebra.

Thus, with the STA, we can eliminate matrices and complex numbers
from the Dirac theory. Suppose we start with the standard Dirac matrices:

I 0 : 0 &
20 __ A0 2
7‘(0-1) 7‘(-@- 0) (1.21)

where the {6;} are the usual Pauli spin matrices and I is the 2 x 2 identity
matrix. A Dirac column spinor 1) maps onto an element of the 8-d even
subalgebra ( a spinor) of the STA via the following:

a® + ja®
—a? + ja' a® + aFioy,

) = B0+ jbP o= F(B° + brioy)os (1.22)

—b% + jb!

Dirac matrix operations are now replaced by:
1Y) < Yo Jlp) < oy (1.23)
This enables us to write the Dirac equation as

Vios — eAp = mapyo (1.24)

where V = «#0, is the gradient operator defined in the previous section
and A is the 4-potential of the external electromagnetic field. Note this
equation — often referred to as the Hestenes form of the Dirac equation —
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is independent of choice of matrix representation and is therefore the best
form in which to expose the geometric content of Dirac theory.

In the conventional approach it is usual to define an additional operator
A5 = —J¥0Y1¥2%3 — in our approach this is replaced by right multiplication
by o3. Two of the main observables of Dirac theory (J and s, the so-called
bilinear covariants) become:

Jh=(D3) e (o) = 94T
= (PIsAY) & ([yrrs) =8

where 1) is the Dirac adjoint. The key quantities are the STA vectors J and
s:

J =4t s = Py3d (1.25)

(Note that there exist a set of identities called the Fierz identities which,
in the above formulation, reduce to simple vector manipulations.)
It is now possible to decompose the spinor v in a Lorentz invariant manner;

P = peiﬂ = scalar + pseudoscalar (1.26)

Using this decomposition we can write ¢ as follows

¥ = (pe'P)'/?R (1.27)

where R is a spacetime rotor. The observables now become

J = pRyoR s = pRysR (1.28)

so the spinor reduces to an instruction to rotate the {v,} frame onto the
frame of observables. The STA framework for quantum mechanics has been
applied in tunnelling theory [12] where it is capable of plotting streamlines
representing the path of a particle inside a barrier. It is then easy to calcu-
late tunnelling times, the time a particle spends within a barrier, — some-
thing which is much harder to do in conventional quantum mechanics where
the concepts of imaginary time or momentum preclude straightforward cal-
culations. Applications in electron scattering [13] have reformulated much
of conventional theory allowing spin sums to be done straightforwardly and
revealing rotor-structure at the heart of the formulation. For further details
of applications to quantum theory, see [14]. The above once again illustrates
that using geometric algebra one is able to deal with complex subjects such
as relativistic quantum mechanics using those same tools used in current
engineering applications of geometric algebra.
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1.4 Gravity as a gauge theory

A gauge theory occurs if we stipulate that global symmetries must also
be local symmetries — electromagnetism is a gauge theory where the sym-
metries are called phase rotations. Making these local, i.e. able to change
arbitrarily from one spacetime position to the next, implies the introduc-
tion of forces. In geometric algebra, gravity can also be regarded as a gauge
theory. If we require that the physics at all points of spacetime is invariant
under arbitrary local displacements and rotations (recall that a 4-d rotation
is a Lorentz boost), the gauge field that results is the gravitational field.
Thus, the aim is to produce a gauge theory of gravity employing fields in a
‘flat’ background spacetime (defined by the STA); we then have no need for
the complex notions of curved spacetime that are associated with Einstein’s
theory of general relativity. How can we construct such a theory without
imposing some form of absolute Newtonian space? We start by ensuring
that the following criteria are satisfied:

1. The physical content of a field equation must be unchanged under
arbitrary local field displacements.

2. The physical content of a field equation must be unchanged under
arbitrary local rotations of the fields.

In looking at how the resulting gauge theory differs from past gauge-
theoretic approaches to gravity, we note the following points:

1. Tt is different from Poincaré gauge theory, which retains the ideas of
a curved spacetime background.

2. There is no need to restrict to infinitesimal transformations; within
GA we can work with finite rotations.

3. The need for principle 2 only emerges fully from a theory based on
the Dirac equation.

To see mathematically what the symmetry constraints impose we first con-
sider a relation of the type
a(z) = b(x) (1.29)

which equates spacetime vectors at the same point. Now we introduce new
fields
a'(z) = a(z') b'(z) = b(a) (1.30)

where ' = f(z) is some arbitrary (nonlinear) mapping between position
vectors. The equation
a'(z) = b/ (z) (1.31)

has exactly the same content as the original equation, since the value of
is irrelevant provided it covers all of spacetime. This is true for arbitrary
displacements.
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In order to satisfy our previous conditions we require that this holds for
all physical equations.

