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3D Algebra
• 3D basis consists of 8 elements
• Represent lines, planes and volumes, from a 

common origin

1 e1,e2,e3 e1e2,e2e3,e3e1 I

Grade 0
Scalar

Grade 1
Vector

Grade 2
Bivector

Grade 3
Trivector



Algebraic Relations
• Generators anticommute 
• Geometric product
• Inner product
• Outer product
• Bivector norm
• Trivector
• Trivector norm
• Trivectors commute with all other elements

e1e2  e2e1
ab  a  b  a  b

a  b  1
2 ab  ba

a  b  1
2 ab  ba

e1  e22  1
I  e1e2e3
I2  1



Lines and Planes
• Pseudoscalar gives a map between lines and 

planes

• Allows us to recover the vector (cross) 
product

• But lines and planes are different
• Far better to keep them as distinct entities 

a  b  I a  b

B  Ia
a  IB

a

B



Quaternions
• For the bivectors set

• These satisfy the quaternion relations

• So quaternions embedded in 3D GA
• Do not lose anything, but

– Vectors and planes now separated
– Note the minus sign!
– GA generalises

i  e2e3, j  e3e1, k  e1e2

i2  j2  k2  ijk  1



Reflections
• Build rotations from reflections
• Good example of geometric product – arises 

in operations

• Image of reflection is

a

n

b
a  a  nn
a  a  a  nn

b  a  a  a  2a  nn
 a  an  nan  nan



Rotations
• 2 successive reflections give a rotation

Initial vector in red 
Reflection in green 
Rotated in blue



Rotations
• Direction perpendicular to the two reflection 

vectors is unchanged
• So far, will only talk about rotations in a plane 

with a fixed origin (more general treatment 
later)



Algebraic Formulation
• Now look at the algebraic expression for a 

pair of reflections

• Define the rotor
• Rotation encoded algebraically by

• Dagger symbol used for the reverse

a  mnanm  mnanm
R  mn

a  RaR R  nm



Rotors
• Rotor is a geometric product of 2 unit vectors

• Bivector has square

• Used to the negative square by now!
• Introduce unit bivector
• Rotor now written

R  mn  cos  m  n

m  n2  mn  cosnm  cos   sin2

B  m  n
sin

R  cos  sinB



Exponential Form
• Can now write
• But:

– rotation was through twice the 
angle between the vectors

– Rotation went with orientation 
• Correct these, get double-sided, half-

angle formula

• Completely general!
a  RaR R  expB /2

R  expB 

n  m



Rotors in 3D
• Can rewrite in terms of an axis via

• Rotors even grade (scalar + bivector in 3D)
• Normalised:
• Reduces d.o.f. from 4 to 3 – enough for a 

rotation
• In 3D a rotor is a normalised, even element
• The same as a unit quaternion

R  expIn/2

RR  mnnm  1



Group Manifold
• Rotors are elements of a 4D space, 

normalised to 1
• They lie on a 3-sphere
• This is the group manifold
• Tangent space is 3D
• Natural linear structure for rotors
• Rotors R and –R define the same rotation
• Rotation group manifold is more complicated



Comparison
• Euler angles give a standard parameterisation 

of rotations

• Rotor form far easier

• But can do better than this anyway – work 
directly with the rotor element

cos cos  cossin sin  sin cos  cos sincos sinsin
cos sin  coscos sin  sin sin  coscoscos  sincos

sinsin sincos cos

R  expe1e2/2expe2e3/2expe1e2/2



Composition
• Form the compound rotation from a pair of 

successive rotations

• Compound rotor given by group combination 
law

• Far more efficient than multiplying matrices
• More robust to numerical error
• In many applications can safely ignore the 

normalisation until the final step

a  R2R1aR1 R2

R  R2R1



Oriented Rotations

R  expe1e2/2
 expe1e2/4

• Rotate through 2 different orientations
• Positive Orientation

• Negative Orientation

• So R and –R encode the same absolute 
rotation, but with different orientations  

e1

e2

S  expe1e2/2
 expe1e23/4  R



Lie Groups
• Every rotor can be written as ex
• Rotors form a continuous (Lie) group
• Bivectors form a Lie algebra under the 

commutator product
• All finite Lie groups are rotor groups
• All finite Lie algebras are bivector algebras
• (Infinite case not fully clear, yet)
• In conformal case (later) starting point of 

screw theory (Clifford, 1870s)!

