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Chapter 1

Using Geometric Algebra in
Optical Motion Capture

Joan Lasenby & Adam Stevenson

1.1 Introduction

Optical motion capture refers to the process by which accurate 3D data
from a moving subject is reconstructed from the images in two or more
cameras. In order to achieve this reconstruction it is necessary to know how
the cameras are placed relative to each other, the internal characteristics
of each camera and the matching points in each image. The goal is to
carry out this process as automatically as possible. In this paper we will
outline a series of calibration techniques which use all of the available data
simultaneously and produce accurate reconstructions with no complicated
calibration equipment or procedures. These techniques rely on the use of
geometric algebra and the ability therein to differentiate with respect to
multivectors and linear functions.

Optical motion capture involves the use of multiple cameras to observe
a moving subject. From the 2D data in each camera the goal is to obtain
a moving 3D reconstruction of our subject. This process has applications
in medicine, biomechanics, sports training and animation. The whole mo-
tion capture process starts by calibrating the cameras — i.e. determining
their relative positions and orientations and the internal camera charac-
teristics. In any practical system, we require this process to be easy to
accomplish and the results to be accurate. This paper will look in detail
at this initial stage of the motion capture process, in particular the de-
termination of the relative orientations and positions of any number of
cameras given no special calibration object. The algorithms developed for
this purpose involve the use of geometric algebra and result in an iterative
scheme which does not require any non-linear minimization stage. There
are already many examples of the use of geometric algebra in other com-
puter vision applications a few of which are given in [1, 8, 9]. During the
m-camera calibration process we shall see that two very useful algorithms
emerge: firstly, a straightforward, analytic means of estimating the rela-
tive translations between cameras (not simply their directions) given that
the relative rotations are known, is presented. Secondly, given any number
of cameras and their relative rotations and translations, we show how to
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produce a robust, optimal (in a least squares sense) estimate of the world
coordinates. Both techniques could be useful in a variety of applications
and are each programmed in just a few lines of code.

The setup we use consists of three 50Hz monochrome CCD cameras
each connected to the inputs of a framegrabber card located in a PC — a
synch signal is fed into the cameras so that the digitised data comes from
simultaneous frames, see figure 1.1. The system will shortly be extended to
6 cameras.

FIGURE 1.1. 3-camera motion capture system

Retroreflective markers are placed on the moving subject and these are
illuminated with IR radiation directed from each of the cameras. Image
sequences of bright blobs are then captured — one for each camera. Storing
only the locations of the bright blobs dispenses with the need for expen-
sive frame-stores. In the subsequent processing, the bright blobs in each
frame are reduced to single points by an algorithm which attempts to find
the ‘centre of mass’ of each blob. We are therefore left with a list of the
pixel coordinates for the points seen in each frame for each image. Assum-
ing we are able to reconstruct 3D data from matched image points, it is
essential that we are able to track and match the points through the se-
quences. For complicated motions, tracking can be the hardest part of the
whole process; points crossing, being occluded, performing abrupt changes
of direction, all add to the difficulties. Experience has shown that one re-
liable means of tracking is to track the points in space, i.e. to track the
3D motion — this enables one to use rigidity and length constraints (i.e.
information from a model) in a simple fashion to improve the prediction
process. Therefore, for reliable tracking it is very important that we have
a good initial calibration of the system, otherwise the reconstructions will
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be poor and the tracking may experience problems. This is one of the main
incentives for developing an accurate user-friendly means of obtaining the
system calibration parameters. The following section will explain what the
calibration parameters are and how we can estimate these using geometric
algebra (GA) techniques. This will be followed by some results showing
the accuracy of the calibrations via simulations and tests on real data.
Throughout the paper we will assume that the readers are familiar with
basic GA manipulations — for simple introductions to GA see [4, 7, 3, 5].
In this paper we will use the convention that where indices are repeated in
the contravariant and covariant positions, i.e. a'b;, they are summed over
unless explicitly stated otherwise.

1.2 External and Internal Calibration

In this section we will explain what is meant by external and internal
calibration and show how we can use GA techniques to determine the
unknown calibration parameters.

