Applications of Geometric Algebra I

Chris Doran

Cavendish Laboratory
Cambridge University
C.Doran@mrao.cam.ac.uk www.mrao.cam.ac.uk/~clifford

3D Algebra

- 3D basis consists of 8 elements
- Represent lines, planes and volumes, from a common origin

Grade 0
Scalar Vector
Grade 1

Grade 2 Bivector

Grade 3
Trivector

$$
1 \quad e_{1}, e_{2}, e_{3} \quad e_{1} e_{2}, e_{2} e_{3}, e_{3} e_{1} \quad I
$$

Algebraic Relations

- Generators anticommute $e_{1} e_{2}=-e_{2} e_{1}$
- Geometric product $a b=a \cdot b+a \wedge b$
- Inner product $\quad a \cdot b=\frac{1}{2}(a b+b a)$
- Outer product $\quad a \wedge b=\frac{1}{2}(a b-b a)$
- Bivector norm
$\left(e_{1} \wedge e_{2}\right)^{2}=-1$
- Trivector
$I=e_{1} e_{2} e_{3}$
- Trivector norm

$$
I^{2}=-1
$$

- Trivectors commute with all other elements

Lines and Planes

- Pseudoscalar gives a map between lines and planes

$$
\begin{aligned}
& B=I a \\
& a=-I B
\end{aligned}
$$

- Allows us to recover the vector (cross) product

$$
a \times b=-I a \wedge b
$$

- But lines and planes are different
- Far better to keep them as distinct entities

Quaternions

- For the bivectors set

$$
i=e_{2} e_{3}, \quad j=-e_{3} e_{1}, \quad k=e_{1} e_{2}
$$

- These satisfy the quaternion relations

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

- So quaternions embedded in 3D GA
- Do not lose anything, but
- Vectors and planes now separated
- Note the minus sign!
- GA generalises

Reflections

- Build rotations from reflections
- Good example of geometric product - arises in operations

$$
\begin{aligned}
& a_{\|}=(a \cdot n) n \\
& a_{\perp}=a-(a \cdot n) n
\end{aligned}
$$

- Image of reflection is

$$
\begin{aligned}
b & =a_{\perp}-a_{\|}=a-2(a \cdot n) n \\
& =a-(a n+n a) n=-n a n
\end{aligned}
$$

Rotations

- 2 successive reflections give a rotation

Initial vector in red Reflection in green Rotated in blue

Rotations

- Direction perpendicular to the two reflection vectors is unchanged
- So far, will only talk about rotations in a plane with a fixed origin (more general treatment later)

Algebraic Formulation

- Now look at the algebraic expression for a pair of reflections

$$
a \rightarrow-m(-n a n) m=m n a n m
$$

- Define the rotor $R=m n$
- Rotation encoded algebraically by

$$
a \rightarrow \operatorname{RaR}^{\dagger} \quad R^{\dagger}=n m
$$

- Dagger symbol used for the reverse

Rotors

- Rotor is a geometric product of 2 unit vectors

$$
R=m n=\cos (\theta)+m \wedge n
$$

- Bivector has square
$(m \wedge n)^{2}=(m n-\cos \theta)(-n m+\cos \theta)=-\sin ^{2} \theta$
- Used to the negative square by now!
- Introduce unit bivector $\hat{B}=\frac{m \wedge n}{\sin \theta}$
- Rotor now written

$$
R=\cos (\theta)+\sin (\theta) \hat{B}
$$

Exponential Form

- Can now write $R=\exp (\theta \hat{B})$
- But:
- rotation was through twice the angle between the vectors
- Rotation went with orientation $n \mapsto m$
- Correct these, get double-sided, halfangle formula

$$
a \mapsto R a R^{\dagger}
$$

$$
R=\exp (-\theta \hat{B} / 2)
$$

- Completely general!

