Beyond Euclidean Geometry

Chris Doran

Cavendish Laboratory
Cambridge University
C.Doran@mrao.cam.ac.uk www.mrao.cam.ac.uk/~clifford

A Wealth of Geometries

- So far, dealt with Euclidean geometry in 2 and 3 dimensions
- But a wealth of alternatives exist
- Affine
- Projective
- Spherical
- Inversive
- Hyperbolic
- Conformal
- Will look at all of these this afternoon!

What is a Geometry?

- A geometry consists of:
- A set of objects (the elements)
- A set of properties of these objects
- A group of transformations which preserve these properties
- This is all fairly abstract!
- Used successfully in $19^{\text {th }}$ Century to unify a set of disparate ideas

Affine Geometry

- Points represented as displacements from a fixed origin
- Line through 2 points given by set

$$
A B=a+\lambda(b-a)
$$

- Affine transformation

$$
t(x)=\mathrm{U}(x)+a
$$

- U is an invertible linear transformation
- As it stands, an affine transformation is not linear

Parallel Lines

- Properties preserved under affine transformations:
- Straight lines remain straight
- Parallel lines remain parallel
- Ratios of lengths along a straight line
- But lengths and angles are not preserved
- Any result proved in affine geometry is immediately true in Euclidean geometry

Geometric Picture

- Can view affine transformations in terms of parallel projections form one plane to another
- Planes need not be parallel

Line Ratios

- Ratio of distances along a line is preserved by an affine transformation

$$
\begin{array}{cc}
C=A+\lambda(B-A) & \circ A \\
\begin{aligned}
\frac{A C}{A B}=\frac{|\lambda(B-A)|}{|B-A|}=\lambda & A^{\prime} \\
C^{\prime} & =\mathrm{U}(A+\lambda(B-A))+a \\
& =A^{\prime}+\lambda\left(B^{\prime}-A^{\prime}\right)
\end{aligned} & \circ C^{\prime} \\
&
\end{array}
$$

Projective Geometry

- Euclidean and affine models have a number of awkward features:
- The origin is a special point
- Parallel lines are special cases - they do not meet at a point
- Transformations are not linear
- Projective geometry resolves all of these such that, for the plane
- Any two points define a line
- Any two lines define a point

The Projective Plane

- Represent points in the plane with lines in 3D
- Defines homogeneous coordinates

$$
\begin{aligned}
& (x, y) \mapsto[a, b, c] \\
& x=\frac{a}{c} \quad y=\frac{b}{c}
\end{aligned}
$$

- Any multiple of ray represents same point

Projective Lines

- Points represented with grade-1 objects
- Lines represented with grade-2 objects
- If X lies on line joining A and B must have

$$
X \wedge A \wedge B=0
$$

- All info about the line encoded in the bivector $A \wedge B$
- Any two points define a line as a blade
- Can dualise this equation to

$$
X \cdot n=0 \quad n=I A \wedge B
$$

Intersecting Lines

- 2 lines meet at a point
- Need vector from 2 planes

$$
\begin{array}{ll}
X \wedge P_{1}=0 & X \cdot p_{1}=0 \\
X \wedge P_{2}=0 & X \cdot p_{2}=0
\end{array}
$$

- Solution

$$
X=I p_{1} \wedge p_{2}
$$

- Can write in various ways

$$
X=P_{1} \cdot p_{2}=p_{1} \cdot P_{2}=I P_{1} \times P_{2}
$$

Projective Transformations

- A general projective transformation takes

$$
X \mapsto \mathrm{U}(X)
$$

- U is an invertible linear function
- Includes all affine transformations

$$
\left(\begin{array}{c}
x+a \\
y+b \\
1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

- Linearises translations
- Specified by 4 points

Invariant Properties

- Collinearity and incidence are preserved by projective transformations
$X \wedge A \wedge B \mapsto \mathrm{~F}(X) \wedge \mathrm{F}(A) \wedge \mathrm{F}(B)=\mathrm{F}(X \wedge A \wedge B)$
- This defines the notation on the right
- But these are all pseudoscalar quantities, so related by a multiple. In fact

$$
F(I)=F\left(e_{1}\right) \wedge F\left(e_{2}\right) \wedge F\left(e_{3}\right)=\operatorname{det}(F) I
$$

- So after the transformation

$$
\mathrm{F}(X) \wedge \mathrm{F}(A) \wedge \mathrm{F}(B)=\operatorname{det}(\mathrm{F}) X \wedge A \wedge B=0
$$