1.2.1 FEzternal Calibration

Suppose that we have m cameras which we label 1 to m — these cameras
are placed about the field of view. The aim is to place the cameras such
that at any point in the image sequence, any given world point will always
be visible in at least two of the cameras — this may not always be possible,
but the tracking software can often make sensible predictions based on the
rest of the tracked sequence when no prediction from the data is possible.
Let us take the first camera, 1, as our reference camera. Then the position
and orientation of camera j will be completely specified by a rotor R; and
a translation ¢; as shown in figure 1.2.

Part of the calibration process will therefore be to determine, as accu-
rately as possible, the m — 1 rotors and the m — 1 translations.

1.2.2 Internal Calibration

A world point X = (X,Y, Z) is projected onto an image plane to give an
image point & = (z,y, f) where f is the focal length of the camera (pinhole
camera model), see figure 1.3

However, from the image we will measure pixel coordinates u = (u, v, 1).
In order to move between pixel and image coordinates it is easy to show
that there exists a 3 x 3 matrix, C' which takes x to u :

u=C@/f),  @/f=C'u
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FIGURE 1.2. Rotations and translations of cameras relative to refer-
ence, chosen as camera 1

World point
X=(X.Y,2)

Optical centre
y Image plane

FIGURE 1.3. Factors determining the internal calibration parameters
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where C' is of the form

a B wuo
C=1 v d§ wv
0 0 1

(uo,vo) is known as the principal point — it is where the optical axis of
the camera cuts the image plane. a, 3, vy, d depend upon the possible scaling
and skewing of the pixel axes and f is the focal length (distance along the
optical axis from the optical centre to the image plane).

The remainder of the calibration process will therefore be to determine
the internal camera parameters. The internal parameters can be found via
a variety of techniques and, once found, are unlikely to vary over reasonable
timescales. In this paper we will mainly focus on how to accurately estimate
the external parameters given knowledge of the internal parameters (in this
case we say we are working with calibrated cameras, although a later section
will indicate how we can include estimation of the internal parameters in
the estimation procedure.)

1.3 Estimating the External Parameters

Suppose first that we know internal calibration matrices C; for each camera,
j =1,..,m. Let the N world points that we observe with our cameras be
X;,t =1,..,N, and define an occlusion field O;; such that O;; =1 if X;
is visible in camera j and 0 if it is not visible in camera j. In practice, we
would like to be able to do this external calibration without having to track
points (recall the tracking uses the calibration information). This is done
by waving a single marker or light source over the viewing area (usually
a volume of around 2m® should be covered for adequate calibration). In
this way each camera will see no points or only one point and there is no
tracking or matching problem. It is of course possible that some cameras
will see more than one point due to the presence of spurious sources — if
this occurs the frame is not used in the calibration process.

Let u;; be the observed pixel coordinates (of the form (u,v,1)) of the
projection of world point X; in camera j. Since we know the internal cali-
bration parameters of each camera, we can recover the image coordinates,
xij, for this point via z;; = C} 'u;; (from hereon we will take it that
x;; = 5/ f to reduce the complication). If R; and t; are the rotor and
translation which relate the frame and position of camera j to the reference
frame of camera 1 then the following relation holds

Xij :Rj(X,'—tj)Rj (1.1)

where X ;; is world point ¢ in the coordinate frame of camera j, see [7].
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FIGURE 1.4. Geometric depiction of the meaning of cost function S,

If the noise occurs in the image planes, we might expect that our es-
timates of the Rs and ts would best be found via minimization of the
following cost function

m . 2
Sl = ZZ Tij — NRJ(Xz tJ)RJ Oi]' (12)
j=1i=1 [Rj(Xz' - tj)Rj]‘e3

This is effectively minimizing the sum of the squared distances in the
image planes between the observed image points and the projected points.
We should note here that Ry = Z (the identity), ¢t; = 0, and the presence of
the O;; ensures that if the point X; is not visible in camera j then there is
no contribution from this term. However, we can see immediately that the
presence of the parameters we are trying to estimate in the denominator of
the right-hand term makes this equation a difficult one — we would certainly
have to find the minimum via some non-linear optimization technique.