Next consider a relation of the type a(z) = V¢(z). If we replace ¢(z)
with ¢'(z) = ¢(z') we must now consider V acting on the new scalar field
Vé(f(x))); by using the definition of the vector derivative it can be shown
that [15]

V' (z) = f[Varp(a')] (1.32)

where

f(a) =a-Vf(x) (1.33)

Here, f(a) = f(a, z) is a linear function of its vector argument, and a nonlin-
ear function of position, f(a) is its adjoint. The appearance of this function
means that the equation does not have the required transformation prop-
erty.

We repair this by replacing V with a new derivative h(V), where h(a)
is a linear function of a and has arbitrary position dependence; we call
h(a) = h(a,z) the position gauge field. The adjoint function is written

h(a). Under a local displacement, this is defined to transform as

h(a,z) = h'(a,z) = h[f*(a), z'] (1.34)
This law ensures that the equation
a(x) = h[Ve(2)] (1.35)

is now covariant, in the required manner, i.e. under a change of position
the equation takes the same form but is evaluated at that new position.

Recovering General Relativity
Using the linear function h it is now possible to recover classical general

relativity (GR). To do this we first introduce a set of local coordinates
z# = zM(z), with coordinate frames

ey =0, et = Vzt (1.36)
we can then recover a metric as follows:

Guv =h7'(ey)-h7 (ey) (1.37)

This metric is then treated as a field in a flat background spacetime.
Rotations

As we have indicated in previous sections, rotations are often the key to
the simplifications provided by GA. In this application it is again true that
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rotations are key to the novelty of this new approach, and also the key to
torsion. Let us return to the equation a(z) = b(z). Note that the physical
content of this equation is unchanged if we replace a and b by

a'(z) = Ra(z)R b'(z) = Rb(z)R (1.38)

since a =b = da' = b'. The physics is unchanged, provided the absolute
direction of the vector in the STA does not enter (the second of our two
principles). Again, this argument holds for arbitrary, local rotations.

To ensure that relations of the type

a=h(Ve) (1.39)

remain unchanged, we are led to the transformation law

h(a) = i (a) = Rh(a)R (1.40)

for h under local rotations.

What does general relativity have to say about this transformation? —
surprisingly, nothing!
The metric g, is unchanged by this transformation, as are the components
of covariant quantities:

F = F-h"(e,) Ah(e,)] (1.41)

Both F' and h rotate to leave the components unchanged.

(Most of) classical general relativity can be formulated in the STA with-
out mentioning the rotation gauge. But do we also need to consider the
Poincaré group? In fact, it is already fully encompassed by allowing arbi-
trary displacements.

This then leads us to ask the question of whether we have to address
the rotation group at all? The answer to this question is Yes/; it is indeed
unavoidable in the Dirac theory. We can see this by recalling the fact that
observables such as J = Yy imply the spinor transformation law

1) = Ry (1.42)

Since this cannot be hidden, we are forced to introduce a new gauge field
to make the Dirac theory invariant under local rotations.
Now let us look at the directional derivatives of V(Ry):

a-V(RY) = aVRyY+ Ra-V
= R[Ra-VR + a-Vi)]

Note that the quantity Ra-VR is a bivector. We now define the spinor
covariant derivative as

Dot = a-Vip + 39Q(a)y (1.43)
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Q(a) is a bivector-valued linear function of a, with nonlinear position de-
pendence which has the transformation law

Q(a) = Q'(a) = RQa)R — 2a-VRR (1.44)
We are now able to write down the minimally-coupled Dirac equation:

E(aa)DawiUZS = myyo (1.45)

The {0,,a} construction is a frame-free way of writing a contraction (see
[15] for further details).

Observables

We see that it is now possible to differentiate covariant vectors:
a-VJ = a-Vipyot) + Pyoa- Ve (1.46)

which suggests that we define the derivative

D,J = (Dad))VO'(z}"'w'YO(Da"p)
= aVJ+Qa)xJ

This is the covariant derivative for multivectors, where AxB = 1(AB—BA)
represents the Hestenes commutator product [25].

From Q(a) we define
w(a) = Qh(a) (1.47)

which is covariant under local displacements, and only sees the rotation
group. When the rotation gauge is fixed, the quantities in w(a) become
physical observables (measurable). Classical general relativity has no ana-
logue of these.