Rotors in 3D

- Can rewrite in terms of an axis via

$$
R=\exp (-\theta I n / 2)
$$

- Rotors even grade (scalar + bivector in 3D)
- Normalised: $R R^{\dagger}=m n n m=1$
- Reduces d.o.f. from 4 to 3 - enough for a rotation
- In 3D a rotor is a normalised, even element
- The same as a unit quaternion

Group Manifold

- Rotors are elements of a 4D space, normalised to 1
- They lie on a 3-sphere
- This is the group manifold
- Tangent space is 3D
- Natural linear structure for rotors
- Rotors R and $-R$ define the same rotation
- Rotation group manifold is more complicated

Comparison

- Euler angles give a standard parameterisation of rotations

```
cos\psi\operatorname{cos}\phi-\operatorname{cos}0\operatorname{sin}\phi\operatorname{sin}\psi - 到\psi \operatorname{cos}\phi-\operatorname{cos}0\operatorname{sin}\phi\operatorname{cos}\psi\quad\operatorname{sin}0\operatorname{sin}\phi
cos\psi\operatorname{sin}\phi+\operatorname{cos}0\operatorname{cos}\phi\operatorname{sin}\psi - 到\psi\operatorname{sin}\phi+\operatorname{cos}0\operatorname{cos}\phi\operatorname{cos}\psi-\operatorname{sin}0\operatorname{cos}\phi \(\sin \theta \sin \psi \quad \sin \theta \cos \psi \quad \cos \theta\)
```

- Rotor form far easier

$$
R=\exp \left(-e_{1} e_{2} \phi / 2\right) \exp \left(-e_{2} e_{3} \theta / 2\right) \exp \left(-e_{1} e_{2} \psi / 2\right)
$$

- But can do better than this anyway - work directly with the rotor element

Composition

- Form the compound rotation from a pair of successive rotations

$$
a \mapsto R_{2}\left(R_{1} a R_{1}^{\dagger}\right) R_{2}^{\dagger}
$$

- Compound rotor given by group combination law $R=R_{2} R_{1}$
- Far more efficient than multiplying matrices
- More robust to numerical error
- In many applications can safely ignore the normalisation until the final step

Oriented Rotations

- Rotate through 2 different orientations
- Positive Orientation

$$
\begin{aligned}
R & =\exp \left(-\lambda e_{1} e_{2} / 2\right) \\
& =\exp \left(-e_{1} e_{2} \pi / 4\right)
\end{aligned}
$$

- Negative Orientation

$$
\begin{aligned}
S & =\exp \left(\lambda e_{1} e_{2} / 2\right) \\
& =\exp \left(e_{1} e_{2} 3 \pi / 4\right)=-R
\end{aligned}
$$

- So R and $-R$ encode the same absolute rotation, but with different orientations

Lie Groups

- Every rotor can be written as $\exp (-B / 2)$
- Rotors form a continuous (Lie) group
- Bivectors form a Lie algebra under the commutator product
- All finite Lie groups are rotor groups
- All finite Lie algebras are bivector algebras
- (Infinite case not fully clear, yet)
- In conformal case (later) starting point of screw theory (Clifford, 1870s)!

Interpolation

- How do we interpolate between 2 rotations?
- Form path between rotors

$$
\begin{aligned}
& R(0)=R_{0} \\
& R(1)=R_{1}
\end{aligned}
$$

$$
R(\lambda)=R_{0} \exp (\lambda B)
$$

- Find B from $\exp (B)=R_{0}^{\dagger} R_{1}$
- This path is invariant. If points transformed, path transforms the same way
- Midpoint simply $R(1 / 2)=R_{0} \exp (-B / 2)$
- Works for all Lie groups

Interpolation - SLERP

- For rotors in 3D can do even better!
- View rotors as unit vectors in 4D
- Path is a circle in a plane
- Use simple trig' to get SLERP

$$
R(\lambda)=\frac{1}{\sin (\theta)}\left(\sin ((1-\lambda) \theta) R_{0}+\sin (\lambda \theta) R_{1}\right)
$$

- For midpoint add the rotors and normalise!

$$
R(1 / 2)=\frac{\sin (\theta / 2)}{\sin (\theta)}\left(R_{0}+R_{1}\right)
$$

Applications

- Use SLERP with spline constructions for general interpolation
- Interpolate between series of rigid-body orientations
- Elasticity
- Framing a curve
- Extend to general transformations