Now, suppose that instead we consider the following cost function:

m - 2
Se=> > [Xiijij — R;(Xi —t;)R;| Oj (1.3)

j=1i=1

Here Xj;3 is the distance we have to move out along the ray joining the
optical centre of camera j to image point x;; in order to minimize the
distance between the world point X; and the point Xjj3x;;. The above
cost function is therefore the sum of squared distances between the world
points and their closest points on the camera rays projecting out from the
observed image points. Thus, while S; represents a cost function in the
image planes, S» represents a cost function in the world, see figure (1.4).
Our observations are the image points in the m cameras, therefore the noise
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on our observations occurs in these image planes — if one assumes Gaussian
noise one might therefore want to minimize the cost function S;. However,
it is also true that minimizing S; does not ensure that the reconstructed
world points are in some way ‘as close as possible’ to the observed rays —
which one might also deem desirable. In fact, both cost functions are likely
to give good results and we choose to optimize Sz in order to obtain avoid
a non-linear minimization.

Now, let us try to optimize S» over our parameters R;,t;, X;;3, X;.
Although for external calibration purposes we are only interested in the
relative rotations and translations of the cameras, here we shall adopt a
maximum likelihood approach and differentiate with respect to all of our
unknown parameters. We shall show in the following sections that it is pos-
sible to obtain an iterative solution to this minimization problem and that
this procedure converges reliably provided the data is not very poor. This
differentiation will involve differentiation with respect to scalars, vectors
and rotors.

In the following sections we will frequently use the quantities defined
below:

N

nj=>» 0y for j=12.m (1.4)
i=1
m

mi=Y 04 for i=12,.,N (1.5)
j=1

Here, n; is the number of points visible in camera j and m; is the number
of cameras that can see world point i.

1.3.1 Differentiation w.r.t. t;

When we take the derivative, 9,, with respect to (w.r.t.) a vector quantity
a we use the fact that the differential operator 9, can be written (in terms
of a basis {e;}) as

where a=d'e; (1.6)

O, =€ -
a

Here {e} is the reciprocal frame to {e;}, and is defined by e;€’ = 5{ , for
1,7 = 1,2, 3. Note that we do not write vectors in bold when they appear as
subscripts in the vector derivative. We now want to differentiate Sy w.r.t.
tr, where k can take values 2, 3, ..., m. Consider first differentiating a vector
squared, 2, w.r.t. t = t/e;. Taking out a factor of e’ on the left and using
the fact that uv 4+ vu is equivalent to the inner product of the two vectors,
we have that
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Oy(zxx) = i 9%, +elx—

= 2 {%-w} (1.7)

Thus, if we let {X;ksxi, — Rk(Xz- —tp)Rr} = Yk, then 9;, Sa = 0 gives

N
01,52 = 2 Z ej%{Rkthk}-YikOik
k

=1

N
= 2) e'[(Rve;Ry)-Yix]Ou

i=1

= 2 i e’ (ej -RkYikRk)

i=1

N
= 2) R\YyRi=2R;

=1

N
- ZY““ =0 (1.8)
i=1

where we have used the fact that (RaR)-b = a-(RbR). Since Zf\;l Y is
linear in ¢y, it is straightforward to solve equation (1.8) for ¢ to give

N
1 -
t, = n—k Z I:.X, - Xik3kaikRk] Oir (1.9)
i=1
We have m — 1 such equations as k goes from 2 to m. Thus, if we have
the data and have estimates for the world points, the rotors and the X3
values, we can solve for each of the translations.