Cross Ratio

- Distances between 4 points on a line define a projective invariant

$$
(A B C D)=\frac{A C D B}{A D C B}
$$

A

- Recover distance using

$$
\frac{A}{A \cdot n}-\frac{B}{B \cdot n}=\frac{1}{A \cdot n B \cdot n}(A \wedge B) \cdot n
$$

- Vector part cancels, so cross ratio is

$$
\frac{A \wedge C D \wedge B}{A \wedge D C \wedge B}
$$

Desargues' Theorem

- Two projectively related triangles

P, Q, R collinear

Figure produced using Cinderella

Proof

- Find scalars such that

$$
U=\alpha A+\alpha^{\prime} A^{\prime}=\beta B+\beta^{\prime} B^{\prime}=\gamma C+\gamma^{\prime} C^{\prime}
$$

- Follows that
$\alpha A-\beta B=\beta^{\prime} B^{\prime}-\alpha^{\prime} A^{\prime}=R$
- Similarly

$$
\beta B-\gamma C=P \quad \gamma C-\alpha A=Q
$$

- Hence

$$
P+Q+R=0 \quad \Rightarrow \quad P \wedge Q \wedge R=0
$$

3D Projective Geometry

- Points represented as vectors in 4D
- Form the 4D geometric algebra

$$
1 \quad e_{i} \quad e_{i} e_{j} \quad I e_{i} \quad I
$$

- 4 vectors, 6 bivectors, 4 trivectors and a pseudoscalar

$$
I=e_{1} e_{2} e_{3} e_{4} \quad I^{2}=1
$$

- Use this algebra to handle points, lines and planes in 3D

Line Coordinates

- Line between 2 points A and B still given by bivector $A \wedge B$
- In terms of coordinates

$$
\left(a+e_{4}\right) \wedge\left(b+e_{4}\right)=a \wedge b+(a-b) \wedge e_{4}
$$

- The 6 components of the bivector define the Plucker coordinates of a line
- Only 5 components are independent due to constraint

$$
(A \wedge B) \wedge(A \wedge B)=0
$$

Plane Coordinates

- Take outer product of 3 vectors to encode the plane they all lie in

$$
P=A \wedge B \wedge C
$$

- Can write equation for a plane as

$$
X \wedge P=0 \quad X \cdot(I P)=X \cdot p=0
$$

- Points and planes related by duality
- Lines are dual to other lines
- Use geometric product to simplify expressions with inner and outer products

Intersections

- Typical application is to find intersection of a line and a plane

$$
X=(A \wedge B \wedge C) \vee L
$$

- Replace meet with duality

$$
X=(I A \wedge B \wedge C) \wedge(I L) I=p \cdot L
$$

- Where $p=I A \wedge B \wedge C$
- Note the non-metric use of the inner product

Intersections II

- Often want to know if a line cuts within a chosen simplex
- Find intersection point and solve

$$
X=p \cdot L=\alpha A+\beta B+\gamma C
$$

- Rescale all vectors so that $4^{\text {th }}$ component is 1

$$
\alpha+\beta+\gamma=1
$$

- If all of α, β, γ are positive, the line intersects the surface within the simplex

Euclidean Geometry Recovered

- Affine geometry is a subset of projective geometry
- Euclidean geometry is a subset of affine geometry
- How do we recover Euclidean geometry from projective?
- Need to find a way to impose a distance measure

Fundamental Conic

- Only distance measure in projective geometry is the cross ratio
- Start with 2 points and form line through them
- Intersect this line with the fundamental conic to get 2 further points X and Y
- Form cross ratio

$$
r=\frac{A \wedge X B \wedge Y}{A \wedge Y B \wedge X}
$$

- Define distance by

$$
d=\ln (\alpha r)
$$

Cayley-Klein Geometry

- Cayley \& Klein found that different fundamental conics would give Euclidean, spherical and hyperbolic geometries
- United the main classical geometries
- But there is a major price to pay for this unification:
- All points have complex coordinates!
- Would like to do better, and using GA we can!

Further Information

- All papers on Cambridge GA group website:
- Applications of GA to computer science and engineering are discussed in the proceedings of the AGACSE 2001 conference.
- IMA Conference in Cambridge, $9^{\text {th }}$ Sept 2002
- 'Geometric Algebra for Physicists' (Doran + Lasenby). Published by CUP, soon.