Linearisation

- Common theme is that rotors can linearise the rotation group, without approximating!
- Relax the norm constraint on the rotor and write $R A R^{\dagger}=\psi A \psi^{-1}$
- ψ belongs to a linear space. Has a natural calculus.
- Very powerful in optimisation problems involving rotations
- Employed in computer vision algorithms

Recovering a Rotor

- Given two sets of vectors related by a rotation, how do we recover the rotor?
- Suppose $b_{i}=R a_{i} R^{\dagger}$
- In general, assume not orthogonal.
- Need reciprocal frame

$$
a^{1}=\frac{a_{2} \wedge a_{3} I}{\left(a_{1} \wedge a_{2} \wedge a_{3} I\right)}
$$

- Satisfies $a^{i} \cdot a_{j}=\delta_{j}^{i}$

Recovering a Rotor II

- Now form even-grade object

$$
b_{i} a^{i}=R a_{i}(\alpha+B) a^{i}=R(3 \alpha-B)=-1+4 \alpha R
$$

- Define un-normalised rotor

$$
\psi=b_{i} a^{i}+1
$$

- Recover the rotor immediately now as

$$
R=\frac{\psi}{|\psi|}
$$

- Very efficient, but
- May have to check the sign
- Careful with 180° rotations

Rotor Equations

- Suppose we take a path in rotor space $R(\lambda)$
- Differentiating the constraint tells us that

$$
\frac{d}{d \lambda}\left(R R^{\dagger}\right)=R^{\prime} R^{\dagger}+R R^{\dagger}=0
$$

- Re-arranging, see that

$$
R^{\prime} R^{\dagger}=-\left(R^{\prime} R^{\dagger}\right)^{\dagger}=\text { Bivector }
$$

- Arrive at rotor equation

$$
R^{\prime}=-\frac{1}{2} B R
$$

- This is totally general. Underlies the theory of Lie groups

Example

- As an example, return to framing a curve.
- Define Frenet frame
- Relate to fixed frame

$$
\{t, n, b\}=R e_{i} R^{\dagger}
$$

- Rotor equation

$$
R^{\prime}=-\frac{1}{2} R \Omega \quad \Omega=\kappa_{1} e_{2} e_{1}+\kappa_{2} e_{3} e_{2}
$$

- Rotor equation in terms of curvature and torsion

Linearisation II

- Rotor equations can be awkward (due to manifold structure)
- Linearisation idea works again
- Replace rotor with general element and write

$$
\psi^{\prime}=-\frac{1}{2} B \psi
$$

- Standard ODE tools can now be applied (Runge-Kutta, etc.)
- Normalisation of ψ gives useful check on errors

Elasticity

- Some basics of elasticity (solid mechanics):
- When an object is placed under a stress (by stretching or through pressure) it responds by changing its shape.
- This creates strains in the body.
- In the linear theory stress and strain are related by the elastic constants.
- An example is Hooke's law $F=-k x$, where k is the spring constant.
- Just the beginning!

Bulk Modulus

- Place an object under uniform pressure P
- Volume changes by

$$
-P=B \frac{\delta V}{V}
$$

- B is the bulk modulus
- Definition applies for small pressures (linear regime)

Shear Modulus

- Sheers produced by combination of tension and compression
- Sheer modulus G is Shear stress / angle

$$
G=\frac{\tau}{2 \theta}
$$

LIH Media

- The simplest elastic systems to consider are linear, isotropic and homogeneous media.
- For these, B and G contain all the relevant information.
- There are many ways to extend this:
- Go beyond the linearised theory and treat large deflections
- Find simplified models for rods and shells

Foundations

- Key idea is to relate the spatial configuration to a 'reference' copy.

- $y=f(x)$ is the displacement field. In general, this will be time-dependent as well.

Paths

- From $f(x)$ we want to extract information about the strains. Consider a path

- Tangent vectors map to

$$
f(x+\epsilon a)-f(x)=\epsilon a \cdot \nabla f(x)=\epsilon F(a)
$$

- $F(a)=F(a, x)$ is a linear function of a. Tells us about local distortions.