1.3.2 Differentiation w.r.t. Ry

In geometric algebra we can differentiate w.r.t. any element of the algebra
(for more details on multivector differentiation see [7, 6, 3]) and therefore
w.r.t. rotors. Let us write

N
ORr,S2 = Og, Z('Uik — RyuinRi)?Oix
=1
where v;; = Xjp3xir and u;;, = X; — t. The RHS has now been put in a
standard form for which the solution (see [7] for details) is as follows
~ N ~
Or, S = 4R > vit AN(Riwix Ri) Oin (1.10)

i=1
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For a minimum we require g, Sz = 0, and therefore the R} must satisfy

N N
Zvik/\(RkuikRk)Oik = Z{XikSiDik ARy (X; — ti)Rie}Oi = 0 (1.11)

i=1 i=1

or, substituting for ¢; from equation (1.9)

N N
. 1 -
LHS = Z{Xik.‘)‘mik/\Rk X; — n—k z [Xj — Xjk3kaijk] Ojk Rk}Ozk

i=1 j=1
N 5 1 XN

= Z{Xz'k3wz’k AR | X; — - ZXjOjk Ri}Oix
i=1 j=1
N ~

= Y (BaARi@iRi) =0 (1.12)
=1

where we now have 9;; = Xips@irOir and @y = X; — nl—k Ejvzl X;0j.
The second line in the set of equations (1.12) is obtained by noting that
Zé\;l [OikXikg.'13,-19]/\7%c Ejvzl Xik3xjrOjr, = 0. We can now solve for Ry, via
SVD as outlined in [7] — i.e.

R, = vUT  where FF=UsV7T
N
with  Ffy = O (ea-ilir)(es-Dir) (1.13)
=1

This can be done for each k. Thus, we see from the above that provided
we have the data, the world points and the X;;3 values, we can make an
estimate of the rotations using the maximum likelihood estimator for the
translations.

1.3.8  Differentiation w.r.t. the X,q3

Next we would like to differentiate w.r.t. the scalars X3 — recall these
represent the distance along the ray we have to move to bring us ‘as close
as possible’ to the world point.

For each X3 we have

- 2
O pgs {qu3wpq - Ry(X, — tq)Rq} Opq

2 {qu3:qu - Rq(xp - tq)Rq} “®pqOpg =0

O0x,,552

Pa3

(1.14)
For Op, # 0 we therefore have
Ry(Xp — t)Ry]- Xp —tg)-[Ry@p R
qu3=[ o(Xp zq) al Zpg E( P q)2[ aZpg ] (1.15)
wl’q wpq
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This equation tells us how to estimate the values of the {Xj;3} given we
know the data, world points, rotations and translations.

1.3.4 Differentiation w.r.t. the Xy

If we expand Ss it is easy to see that the derivative w.r.t. Xy, (for k¥ from
1 to N) is given by

m

=1
= 23 [—ijstwijj + Xk — tj)] O =0 (1.16)
Jj=1

where we have used the fact that 9,(a-b) = b. The above expression can
then be rearranged to give

1 « N
Xy = m_k Z[tj + ijgijijj]ij (1.17)
j=1

if my, # 0. k can take the values 1 to N. Thus, we are able to estimate the
world points given values of the rotations, translations and the {X;;s}.

1.3.5 Refining the estimates of t; and X

From our data (consisting of one point in many frames viewed by each
camera) it is relatively straightforward to obtain an initial guess at the R;
— this can be done by taking two cameras at a time and applying some
standard algorithm (e.g. decomposing the Essential matrix [10], Weng et
al’s algorithm [12], etc.). Of course, this will not give a consistent set of
rotations (e.g. Raz3Ra # Rs, where Ro3 is the rotor which takes the frame
at camera 2 to the frame at camera 3), but it will give a reasonable start-
ing point for the algorithm. Now, it would then be nice if we were able to
estimate a consistent set of translations from these rotations and the data
— but currently equation (1.9) gives ¢ in terms of the other unknown pa-
rameters as well as the rotations. In addition, for reconstruction purposes,
we would like to have an expression for the world points, { X1}, in terms of
just the rotations and translations. This is clearly also going to be essential
when we have calibrated our cameras and we are wanting to reconstruct in
an optimal fashion, points in the world from all of our m-camera data. We
will deal with the case of reconstruction first.
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1.3.6 Optimal reconstruction from calibrated data

