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Abstract

The Spacetime Algebra provides an elegant language for studying the Dirac
equation. We show how to perform cross section calculations following a method
suggested by Hestenes (1982). The S-matrix is replaced with an operator which
rotates the initial states into the scattered states. The method neatly handles
spin dependence by allowing the scattering operator to become a function of
the initial spin. When the operator is independent of spin we can provide
manifestly spin-independent results. Spin basis states are not needed, and
neither are spin sums. Instead we deal with the spin orientation directly. We
perform example calculations of spin dependence and polarization in Coulomb
scattering to second order, and briefly consider more complicated calculations
in QED.
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1 Introduction

Methods for calculating spinor cross sections are well known, however these often
involve complicated abstract calculations with gamma matrices. In this paper we

show how to calculate cross sections in a more transparent and intuitive way. Instead
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of using spin basis states, summing over spins and using spin projection operators,
we instead incorporate the spin orientation directly. This greatly streamlines the
calculation of spin dependent results, and makes it clear when results are independ-
ent of spin. We first consider single electron scattering, where our method is most
naturally applied, and then briefly how we can handle multi-particle scattering.
The starting point for our approach is the Spacetime Algebra formulation of
Dirac theory. The Spacetime Algebra (STA) is the geometric (Clifford) algebra of
Minkowski spacetime, first developed by Hestenes (1966, 1975, 1982). The formu-
lation of Dirac theory within the algebra replaces the matrices of the conventional
theory with multivectors. The two formulations are entirely equivalent, but the STA
approach brings out the geometric structure leading to more physically transparent
calculations. We briefly summarize the STA formulation below and then explain
a method for performing cross section calculations first demonstrated by Hestenes
(1982). We extend and clarify this work, handling spin-dependence in a natural

way.

2 Spacetime Algebra and the Dirac Equation

Throughout we shall make use of the Geometric Algebra. We present a brief sum-
mary of the STA below to clarify our notation and conventions. Full details of
Geometric Algebra can be found elsewhere (Hestenes & Sobczyk, 1984; Hestenes,
1966).

We shall use the four orthogonal basis vectors of spacetime 7,, where 42 = 1,
and 7]3 = —1 for £ = 1,2,3. The Geometric Algebra has an associative product,

and the basis vectors then satisfy the Dirac algebra

Y e = (Vv + ) = diag(+ — ——).



The antisymmetric part of the product defines the outer product

Yu\Vw = %(7#71/ — YY)

By repeated multiplication of the basis vectors we can build up the 16 basis elements
of STA multivectors:

1 7 IR LY Uvu} I

scalar vectors bivectors pseudovectors pseudoscalar

We can do a space-time split of a vector into the ~q frame by multiplying by 7. For

example the momentum p is split
— _ _ 0 7
PYo=pY+pA=E+p=p +p7iv0.

Bold letters are now used for relative 3-vectors (spacetime bivectors). Restricted
Lorentz transformations are spacetime rotations and can be performed by use of a
rotor, which can be written R = + exp(B/2). Here B is a bivector in the plane of the
rotation and |B| determines the amount of rotation. The rotation of a multivector
M is then given by

M — RMR.

In the STA spinors are represented using the even subalgebra which has the
required eight degrees of freedom. The minimally coupled form of the Hestenes’
Dirac equation is

IViye — myp = eAYy.

Here j is an operator that multiplies on the right by an arbitary reference spatial

bivector X so that

The spinor % can be decomposed as

’éb — pl/QeIﬁ/QLU



where L and U are rotors for a boost and spatial rotation respectively, p is a scalar,
and the J-factor determines the rest ratio of particles and anti-particles. So in the
STA approach the spinor directly encodes a Lorentz transformation and a propability
density. The rotor U rotates the arbitrary reference plane X into the rest spin

bivector observable of the electron

S*=UxU
and the boost L gives the momentum

p= mL'on.
We can also boost the rest spin bivector to define the relativistic spin bivector

S =LSL = p~ 9=y,
Positive and negative energy plane wave solutions are given as usual by
¢(+) — u(p)e_jp'f and ¢(—) — v(p)ejp'”‘"

and the energy projection operators are

1
AL () = 5—(my =+ pPro).

3 The Feynman Propagator

The Feynman propagator Sr is the Greens’ function for the Dirac equation that
propagates negative energy waves into the past and positive energy waves into the

future. As a Greens’ function it satisfies
IVSk(s — ') (6120 — mSp(s — a')p(s') = 8 (s — ) )"
and an integral solution to the Dirac equation is given by

0e) = ilo) +e [ dSe(a - ) A D()0 0
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where 1; satisfies the free-particle equation. Taking the Fourier transform we have

pSE(p)yo — mSk(p)Y = ¢

where

dt N
Srle - ) = / (27r]))4'5F(p)€_”'(°‘“_£ )

Operating on both sides with the energy projection operator AL we can solve for

the momentum space Feynman propagator:

(p* = m*)Sr(p)yY = pPyo+my

pryo + mip
PR (2)

=5 0 .
F(p)Y o

The je ensures that the contour integral is in the ¥ plane and that it is causal—
positive energy waves propagate into the future and negative energy waves into the

past. Fourier transforming back and performing the integral over dF/ we have

Sp(z — 2"y =

- Qmj/ QEj(;)ﬂ_)g[g(t - tl)A-}- (¢)e—jp-(w—r') + O(tl - t)A— (T/))ejp(ﬁ_xl)] (3)

where F = ++/p? + mZ2.