Path Lengths

- Path length in the reference body is

$$
\int\left(\frac{d x}{d \lambda} \cdot \frac{d x}{d \lambda}\right)^{1 / 2} d \lambda
$$

- This transforms to

$$
\int\left(\mathrm{F}\left(x^{\prime}\right) \cdot \mathrm{F}\left(x^{\prime}\right)\right)^{1 / 2} d \lambda
$$

- Define the function $G(a)$, acting entirely in the reference body, by

$$
\mathrm{G}(a)=\overline{\mathrm{F}} \mathrm{~F}(a)
$$

The Strain Tensor

- For elasticity, usually best to 'pull' everything back to the reference copy
- Use same idea for rigid body mechanics
- Define the strain tensor from $\mathrm{G}(a)$
- Most natural is

$$
\mathrm{E}(a)=\frac{1}{2}(\mathrm{G}(a)-a)
$$

- An alternative (rarely seen) is

$$
\mathrm{E}(a)=\frac{1}{2} \ln \mathrm{G}(a)
$$

The Stress Tensor

- Contact force between 2 surfaces is a linear function of the normal (Cauchy)

- $\tau(n)=\tau(n ; x)$ returns a vector in the material body. 'Pull back' to reference copy to define

$$
\mathrm{T}(n)=\mathrm{F}^{-1}(\tau(n))
$$

Constitutive Relations

- Relate the stress and the strain tensors in the reference configuration
- Considerable freedom in the choice here
- The simplest, LIH media have

$$
\mathrm{T}(a)=2 G \mathrm{E}(a)+\left(B-\frac{2}{3} G\right) \operatorname{tr}(\mathrm{E}) a
$$

- Can build up into large deflections
- Combined with balance equations, get full set of dynamical equations
- Can get equations from an action principle

Problems

- Complicated, and difficult numerically
- In need of some powerful advanced mathematics for the full nonlinear theory (FEM...)
- Geometric algebra helps because it
- is coordinate free
- integrates linear algebra and calculus smoothly
- But need simpler models
- Look at models for rods and beams

Deformable Rod

- Reference configuration is a cylinder

Technical Part

- Spare details, but:
- Write down an action integral
- Integrate out the coordinates over each disk
- Get (variable) bending moments along the centre line
- Carry out variational principle
- Get set of equations for the rotor field
- Can apply to static or dynamic configurations

Simplest Equations

- Static configuration, and ignore stretching
- Have rotor equation

$$
\frac{d R}{d \lambda}=-\frac{1}{2} R \Omega_{B}
$$

- Find bivector from applied couple and elastic constants. $\mathrm{I}(B)$ is a known linear function of these mapping bivectors to bivectors

$$
\Omega_{B}=I^{-1}\left(R^{\dagger} C R\right)
$$

- Integrate to recover curve

$$
x^{\prime}=R e_{1} R^{\dagger}
$$

Example

- Even this simple set of equations can give highly complex configurations!

Small, linear deflections build up to give large deformations

Summary

- Rotors are a general purpose tool for handling rotations in arbitrary dimensions
- Computationally more efficient than matrices
- Can be associated with a linear space
- Easy to interpolate
- Have a natural associated calculus
- Form basis for algorithms in elasticity and computer vision
- All this extends to general groups!

Further Information

- All papers on Cambridge GA group website:
- Applications of GA to computer science and engineering are discussed in the proceedings of the AGACSE 2001 conference.
- IMA Conference in Cambridge, $9^{\text {th }}$ Sept 2002
- 'Geometric Algebra for Physicists' (Doran + Lasenby). Published by CUP, soon.

Revised Timetable

- 8.30-9.15 Rockwood Introduction and outline of geometric algebra
- 9.15-10.00 Mann Illustrating the algebra I
- 10.00-10.15 Break
- 10.15-11.15 Doran Applications I
- 11.15-12.00 Lasenby Applications II
- 1.30-2.00 Doran

Beyond Euclidean
Geometry

- 2.00-3.00 Hestenes

Computational Geometry

- 3.00-3.15 Break
- 3.15-4.00 Dorst

Illustrating the algebra II

- $4.00-4.30$ Lasenby

Applications III

- 4.30 Panel