If we substitute equation (1.15) into equation (1.17) to eliminate the {Xp43}
values, we have

1
tj+ o {(Xk —t;)-Rjzi; R }R | Oy (1.18)

kj

To simplify the notation we write w;; = Rjx;;R;. If we take the inner
product of the above equation with e;, ¢ = 1,2,3, we can rearrange to give

m
1 1
Xy - - m_ E 2132 wk] €; wk]ij =
j=1 kj

m—kth e — —

We have 3 x N such equations (k = 1,..,N and ¢ = 1,2,3). For each %
we can construct a matrix equation for Xy

('wk] -t; )(wkgez)] ij (1.19)
k

A X, = by, - Xi = A;lbk (120)

where the matrix A and vector by are given by

1 & 1
Afp = Oip— — Z ——(wgj-e;)(wyj-ep)Or;  (1.21)
my 1 wkj
k 1 1
b,-e; = bi = m_ tj‘ e; — wT(wkj'ez’)'wkj ij (1‘22)
L) kj

Thus, if we have a knowledge of the calibration (Rs and ts), we see that
via equation (1.20) we can very quickly reconstruct the 3D world points
with a method that uses all of the available data at once in a sensible way.
More generally the SVD can be used to solve A;X; = by, to avoid possible
degeneracy.

1.3.7 An initial estimate for the translations

Suppose we substitute for X3 from equation (1.15) into equation (1.9)
(Stﬂl using w;; = Rj.’l:inj)

1 N
b= [Xi- S (Xt wahwa| O (129

n
ko1
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for ny, # 0. If we now take the inner product of the above equation with e;
we have

N N
1 Z 1 Z
. lei o = yia‘kOik] "o im1 Xi-[e; = Yiji] Ou (1.24)
with g5, = _:vl?k (wik-ej)wix. Now, writing a;jr = [€j —y,;,]Ou and p;;, =

e; — nl,; Ef\il Y1 Oir the above equation can be written more concisely as
t -5 EN X (1.25)
P = Qg .
k ka T £ i Aijk

Recall from the previous section that we can write X; = A;lbi where A;
is a matrix which is a function of the Rs only and b; is a vector which is
a function of both the Rs and the ¢s. Let us therefore write X; = f (b;),

where L is the linear function corresponding to A;l. Using the fact that
f(c)-d = c- f(d), we can now rewrite equation (1.25) as

N
1 —
bepj = o > b filai) (1.26)
=1
The next step is to note that we can write equation (1.22) as
b ! ot (1.27)
e = — Qi )
k m JSkij
Letting f;(ai;r) = @ e, we can write b;- f;(a;i) as
- 1 i
bi-filaije) = —aj > (tiraiq) (1.28)
¢ =1

From this equation we can see that it will now be possible to use equa-
tion (1.26) in order to form a linear equation in the ¢ts. With some manip-
ulation is it possible to obtain, for given j and k, the following expression

m 1 L1
lzzltl‘{n_kzﬁiafjkOikaiSl _pjk(slk} =0 (1.29)

i=1

This can be written as a matrix equation of the form QT = 0 where
T = [to1,t22,t23,t31, -, tm3] T (since ; = 0) and can therefore be solved
by assigning to T the eigenvector corresponding to the smallest eigenvalue
of the matrix Q7' Q (alternatively use SVD). Thus, given only an estimate
of the Rs we have been able to formulate an estimate of the ts — again,
using all of the available data simultaneously.
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1.3.8 The iterative calibration scheme

Having worked out all of the necessary steps in the previous sections, we
are now in a position to outline the iterative scheme by which the external
calibration is carried out.

1. Guess an initial set of Rs given only the data (use standard 2-camera
algorithms)

Estimate a set of ts given these Rs
Estimate the world points {X;} given these Rs and ts

Estimate the {Xp,3}s given all of the above

el W N

Obtain a new estimate of the Rs using values from (2),(3),(4) and
start the next iteration by returning to step (2).