Note here that the full covariant derivative is

D = h(9,)D,. (1.48)

The rest of the theory then proceeds by defining the following field
strength tensor

[Da, Dylip = R(aAb) (1.49)

By a double contraction we can get the Ricci scalar

R = [h(8,) Ah(8,)]- R(aAb) (1.50)

This can then be used in an action principle requiring stationarity of

/d%; det h‘l(%R kL) (1.51)
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where the matter Lagrangian is £,, and with Q(a) and h(a) as the dy-
namical variables (k = 87 G is the gravitational coupling constant).

The result is a theory which locally reproduces the equations of the ECKS
(Einstein, Cartan, Kibble, Sciama) extension of GR with the following no-
table differences:

it sits in a topologically trivial flat spacetime
has all the advantages of flat-space STA still available for calculations
finite gauge rotations and displacements are allowed

the torsion type is uniquely picked out (Oq(e)Lm = S(a) = torsion
tensor. This must be of the Dirac type, i.e. 0,-S(a) = 0 for minimal
coupling)

Physical observables and gauge covariant quantities of the theory are
clearly picked out.

1.4.1 Some Applications

In this section we briefly outline some of the applications of this gauge
theory of gravity (GTG).

1.

Covariant and gauge-invariant calculation of cosmic microwave back-
ground (CMB) anisotropies.

The GTG approach provides a completely unified scheme for scalar,
vector and tensor quantities. It has been applied very successfully
to the gauge-invariant calculation of CMB anisotropies [16] and to
the development of perturbations, where it recovers the covariant ap-
proach of Ellis and coworkers [17].

Topological applications.

Despite sitting in a topologically trivial flat spacetime, the GTG
can in fact be applied to some situations which would convention-
ally be thought of as involving topology. It is found that entities
like cosmic strings are allowed and can be treated (similar to the
Aharanov-Bohm effect in electromagnetism), but that wormholes,
kinks, Kruskal-Szekeres and all forms of double cover are ruled out
under this theory.

. Cosmic Stings

A new spinning cosmic string solution [18] has been found which
corrected an earlier GR-based attempt.

. Singularities

The availability of integral theorems (Gauss etc. ) means that we
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Observer (infinity) Accretion Disc Image Plane
+

v Black Hole
T Morg,

TSpin LM

FIGURE 1.1. Setup for computing spectral lineshapes using the GTG
approach .

can study the structure of singularities in new ways. For example,
the singularity at the centre of the Kerr solution is revealed to be a
ring of matter rotating at light-like velocity, but with a ring of pure
tension stretched across it [19]. Such conclusions are gauge invariant.

5. Spectral lineshapes
A recent project [20] has concentrated on calculating spectral line-
shapes from iron-line fluoresence in accretion discs around black holes
in active galactic nuclei (AGN). Here the GTG provides an efficient
calculational tool and gives a clear approach to the physical (gauge
invariant) predictions, see figure 1.1. Results so far, for a particular
active galactic nucleus, show that if a is the specific angular mo-
mentum of the black hole line and M is its mass, then a/M > 0.9
at 90 percent confidence, giving some of the first quantitative evi-
dence for a spinning black hole. In this approach the 2nd order GR
geodesic equations are replaced by first order equations for a rotor
which describes the photon momentum. Integrating the rotor equa-
tions in such a setup has links with the procedures required when
dealing with buckling beams and deforming elastic fibres (see below).

6. Black holes
In the GTG approach, black holes have a memory of the direction of
time in which they were formed encoded in them. This means that
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the first order (in derivatives) nature of the GTG results in time-
reversal properties which are slightly different than those predicted
in GR based on metric (second order) theory. A full discussion of this
may be found in [15].

7. Spinning Black Holes
The GTG has produced a new and very simple form of the Kerr
solution for spinning black holes [21]. This is called the Newtonian
Kerr and takes the form

_ 2M sinhu
h =a—aéy\| ——V 1.52
(@) =a-aé L cosh?y ( )

where we work in oblate spheroidal coordinates (¢,u, @,v), and the
velocity vector V is given by

cosh uvyy + cosvg
V/cosh? u — cos? v

This provides a global solution which is not much more complicated
than the Schwarzschild solution for stationary black holes.