pB/2



Interpolation
• How do we interpolate between 2 rotations?
• Form path between rotors

• Find B from
• This path is invariant.  If points transformed, 

path transforms the same way
• Midpoint simply
• Works for all Lie groups

R0  R0
R1  R1

R  R0 expB

expB  R0R1

R1/2  R0 expB/2



Interpolation - SLERP
• For rotors in 3D can do even better!
• View rotors as unit vectors in 4D
• Path is a circle in a plane
• Use simple trig’ to get SLERP

• For midpoint add the rotors and normalise!

R0

R1



R  1
sin sin1  R0  sinR1

R1/2  sin/2
sin R0  R1 



Applications
• Use SLERP with spline constructions for 

general interpolation
• Interpolate between series of rigid-body 

orientations
• Elasticity
• Framing a curve
• Extend to general

transformations



Linearisation
• Common theme is that rotors can linearise 

the rotation group, without approximating!
• Relax the norm constraint on the rotor and 

write
• ψ belongs to a linear space.  Has a natural 

calculus.
• Very powerful in optimisation problems 

involving rotations
• Employed in computer vision algorithms

RAR  A1



Recovering a Rotor
• Given two sets of vectors related by a 

rotation, how do we recover the rotor?
• Suppose
• In general, assume not orthogonal.  
• Need reciprocal frame

• Satisfies 

bi  RaiR

a1  a2  a3I
a1  a2  a3I

ai  aj   j
i a2

a3

a1



Recovering a Rotor II
• Now form even-grade object

• Define un-normalised rotor

• Recover the rotor immediately now as

• Very efficient, but 
– May have to check the sign
– Careful with 180o rotations

biai  Rai  Bai  R3  B  1  4R

  biai  1

R  
||



Rotor Equations
• Suppose we take a path in rotor space 
• Differentiating the constraint tells us that

• Re-arranging, see that

• Arrive at rotor equation

• This is totally general.  Underlies the theory of 
Lie groups

R

d
d RR  R R  RR  0

R R  R R  Bivector

R    12 B R



Example
• As an example, return to framing a curve.
• Define Frenet frame
• Relate to fixed frame

• Rotor equation

• Rotor equation in terms of curvature and 
torsion

n

t
b

t,n,b  R eiR

  1e2e1  2e3e2R    12 R



Linearisation II
• Rotor equations can be awkward (due to 

manifold structure)
• Linearisation idea works again  
• Replace rotor with general element and write

• Standard ODE tools can now be applied 
(Runge-Kutta, etc.)

• Normalisation of ψ gives useful check on 
errors

    12 B



Elasticity
• Some basics of elasticity (solid mechanics):

– When an object is placed under a stress
(by stretching or through pressure) it 
responds by changing its shape.

– This creates strains in the body.
– In the linear theory stress and strain are 

related by the elastic constants.
– An example is Hooke’s law F=-kx, where k

is the spring constant.
– Just the beginning!



Bulk Modulus
• Place an object under uniform 

pressure P
• Volume changes by

• B is the bulk modulus
• Definition applies for small

pressures (linear regime)

 P  B V
V



Shear Modulus


• Sheers produced by 
combination of tension 
and compression

• Sheer modulus G is 
Shear stress / angle





θG  
2



LIH Media
• The simplest elastic systems to consider are 

linear, isotropic and homogeneous media.  
• For these, B and G contain all the relevant 

information.
• There are many ways to extend this:

– Go beyond the linearised theory and treat 
large deflections

– Find simplified models for rods and shells



Foundations
• Key idea is to relate the spatial configuration 

to a ‘reference’ copy.