In practice each step of the procedure can be performed quickly and
convergence is achieved within a few tens of iterations. In estimating the
ts we should note that we are only able to do this up to scale. One may
therefore set a value to unity (say t,-e3) and evaluate the other values
relative to this — when doing this however, checks must be made that the
signs of the estimated ts do not produce negative depths (if they do, we
will need to take to-e3 = -1).

The above external calibration routine requires a very simple initial data
gathering stage (waving a single point over a volume representative of where
the world points will be) and utilises all of the image data simultaneously
in order to produce optimal estimates of the relative rotations and trans-
lations of the cameras. In addition the formula for reconstruction given in
equation (1.17) is very simple and gives accurate and robust 3D reconstruc-
tions. The value of the cost function (S3) can also be monitored throughout
the iterations; a final value of S» which is too large is usually indicative of
poor data and a new calibration should be performed.

1.4 Examples and Results

In order to illustrate this calibration procedure we will present some results
on both simulated and real data. While the procedure is routinely used in
the tracking and subsequent reconstruction of real motion capture data, a
quantitative evaluation of its behaviour is more easily obtained from sim-
ulations. The real data presented attempts to evaluate the performance of
the calibration by checking that rays from the image planes, from which we
reconstruct the world point, do indeed cross approximately at a single point
in space. Real multiple camera data together with example reconstructions
can be downloaded from http://www.sig-proc.eng.cam.ac.uk/vision.
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FIGURE 1.5. Wireframe house (26 points) viewed from 5 cameras —
the optical centre and 4 defining points of the image planes are shown.
The position and orientation of the cameras are such that the house
is in view in each camera.

We use 5 cameras, the first camera placed with its optical centre at the
origin [0,0,0] and with its optical axis along the z-direction, viewing a
wireframe house which is placed about 50 units in z away from the origin.
Cameras 2 to 4 are rotated and translated from camera 1 as shown in
figure 1.5.

R; is the rotor which takes the frame at camera 1 to the frame at camera
J, and the axes, n;, and angles, §;, which characterise R; (since R; =

I'flj 0;

exp ——;—) are given in table 1.

| Rotor | 7 | 0 ] t |
B> | [0.7071,—0.7071,0] | 51.498° | [40,40, 5]
Ry | [0.7593,—0.6508,0] | 83.810° | [60, 70, 40]
Ry | [-0.7071,0.7071,0] | 96.721° | [~60, 60, 60]
Rs [~1,0,0] 180° [0, 0, 100]

Table 1 Table showing true values of the rotations and translations of
the cameras

In order to calibrate the cameras we used 30 points generated at random
from a cube centred at [0, 0, 50] with side length 30 — these points simulated
the calibration process whereby one bright marker is moved around the
scene over a number of frames. Here we will assume that each of the 30
points is visible in all cameras. The 30 points were projected into the 5
cameras and the image points from each image plane were the only data
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given to the calibration routines. In the image planes Gaussian noise was
added. Three different levels of noise were tested having standard deviation,
o = 0.001,0.005,0.01 — with the image plane coordinates ranging roughly
from -0.45 to +0.45, at a resolution of 1000 x 1000 this would correspond
to standard deviations ranging from 1 pixel to 10 pixels. To initialise the
algorithm, an initial set of Rs and ts were found by taking two cameras at
a time and performing some simple method to determine the parameters,
e.g. the algorithm of Weng et al. [12] — call these R} and t9. 20 iterations
of the algorithm were allowed in each case, although generally fewer were
needed to achieve adequate convergence. Let the final estimated values be
R} and t].

Using R,]; and t£ we can then reconstruct the wireframe house. We use
a realistic set of data which consists of the image points in each camera
of those points from the house that were visible in that camera (i.e. we
include the relevant occlusion field). For the case depicted in figure (1.5),
we can see, for example, that the uppermost camera will not see any of
the vertices on the lower side of the house. For these simulations it was the
case that every vertex was visible in at least two cameras. Also the same
data and occlusion field were used to perform the 3D reconstruction using
the initial guesses RY and t3. The 3D reconstruction was carried out using
equation (1.20) in both cases.