V =

(1.53)

1.4.2  Summary

This section has given an outline of how GA can be used to formulate a
gauge theory of gravity and in the process reduces the tensor manipulations
of general relativity to nothing more than linear algebra. The same tools are
used throughout. Indeed it may be possible to use linear functions, which
act in the same way as the h functions, to model elasticity. The concept of
a frame of reference that varies in either space or time (or both) is also at
the heart of much work that tries to understand deforming bodies. A very
simple example is provided by a beam of uniform cross-section subject to
some loading along its length. We can describe this deformation by splitting
up the beam into very small segments and attaching a frame to the centre
of mass of each segment. As the beam deforms and is subjected to torsional
forces, we can describe its position at a given time by a series of translations
and rotations specifying the positions and orientations of each element, see
figure 1.2.

Current work [22] has focussed on rewriting conventional buckling equa-
tions in terms of GA which has the advantage of allowing us to deal with
finite rotations and to interpolate resulting rotor fields. However, the meth-
ods outlined in this section present us with the possibility of employing
more sophisticated techniques for such problems and for more general prob-
lems involving the deformation of long elastic fibres under given boundary
conditions.
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original configuration

...................... --p X

deformed configuration

FIGURE 1.2. Model of a beam split into very small segments — the
deformation is described by the positon and orientation of each seg-
ment

1.5 A New Representation of 6-d Conformal Space

A useful new application of geometric algebra to Euclidean geometry has
been given by Hestenes et al. [?]. This uses a 5-d space to provide a con-
formal model of Euclidean geometry. Specifically two null vectors, e and e*
are adjoined to Fuclidean space, which anticommute with the three basis
vectors of Euclidean space and satisfy

e-e*=1. (1.54)
Two key results are

1. If x and y are the 5-d vectors representing 3-d points  and y, then
the inner product in 5-d gives a measure of the distance between the
points in 3-d:

1 2

x-y:—i(w—y) . (1.55)
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2. Secondly, both translations and rotations in 3-d are representable by
versor multiplication in 5-d. We can write

z' = DxD™ !, (1.56)

where D = Tq R, R represents a rotation about a direction in 3-d and
Ta =1+ %ae is a translation in the direction a. Note ae is a null
bivector in the 5-d space, and so Tq can be written in the exponential
form exp(3ae).

This new conformal model of Euclidean geometry appears to be rich
in applications to computer vision and robotics (see chapter ??, where
the authors use the conformal model for the algebra of incidence and for
estimating Euclidean motion ). One possible application is to the problem of
the joint interpolation of rotational and translational motion of robot arms
(see e.g. [3, 4]), where the ability to write the motion in versor form could be
of great benefit. Here, we consider a similar model but applied to relativistic
rather than Euclidean geometry. This can be achieved in two ways. Firstly,
one could use a 6-d space in which two extra null vectors satisfying e -
e* = 1 have been added to a 4-d Lorentzian space. This is the obvious
generalization of Hestenes’ method to one dimension up, and should work
very well as something to apply to relativistic problems (e.g. it may allow
the problem of motion interpolation to be extended to include interpolation
of velocities as well as positions — this is currently being investigated).
However, as a novel method, one may instead use the 2-particle space of
the ‘multiparticle STA’ (see [14, 11]), which is in fact 8-dimensional, and it
is this we consider in detail here. The reason for wishing to stress this new
method, is that it sheds wholly unexpected light on the links between such
disparate concepts as multiparticle quantum mechanics, relativity, twistors,
2-spinors and the Hestenes conformal representation. Many of these are
things which ‘engineers’ might never have expected to find out about, or
to be related to things they wish to know, but here we show how they
are in fact intimately related. In particular, we show that the re-expression
of twistor theory in multiparticle GA, shows that the main results of the
Hestenes conformal representation method are already-known aspects of
twistor theory! The links between both of these and multiparticle quantum
mechanics appear to be wholly new. (There is even an exciting hint in
the work that it will allow a new and concrete expression of the particle
physics concept of supersymmetry.) We give here just the bare outline of
the method — a more detailed exposition is in preparation.

1.5.1 The multiparticle STA

To get started on this topic we need to understand aspects of the multipar-
ticle theory within geometric algebra. The MSTA (Multiparticle SpaceTime
Algebra) approach is capable of encoding multiparticle wavefunctions, and
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describing the correlations between them. The presentation here is hope-
fully complementary to the presentation given in the context of quantum
computing by Havel (see chapter ??) and parallels that given in Chapter
11 of the Banff Lectures [11] by Lasenby, Gull and Doran and in the review
paper by Doran et al. ‘Spacetime Algebra and Electron Physics’ [14].