• y=f(x) is the displacement field.  In general, 
this will be time-dependent as well.

x y=f(x)



Paths
• From f(x) we want to extract information about 

the strains.  Consider a path

• Tangent vectors map to

• F(a)=F(a;x) is a linear function of a.  Tells us 
about local distortions.

fx  a  fx  a  fx  Fa



Path Lengths
• Path length in the reference body is

• This transforms to

• Define the function G(a), acting entirely in the 
reference body, by

 dx
d  dx

d
1/2

d

Fx  Fx1/2d

Ga  FFa



The Strain Tensor

• For elasticity, usually best to ‘pull’ everything 
back to the reference copy

• Use same idea for rigid body mechanics
• Define the strain tensor from G(a)

– Most natural is

– An alternative (rarely seen) is 

Ea  1
2 Ga  a

Ea  1
2 lnGa



The Stress Tensor
• Contact force between 2 surfaces is a linear 

function of the normal (Cauchy)

• τ(n)=τ(n;x) returns a vector in the material 
body. ‘Pull back’ to reference copy to define  

τ(n)n

Tn  F1n



Constitutive Relations
• Relate the stress and the strain tensors in the 

reference configuration
• Considerable freedom in the choice here
• The simplest, LIH media have 

• Can build up into large deflections
• Combined with balance equations, get full set 

of dynamical equations
• Can get equations from an action principle

Ta  2GEa  B  2
3 GtrEa



Problems
• Complicated, and difficult numerically
• In need of some powerful advanced 

mathematics for the full nonlinear theory 
(FEM…)

• Geometric algebra helps because it 
– is coordinate free 
– integrates linear algebra and calculus 

smoothly
• But need simpler models
• Look at models for rods and beams



Deformable Rod
• Reference configuration is a cylinder

Configuration encoded 
in a rotor y  x, t  RR

y

Line of 
centre of 
mass

λ

σ
x



Technical Part
• Spare details, but:
• Write down an action integral
• Integrate out the coordinates over each disk
• Get (variable) bending moments along the 

centre line
• Carry out variational principle 
• Get set of equations for the rotor field
• Can apply to static or dynamic configurations



Simplest Equations
• Static configuration, and ignore stretching
• Have rotor equation

• Find bivector from applied couple and elastic 
constants.  I(B) is a known linear function of 
these mapping bivectors to bivectors

• Integrate to recover curve

dR
d   12 RB

B  I1RCR

x   Re1R



Example
• Even this simple set of 

equations can give highly 
complex configurations!

Small, linear 
deflections build 
up to give large 
deformations



Summary
• Rotors are a general purpose tool for 

handling rotations in arbitrary dimensions
• Computationally more efficient than matrices
• Can be associated with a linear space
• Easy to interpolate
• Have a natural associated calculus
• Form basis for algorithms in elasticity and 

computer vision
• All this extends to general groups!



Further Information
• All papers on Cambridge GA group website: 

www.mrao.cam.ac.uk/~clifford
• Applications of GA to computer science and 

engineering  are discussed in the proceedings 
of the AGACSE 2001 conference. 
www.mrao.cam.ac.uk/agacse2001

• IMA Conference in Cambridge, 9th Sept 2002 
• ‘Geometric Algebra for Physicists’ (Doran + 

Lasenby).  Published by CUP, soon.



Revised Timetable
• 1.30 – 2.00 Doran 

Beyond Euclidean 
Geometry

• 2.00 – 3.00 Hestenes 
Computational Geometry 

• 3.00 – 3.15 Break
• 3.15 – 4.00 Dorst  

Illustrating the algebra II
• 4.00 – 4.30 Lasenby 

Applications III
• 4.30 Panel

• 8.30 – 9.15 Rockwood 
Introduction and outline 
of geometric algebra

• 9.15 – 10.00 Mann 
Illustrating the algebra I

• 10.00 -10.15 Break
• 10.15 – 11.15 Doran 

Applications I
• 11.15 – 12.00 Lasenby 

Applications II
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