Figure (1.6) shows 6 different 3D views of the true wireframe house — the
azimuth and elevation ([az,el], in degrees) of the viewpoint for each of the
views is as follows (from top left to bottom right)

[-38,30], [—15,5], [—110,20], [80,—25], [90,90], [-90,0]

Figure (1.7) shows the reconstructions obtained for the case of added
noise, o = 0.001 — the left column shows the results from the iterative
scheme (20 iterations), while the right column shows the results for re-
construction from the two-camera estimates. The top, middle and bottom
views have azimuth and elevation as for the left column of figure (1.6).
Figures (1.8) and (1.9) show similar plots for ¢ = 0.005 and ¢ = 0.01. We
see that with little noise the reconstruction is very good for both cases.
However, as the noise gets more severe, we see that the iterative scheme
tends to give better reconstructions. Even under higher noise levels the
reconstruction remains acceptable.

As well as comparing the reconstructions it is also instructive to see how
the estimated rotors compare with the true rotors in each of the above cases.
If a rotor R, is written as R = exp(—Inf/2), then the bivector describing
the rotation is I116/2, so that a good way of comparing rotors is to compare
the bivector components: i.e. n16, n26, nzf, with n; = f-e;. Figure (1.10)
compares these components for the true rotors, and the two sets of rotors
described above for four noise values, o = 0.001,0.005,0.007,0.01. Similar
comparisons for the translations are shown in figure (1.11).
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FIGURE 1.6. Six views of the true vertices of the simulated house
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FIGURE 1.7. Results of the reconstruction with ¢ = 0.001. The left
column shows results of iterative algorithm; right column shows results
from taking two-camera estimates.
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FIGURE 1.8. Results of the reconstruction with ¢ = 0.005. The left
column shows results of iterative algorithm; right column shows results
from taking two-camera estimates.
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FIGURE 1.9. Results of the reconstruction with ¢ = 0.01. The left
column shows results of iterative algorithm; right column shows results
from taking two-camera estimates.
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FIGURE 1.10. Moving left to right in columns shows results for n,0,
n26, n3f, while moving down rows from top to bottom shows results
for Rj,R3, R4, Rs. In each plot the dashed line gives the true value of
the bivector component, the solid line gives the bivector component
from the iterative algorithm and the dotted line gives that from the
two-camera estimate. The x-axis in each case gives the standard devi-

ation of the Gaussian noise added.
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FIGURE 1.11. Moving left to right in columns shows results for the
first, second and third components of the translation vectors, while
moving down rows from top to bottom shows results for cameras 2 to
4. In each plot the dashed line gives the true value of the translation
component, the solid line gives the component from the iterative al-
gorithm and the dotted line gives that from the two-camera estimate.
The x-axis in each case gives the standard deviation of the Gaussian
noise added. Note that the translations are normalised so that t>e3 = 1,
hence the graph in the upper right.
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8.2

8.15

FIGURE 1.12. 3D snapshot at frame 3 of the shoulders, elbows and
wrists of the golfer

In order to show the performance of the calibration algorithms on real
data we used three cameras to take a sequence of 300 frames of a person per-
forming a golf swing, with markers placed on shoulders, elbows and wrists.
The cameras were calibrated prior to taking the data by waving a single
bright marker over a representative volume and applying the algorithms
outlined in section 1.3. Figure 1.12 shows an example of the reconstruction
by showing the linked points for frame 3 of the sequence. Although this
plot does not tell us much without detailed information of the real subject,
figure 1.13 gives some idea of the accuracy of the calibration by plotting
the rays from the matching image points (four such points were taken)
through the optical centres of the cameras. The positions of the cameras
are obtained from the calibration. If the calibration is good, we would ex-
pect all matching image points to intersect more or less at a single point
in space. From figure 1.12 we can see that this is indeed the case for the
particular frame chosen, and is also the case throughout the rest of the
sequence.