The n-particle STA is created simply by taking n sets of basis vectors
{’yﬁ}, where the superscript labels the particle space, and imposing the
geometric algebra relations

YL+ v =0, i 157
YV VWV = 2w i =J. (1.57)
These relations are summarised in the single formula

Vo = 6. (1.58)

The fact that the basis vectors from distinct particle spaces anticommute
means that we have constructed a basis for the geometric algebra of a 4n-
dimensional configuration space. (Note the extra dimensions serve simply to
label the properties of each individual particle, and should not be thought
of as existing in anything other than a mathematical sense.)

Throughout, Roman superscripts are employed to label the particle space
in which the object appears. So, for example, 1! and 92 refer to two copies
of the same 1-particle object v, and not to separate, independent objects.
Separate objects are given distinct symbols while the absence of super-
scripts denotes that all objects have been collapsed into a single copy of
the STA.

1.5.2  2-Particle Pauli States and the Quantum Correlator

As an introduction to the properties of the multiparticle STA, we first
consider the 2-particle Pauli algebra and the spin states of pairs of spin-
1/2 particles. As in the single-particle case, the 2-particle Pauli algebra is
just a subset of the full 2-particle STA. A set of basis vectors is defined by

ol = W% (1.59)
ol = V% (1.60)

which satisfy
0107 = VRV = VRN = VieiNs = oo} (1.61)

So, in constructing multiparticle Pauli states, the basis vectors from differ-
ent particle spaces commute rather than anticommute. Using the elements
{1,i04,i0%,i0] io}} as a basis, we can construct 2-particle states. Here we
have introduced the abbreviation

io; =i‘o} (1.62)
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since, in most expressions, it is obvious which particle label should be at-
tached to the i. In cases where there is potential for confusion, the particle
label is put back on the i. The basis set {1,ioy,i0},i0] io}} spans a 16-
dimensional space, which is twice the dimension of the direct product space
of two 2-component complex spinors. For example, the outer-product space
of two spin-1/2 states can be built from complex superpositions of the set

()2 (0)- ()= () ()= (1) (1)=(3)._

which forms a 4-dimensional complex space (8 real dimensions). Here
the (1,0)7 and (0,1)7 symbols refer to the spin up and spin down states
of conventional quantum mechanics, often written as | 1) and | |) respec-
tively. The dimensionality has doubled because we have not yet taken the
complex structure of the spinors into account. While the role of j is played
in the two single-particle spaces by right multiplication by io} and io3
respectively, standard quantum mechanics does not distinguish between
these operations. A projection operator must therefore be included to en-
sure that right multiplication by io} or i02 reduces to the same operation.
If a 2-particle spin state is represented by the multivector v, then 1 must
satisfy

Yioy = Yio? (1.64)
from which we find that
P = —@bio% iog
= ¢ =111 —iolio3). (1.65)
On defining
E =1(1—iojio}), (1.66)
we find that
E’=FE (1.67)

so right multiplication by E is a projection operation. (The relation E? = E
means that E is technically referred to as an ‘idempotent’ element.) It
follows that the 2-particle state 1) must contain a factor of F on its right-
hand side. We can further define

J = Bioy = Eioj = 1(io3 + i03) (1.68)

so that
J?=-E. (1.69)

Right-sided multiplication by J takes on the role of j for multiparticle
states.
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The STA representation of a direct-product 2-particle Pauli spinor is now
given by 1¢>E, where ¢! and ¢ are spinors (even multivectors) in their
own spaces. A complete basis for 2-particle spin states is provided by

(1)o(3) = =

(1)e(3) =
(1)e(2) = i
(Yo (2) o wiiote

This procedure extends simply to higher multiplicities. All that is re-
quired is to find the ‘quantum correlator’ E,, satisfying

(1.70)

E,io} = Eick = J, for all j, k. (1.71)

FE,, can be constructed by picking out the ;7 = 1 space, say, and correlating
all the other spaces to this, so that

B, =[] (1 —io3id?). (1.72)
j=2

The value of E,, is independent of which of the n spaces is singled out and
correlated to. The complex structure is defined by

Jn = Eyiol, (1.73)

where iag can be chosen from any of the n spaces. To illustrate this consider
the case of n = 3, where

By = 3(1—iozio3)(l—iozio3) (1.74)
= 1(1—iolio] —io}ios —io3io3) (1.75)

and
J3 = 1(io} +i03 + io§ — ioj ios io3). (1.76)

Both E3 and J3 are symmetric under permutations of their indices.

