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A Wealth of Geometries
• So far, dealt with Euclidean geometry in 2 

and 3 dimensions
• But a wealth of alternatives exist

– Affine
– Projective
– Spherical 
– Inversive 
– Hyperbolic 
– Conformal

• Will look at all of these this afternoon!



What is a Geometry?
• A geometry consists of:

– A set of objects (the elements)
– A set of properties of these objects
– A group of transformations which preserve 

these properties
• This is all fairly abstract!
• Used successfully in 19th Century to unify a 

set of disparate ideas



Affine Geometry
• Points represented as displacements from a 

fixed origin
• Line through 2 points given by set 

• Affine transformation

• U is an invertible linear transformation
• As it stands, an affine transformation is not 

linear

AB  a  b  a

tx  Ux  a



Parallel Lines
• Properties preserved under affine 

transformations:
– Straight lines remain straight
– Parallel lines remain parallel
– Ratios of lengths along a straight line

• But lengths and angles are not preserved
• Any result proved in affine geometry is 

immediately true in Euclidean geometry



Geometric Picture
• Can view affine transformations in terms of 

parallel projections form one plane to another
• Planes need not be parallel



Line Ratios
• Ratio of distances along a line is preserved 

by an affine transformation

A 

B 

C

C  A  B  A

AC
AB  |B  A|

|B  A|  

B

A

C

C  UA  B  A  a
 A   B   A 



Projective Geometry
• Euclidean and affine models have a number 

of awkward features:
– The origin is a special point
– Parallel lines are special cases – they do 

not meet at a point
– Transformations are not linear

• Projective geometry resolves all of these such 
that, for the plane
– Any two points define a line
– Any two lines define a point



The Projective Plane
• Represent points in the plane with lines in 3D
• Defines homogeneous coordinates

• Any multiple of ray represents same point

x,y  a,b,c

x  a
c y  b

c



Projective Lines
• Points represented with grade-1 objects
• Lines represented with grade-2 objects
• If X lies on line joining A and B must have

• All info about the line encoded in the bivector

• Any two points define a line as a blade
• Can dualise this equation to 

X  A  B  0

A  B

X  n  0 n  I A  B



Intersecting Lines
• 2 lines meet at a point
• Need vector from 2 planes

• Solution

• Can write in various ways

X  P1  0 X  p1  0
X  P2  0 X  p2  0

X  I p1  p2

X  P1  p2  p1  P2  I P1  P2

P1
P2



Projective Transformations
• A general projective transformation takes

• U is an invertible linear function
• Includes all affine transformations

• Linearises translations
• Specified by 4 points

X  UX

x  a
y  b
1



1 0 a
0 1 b
0 0 1

x
y
1



Invariant Properties
• Collinearity and incidence are preserved by 

projective transformations

• This defines the notation on the right
• But these are all pseudoscalar quantities, so 

related by a multiple.  In fact 

• So after the transformation

X  A  B  FX  FA  FB  FX  A  B

FI  Fe1  Fe2  Fe3  detFI

FX  FA  FB  detFX  A  B  0



Cross Ratio
• Distances between 4 points on a line define a 

projective invariant

• Recover distance using

• Vector part cancels, so cross ratio is

A

C
B

D

A
A  n 

B
B  n  1

A  n B  n A  B  n

ABCD  AC DB
AD CB

A  C D  B
A  D C  B



Desargues’ Theorem
• Two projectively related triangles
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produced 
using 
Cinderella



Proof
• Find scalars such that

• Follows that

• Similarly

• Hence

U  A   A  B   B  C   C

A  B   B   A  R

B  C  P C  A  Q

P  Q  R  0  P  Q  R  0

U A A’
B’B R



3D Projective Geometry
• Points represented as vectors in 4D
• Form the 4D geometric algebra

• 4 vectors, 6 bivectors, 4 trivectors and a 
pseudoscalar

• Use this algebra to handle points, lines and 
planes in 3D

1 ei eiej Iei I

I  e1e2e3e4 I2  1



Line Coordinates
• Line between 2 points A and B still given by 

bivector 
• In terms of coordinates

• The 6 components of the bivector define the 
Plucker coordinates of a line

• Only 5 components are independent due to 
constraint 

A  B

a  e4  b  e4  a  b  a  b  e4

A  B  A  B  0



Plane Coordinates
• Take outer product of 3 vectors to encode the 

plane they all lie in

• Can write equation for a plane as

• Points and planes related by duality
• Lines are dual to other lines
• Use geometric product to simplify 

expressions with inner and outer products

P  A  B  C

X  P  0 X  IP  X  p  0



Intersections
• Typical application is to find 

intersection of a line and a 
plane

• Replace meet with duality

• Where
• Note the non-metric use of the 

inner product

LC

BA
XX  A  B  C  L

X  I A  B  C  I L I  p  L
p  I A  B  C



Intersections II
• Often want to know if a line cuts within a 

chosen simplex
• Find intersection point and solve

• Rescale all vectors so that 4th component is 1

• If all of are positive, the line intersects 
the surface within the simplex

X  p  L  A  B  C

      1
,,



Euclidean Geometry 
Recovered

• Affine geometry is a subset of 
projective geometry

• Euclidean geometry is a subset 
of affine geometry

• How do we recover Euclidean 
geometry from projective?

• Need to find a way to impose a 
distance measure

Euclidean

Affine

Projective



Fundamental Conic
• Only distance measure in projective geometry 

is the cross ratio
• Start with 2 points and form line through them
• Intersect this line with the fundamental conic

to get 2 further points X and Y
• Form cross ratio

• Define distance by

r  A  X B  Y
A  Y B  X

d  lnr



Cayley-Klein Geometry
• Cayley & Klein found that different 

fundamental conics would give Euclidean, 
spherical and hyperbolic geometries

• United the main classical geometries
• But there is a major price to pay for this 

unification:
– All points have complex coordinates!

• Would like to do better, and using GA we can!



Further Information
• All papers on Cambridge GA group website: 

www.mrao.cam.ac.uk/~clifford
• Applications of GA to computer science and 

engineering  are discussed in the proceedings 
of the AGACSE 2001 conference. 
www.mrao.cam.ac.uk/agacse2001

• IMA Conference in Cambridge, 9th Sept 2002 
• ‘Geometric Algebra for Physicists’ (Doran + 

Lasenby).  Published by CUP, soon.
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