We can see that on the whole, the iterative algorithm described in this
paper produces good estimates of the bivectors and of the translations
over a wide range of noise cases. The two-camera estimates that we have
compared the algorithm with are, of course, not something that would be
routinely used in practice. However, most calibration schemes would start
with some such estimate and generally proceed via non-linear minimiza-
tion. Such minimizations use gradient descent methods and as such are
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FIGURE 1.13. Reconstructed rays of 4 points (shoulders, one elbow
and one wrist) in randomly chosen frames from a 300 frame sequence

of a golf swing. The reconstruction was carried out using calibration
data determined by the iterative scheme described in section 1.3

oo

crucially dependent on the initial guess as they will tend to find the local
minimum in the vicinity of this initial guess. Other methods of calibration
involve building up the external calibration parameters camera by camera;
such methods have to ensure that the final estimates are independent of the
particular order of estimation and form a self-consistent set. Some calibra-
tion schemes in the literature are given in [11, 2], however, code is generally
not available to compare such algorithms with those discussed here.

1.5 Extending to include internal calibration

The discussion in this paper has assumed that we have the internal cali-
bration of the cameras. Typically, for the motion capture system, this is
done every few weeks or so, and the values are assumed not to change sig-
nificantly on this timescale. However, it is possible to adjust the algorithm
presented here to include determination of the internal parameters. If we
return to equation 1.3, but replace x;; by u;,

uij = fi(®ij) = Cjzi (1.30)
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where the linear function f; represents the 3 x 3 camera matrix Cj;, our
cost function S in terms of the observations u and the internal calibration,
becomes

So = Z Z [Xij3fcj(uij) — R](Xz — tj)Rerij (1.31)

Jj=11i=1

where f.; = f jfl. We can now minimize over the {f.;} as well as the other
parameters using the ability in GA to carry out functional differentiation.
One must note, however, that the f.s take a particular form (which can be
made equivalent to an upper triangular matrix), so this constraint must be
allowed for. A detailed description of this self-calibration procedure will be
presented elsewhere.

1.6 Conclusions

A means of determining the external calibration parameters (relative ro-
tations and translations) for any number of cameras observing a scene has
been presented. Using geometric algebra to differentiate with respect to the
the unknowns in the problem, we are able to build up an iterative estima-
tion scheme. In the process, we also produce an efficient and robust recon-
struction algorithm which can be used for estimating the world points once
the calibration has been achieved. The method is essentially a maximum
likelihood technique in which we substitute maximum likelihood estimators
in order to eliminate the parameters we do not want to estimate (e.g. the
world points and the {Xj;;3}s). Another technique which can be employed
is a Bayesian approach, which marginalises over these parameters (nuisance
parameters) prior to estimating the Rs and ts — a review of the geometric
algebra approach to this procedure is given in this volume ??. Indeed, if
the parameters in question have a multivariate Gaussian distribution then
the two techniques should give the same results. Preliminary tests indicate
that, even though the noise is unlikely to be multivariate Gaussian in real
data, the two approaches produce very similar results on good data.

The calibration scheme presented here is currently used on an optical
motion capture system. The algorithms are used with data from a sin-
gle moving marker to produce the external calibration. This calibration
is then used in the tracking and reconstruction of subsequent data taken
from the subject. The algorithm is relatively quick, robust and is easily
effected, meaning that the cameras can be moved and the system speedily
recalibrated.

In summary, we have presented a technique for external camera cali-
bration which used the ease of expressing geometric entities in geometric
algebra and the ability to differentiate with respect to any element of the
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algebra. Using rotors provides a very efficient way of optimizing over a
rotation manifold; it is a minimally parameterized system, does not have
the singularities associated with Euler angles and is less cumbersome and
more easily extendable than quaternions (in the sense that rotors can ro-
tate any geometric object, not just vectors and have the same form in any
dimension). The results presented here can be used alone or used to ini-
tialize algorithms which employ minimization techniques and different cost
functions. The intermediate steps of determining the best estimate of the
world points from known data points and given calibration, and of deter-
mining the relative translations between cameras given the rotations and
data points, are also useful in many reconstruction and tracking scenarios.
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