The above was framed for non-relativistic Pauli spinors, but in fact, the
whole discussion also applies to Dirac spinors, since these are represented
by even elements and multiplication by j is still right-sided multiplication
by io3. A significant feature of this approach is that all the operations
defined for the single-particle STA extend naturally to the multiparticle
algebra. The reversion operation, for example, still has precisely the same
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definition — it simply reverses the order of vectors in any given multivector.
The spinor inner product also generalises immediately, to

(®,0)s = (En) '[(d¢) — ($dJn)ics], (L.77)

where the right-hand side is projected onto a single copy of the STA. The
factor of (E,)~! is included so that the state ‘1’ always has unit norm,
which matches with the inner product used in the matrix formulation.

1.5.3 A 6-d representation in the MSTA

Much more could be said about the properties and applications of the
MSTA, but here we wish to use it in a novel linking-together of quantum
mechanics, twistors and conformal geometry.

Let ¢ be a (single particle) Dirac spinor, and 7 = tyo + &y1 + Y72 + 273
be the position vector in 4-d space.

Consider the operator 7, mapping Dirac spinors to Dirac spinors, given
by

¢ 7(p) =rdivss (1+03). (1.78)

The operator (1 + 7) has the remarkable property of leaving the inner
product between Dirac spinors invariant. Specifically, we have

W'¢')s = (We)s, (1.79)
where
' =0+ and ¢ = (1+7)o. (1.80)

(The subscript S applied in this single-particle case just means the scalar
and io3 parts only are taken.) This relation is true for any Dirac spinors ¢
and ¢. We note further #* = 0, so we can write (1 + 7) in the ‘rotor’ form
e’.

Now consider the following two-particle quantum state:
e=(ih—iod) } (1-o}) L (1—od) } (1—ickiod), (L&)

This is a relativistic generalisation of the non-relativistic Pauli singlet state
(see Doran et al [14]). Specifically it can be shown that it obeys

R'R’=R'Rle=¢ (1.82)

for any (Lorentz) rotor R, and is therefore relativististically invariant. We
now use this to construct our first ‘6-d’ point as follows:

Y= e e, (1.83)

1 here is a 2-particle wavefunction which provides a representation of the
4-d point r. We shall see shortly in what way it connects with 6 dimensions.
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Firstly, however, note that this ) has vanishing norm viewed as a 2-particle
wavefunction:

{(y)s = 0. (1.84)
More generally, let
o= esle‘éze, (1.85)
correspond to some different 4-d position s. Then we find
~ 1
(B0)s = =5 (r — 8)*. (1.56)

Just as with the ‘horosphere’ construction used by Hestenes, we see we have
found a way of turning differences into products, except here it is taking
place in a relativistic context.

The way the quantum state links with 6 dimensions is as follows. The
state space for relativistic spinors describing two particles is 16 complex
dimensional (as effectively the outer product of two Dirac spinors) and
splits into a 10-d space symmetric under particle interchange (i.e. swapping
of the 1 and 2 labels) and a 6-d space anti-symmetric under interchange.
This 6-d space is ‘complex’ (i.e. with 12 real degrees of freedom), but we can
define a ‘real’ subspace of it via taking the following as being the general
point:

Yp = (V+ W)€ + Pleiys + Pleivs +(V — W)e. (1.87)
Here
€ = —vol’yge’yé’yg = (iaé — iag) % (1 + a?l,) % (1 + Ug) % (1 — iaéiag) ,
(1.88)
and
P=Ty+ X7+ Yy + Zv. (1.89)

V,W, T, X,Y and Z are the coordinates of a 6-d real space with metric
ds? =dT? + dV? —dW? — dX? —dY? — dZ>. (1.90)

The extra dimensions V' and W allow the formation of the combinations
V + W and V — W, which correspond to null directions in the 6-d space.
(These directions are the equivalent of the e and e* introduced by Hestenes
in the 5-d case.)

The representation of 4-d points proceeds via working with points on the
‘null cone’ in 6-d. For these points we relate the 6-d space to ordinary 4-d
Lorentz space projectively via

S SIS S
vow TTv-w YTvow fTvew

The way this relates to our previous construction is as follows:

t (1.91)

bp =V —W)e e, (1.92)
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i.e. it is simply a scaled version of the state generated by the rotor con-
struction. We can see this by taking the length of ¢p, via the norm of the
quantum state:

(pypp) = 3(V2=W? +T? - X* Y - 2°). (1.93)

This being null implies

T2 - X2 Y272 = (V2 -W?), (1.94)
ie.
tz—xz—y2—z2=—(“jt¥>. (1.95)
1p is thus just
(V =W) (=|rle +rteivi +r’eivi +¢), (1.96)

which is (V — W) e ™€ as claimed.

1.5.4 Link with twistors

The above has been framed as a mixture of 2-particle relativistic quan-
tum mechanics (written in the MSTA) and conformal geometry. It also
links directly with twistor theory (see e.g. Penrose & Rindler, Vol. 2 [23]).
Twistors were introduced by Penrose as objects describing the geometry of
spacetime at a ‘pre-metric’ level (partially in an attempt to allow an alter-
native route to quantum gravity). Instead of points and a metric, the idea
is that twistors can represent incidence relations between null rays. Space-
time points and their metric relations then emerge as a secondary concept,
corresponding to the points of intersection of null lines. As discussed in
Lasenby, Doran & Gull [24], in geometric algebra twistors are translated as
Dirac spinors with a particular position dependence. Specifically, a twistor,
which is written in 2-spinor notation as

7% = (W, 7mar) (1.97)
is translated as the Dirac spinor Z given by
Z=¢—rdivss (1+03), (1.98)
where r is the 4-d position vector and ¢ is the (constant) Dirac spinor
¢ =wok (1+03) —mio23 (1 —03), (1.99)

with wg and 7 the geometric algebra Pauli spinors corresponding to the
Penrose & Rindler 2-spinors wg! and mar. ( wi' is w? evaluated at the

origin.)
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What we can observe now is that Z is none other than e~"¢. This links
twistors with the previous section. In twistor theory, given two twistors Z
and X satisfying certain conditions, we can find a spacetime point corre-

sponding to their intersection via forming the skew m twistor

R = 72X8 — X*7”P (1.100)

(see Penrose & Rindler, Vol. 2, [23], p. 65 and p. 305). Without going into
the details, it turns out that what we have described in the previous section
corresponds precisely to this construction, but instantiated in a concrete
fashion in the MSTA. In particular, the twistor relation

SO‘BRQB =—(8"=71r%)(sq — 74a) (1.101)

(Equation 6.2.30 of Penrose & Rindler, Vol. II) corresponds precisely to
both our Equation 1.86 and the Hestenes ‘horosphere’ relation Equation 1.55.
The latter is already prefigured therefore in twistor geometry.

It might be wondered why, if corresponding constructions exist in twistor
theory, it is useful to have a version in geometric algebra. The advantages
of the latter are twofold. Firstly, there is the economy of using a single
algebraic system for all areas as different as quantum mechanics, conformal
geometry, screw theory etc. Secondly, we can use the geometric algebra to
do things which are not easily possible within twistor theory, but which
extend its results in a very neat fashion. For example, in the next section
we show how the full special conformal group of Lorentzian spacetime can
be realized via very simple transformations in our two particle space. The
corresponding operations would be much harder to display explicitly in
twistor theory.

As a final remark in this area, we note that twistor theory encourages one
to think about a complezified version of Lorentzian spacetime. The same
occurs in our present constructions via the fact that the 2-particle anti-
symmetric space is actually 12-dimensional, allowing us to have a complex
version of the 6-d conformal space. In order to understand some areas
of practical computer vision, we apparently require a complex projective
space; this is the case particularly for camera calibration using the concepts
of the absolute conic and absolute quadric. A complex version of our 6-d
conformal space may turn out to be very useful in allowing us to find a
natural home for such entities in geometric algebra. This area is currently
being explored.

1.5.5 The special conformal group

We now look briefly at how rotations, dilations, inversions, translations and
special conformal motions in Lorentzian spacetime can be represented via
simple transformations in our two particle space. This parallels the equiv-
alent analysis in the 5-d case given by Hestenes for motions in Euclidean
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space, except that here they emerge in a (perhaps surprising) fashion as
operations within relativistic quantum mechanics. In 3-d the importance
of such motions is that they preserve the angles between vectors, and thus
are next in generality as regards rigid body motion if we wish to go beyond
the strictly Euclidean transformations of translation and rotation. In 4-d,
they are of great interest in physics from the point of view of conformally
invariant theories, such as electromagnetism and massless fields, and may
be of interest in engineering for the description of rigid body motion where
velocities and not just positions are specified, and also in projective spaces.
We now describe in each case the required operation, and indicate why it
works.

Translations:

Here we just need to note that the operators e’ for different r’s are
all mutually commutative. Thus if we have a point r in 4-d that we
wish to move to r + s, where s is another 4-d position vector, we just
need to carry out the transformation

pp s Pp = e Ty, (1.102)

Rotations

These are easily accomplished. Given a Lorentz rotor R, we rotate in
the 2-particle space via

Yp — p = R'R*Yp. (1.103)

This works since e.g. the r! term in the expansion for ¢)p responds

fke R'R*reivs = R'r'R%civs = R'r' Rleivys. (1.104)
Inversions

The aim here, in the 4-d space, is to have r — r/|r|?>. Since the
coefficient of € in the ¢p expansion is —|r|?, the way to achieve this
in the 2-particle space would be to swap the roles of € and €'. We can
achieve this by multiplying on the right by iclio2, since this swaps
both ideals. At the same time one finds

rleivsioyios = —r’eiv;, (1.105)
and vice-versa. Thus the required operation is

1ﬁp = '(b}p = ¢pw%w§ (1106)

Dilations

Here in 4-d space we want r to transform to e®r, where « is a scalar. In
the 2-particle space we need a rotor operation which can accomplish
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this. Like inversion, it is clear that we need to swap the roles of the
+ (14 03) and 1 (1 — 03) ideals, only this time it needs to happen in
a gradual fashion. It is easy to show that the required operation is

bp = Pl = Phpe®/ 203 +03), (1.107)

Special conformal motions

These motions are in fact composites of inversions and translations,
so in a sense we have already done these. However, the resulting
expression for the operation in the 2-particle space is quite neat, so
we give the results explicitly. In 4-d space we want to achieve the
motion

re=r

TP (1.108)
where s is a constant vector. This can be generated via inverting r,
translating by s and then inverting again (see Hestenes & Sobczyk
[25], p. 218). In our case, the combination of two inversions amounts
to changing the ideal used in e’ to its opposite, plus a change of sign
for the vector. Thus if we define the new operator 7 via

¢~ #¢p) =rdivsy (1 —03), (1.109)

we see that the overall operation we want is

pp o pp = e )y, (1.110)

1.5.6 6-d space operations

Although above we have confined ourselves to setting up the basic cor-
respondence between conformal operations and ‘quantum’ operations in
the 2-particle space, it is of interest to relate these operations directly to
the operations that would be carried out in a 6-d space generalising the
‘horosphere’ construction. The simplest version of such a space uses the
representation discussed at the end of Hestenes & Sobczyk [25]. At the
risk of causing great confusion, we shall stick with the original Hestenes &
Sobczyk notation, which has e and e, satisfying

e =—e’=1, (1.111)

as the new vectors which would be added to make up a (1,3) space with
vectors r say, up to a (2,4) conformal space. The null vectors formed from
e and € are defined by

n=e+e n=e—e. (1.112)
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The crucial representation formula, relating (in this case) 4-d vectors r
to their 6-d equivalents F(r) is

F(r) = —(r —e)e(r —e) + (r — e)’%e, (1.113)
([25], eqn 3.14). Re-expressing this in terms of the null vectors, one finds
F(r) =r*n+2r —n. (1.114)

We should compare this equation (1.114), with our quantum representation
(1.96). It is clear that how they work is that (up to signs) the relativistic
singlet state € takes on the role of the null vector n, its version using the
opposite ideals, €', takes on the role of  and the middle term r'eivi +
r?eiv? is an expanded version (appropriate to the 2-particle space) of the
vector 2r.

It is now very interesting to compare some of the actions of the conformal
group in the two approaches. Taking inversion as an example, this operation
is not discussed in Hestenes & Sobczyk, but it is easy to see that we invert
a 4-d point, r — r/|r|?, via reflection in the unit vector e. Explicitly, we
carry out

F(r) — eF(r)e. (1.115)

This swaps the roles of n and 7. In the 2-particle case, we know inversion
is accomplished by right multiplication by ioc}io3, since this swaps the
quantities € and €'. Thus the quantum operation of swapping the spin states
(up +— down) of the 2-particles (which is what the iodio multiplication
achieves), parallels the operation of reflection in the 6-d space. This hints
at a deep geometrical connection between the two spaces, which will be
investigated further elsewhere.

1.6 Summary and Conclusions

In this contribution we have seen that geometric algebra is able to span
an enormous range of physics and mathematical physics. From the rest
of this volume it is clear that GA is useful in many areas of engineering
also. Thus GA stands ready to be adopted as a useful and efficient tool by
scientists and engineers in a wide variety of fields, with consequent benefit
for mutual comprehensibility. Even areas considered as difficult as general
relativity have been shown to be understandable within GA using just
simple tools of linear function theory. The links between the new conformal
representation of Euclidean geometry, twistors and multiparticle quantum
theory have been shown to be both fascinating and unexpected. Much more
work is possible along this direction, including the possible role of complex
projective and conformal geometry, and of relativistic spaces in allowing
representation of velocity as well as position transformations.
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