4 Electron Scattering

For scattering calculations we write the wavefunction as the sum of an incoming
plane wave and a scattered beam, ¥ = ©; + ¥qif, where ¥gig is the solution at

asymptotically large times given by

, N d3p g
Paifi(z) = —Qmje/d4$//ml\+ [A(") ¥ (2")y0] e P =),
This can be written as a sum over final states

Yaife(z) = / %%(m)v
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the final states being plane waves of the form
Vr(z) = e 1T = —je / d*a'[prA(2")(2") + mA(2) (2" yole P10 (4)

The Born series perturbative solution is generated by iterating (1). In the first order
Born approximation this amounts to simply replacing ¥(z') by ¢;(z"). For plane

waves of particles we have

$(z) = Ye T and mio = pib

so the final states become

Ve o= e / d'a'[psA(a’) + A" pilapie’™

= —jelprA(q) + A(q)pili

where ¢ = py — p;.
More generally we define
V= Sypit
where Sy; is the scattering operator which rotates and dilates the initial states into
the final states. Here the f and 7 indices label the initial and final momenta and the
initial spin, so in general Sy; = Syi(py, i, S'Z) However S¢; does not depend on the
final spin—instead the final spin is determined from the initial spin by a rotation

encoded in Sy;.

Since Sy; consists of a rotation and dilation it is convenient to decompose it as
1/2
Sgi=p ff Ry

where Ry; is a rotor. The cross section will be determined by the py; factor, as
detailed in the next section. The rotor Ry; rotates states with momentum p; into

states with momentum py. It also relates the initial and final spins by

S'f = RﬂSZ’Eﬂ



so the rest spins are related by
S9=1L4SiLy=LyRpSiRpiLy = LyRy;LiSLiRyiLy.
We therefore define the rest spin scattering operator
Ui = LiRyiL;

so that

5? = Ufig,?ﬁﬂ.

The rest spin scattering operator and the cross section contain all the information
about scattering of states with initial momentum p; and spin S; into final states
with momentum p;.

The form of the external line Feynman propagator (3) ensures that Sy; is of the

form
Sgi=—j(psM + Mp;) (5)

where in the Born approximation example M = eA(q). However in general M can

have some j-dependence in which case we can write
Sgiti = =j(ps[My + JM;] + [M; + jM;]pi) i

where M; and M, are independent of j. Using jy; = ;X = 52% and the fact that

S; and p; commute this can be written
Spi=—=J(psM + Mps)

where now M = M, + Mjgi depends on the initial spin. We can therefore convert

dependence on the ‘imaginary’ j into dependence on the physical spin bivector.



5 Cross Sections

The scattering rate into the final states per unit volume per unit time is given by

P
2mV'T

Wi =
where py is given simply by
— 19,12, —
ps = 1Sl pi = pripi-

The cross section is defined as

o — Wy,
~ Target density x Incident flux’

For elastic scattering we have
Sei=—j2n6(Ef — BTy,

in which case
|S5il? = 2nT6(Ey — E;)|Ty].
With a target density of 1/V and an incident flux of |J;| = p;|p;|/m we have

do = ﬁa(Ef — B)|T)~
p;

This is readily extended to positron scattering and to more complicated cases.

6 Coulomb Scattering

Coulomb scattering is a useful test case where the vector potential is given by

—Ze
A(z) = ——5.
(z) 47r|a:|70

Taking the Fourier transform we have

2n /e
Alg) = - po S(Ef— E)vo




and M = eA(q) in the first Born approximation. Writing
Spi= =26 (Er — BTy,

and using energy conservation we have

Ze?
Ty = —?(QE +q)

so that the formula for the cross section becomes

Z62)2 T d>p
do = (25 T 6(E, — E)(4F? - q?)—Pf
(q2 p; | (B~ Ei)( )2Ef(27r)3

Using d?’pf = |ps|FrdFEdQ; we recover the Mott cross section

22 2.2
(38) ™ 27" =) = Sy (1~ 75012,
where ¢? = (py —p;)? =2p?(1 —cosb) and 3 = |p|/E. The derivation is manifestly
independent of initial spin, so the cross section is spin independent. If we had instead
used the conventional spin sums method this would have been far from clear.

The final and initial spins will be related by the rest spin scattering operator
Ui, where

Uﬂ x LfLZ'—}—Esz' o (E+m)2‘|‘pfpi'

If Uy; rotates by an angle 4 in the B plane (BQ = —1) it is given by

Us = B2 = cos(6/2) + Bsin(5/2).

So we see that the rotation is in the p;Ap, plane and by an angle ¢ given by

[(Uti) _ lpsAp;] _ sin @
Uy ~ (E4+m)2+psp;  (E+m)/(E—m)+cosf

tan(8/2) =

7 Second Order Coulomb Scattering

Second order Coulomb scattering is interesting as it is spin-dependent, though the

calculation is now rather more involved. To avoid problems with divergent integrals



the potential is replaced with the screened potential

e~ Mzl Ze

4| o

Az) = —
and the Coulomb result found in the limit A goes to zero (Dalitz, 1951; Itzykson &

Zuber, 1980). For this potential the first order analysis above can be applied with

M given by

2w Ze?

eA(q) = —m5(Ef - Ei)7o.

To iterate to second order (4) is used, with the substitution

d4k k4 "+ A - N
¢( ) ¢Z€ Jpix —|—€/d4 /// ‘|‘2 ( ) wieﬂ '(k—pz)e—ﬂMU
—m* 4 je

giving the extra contribution to M

g— /d4 ’/d4 /// d4k ( ”)‘|‘A( )Pz eim'(py—k) ' -(k—p:)

k2 — m2 4+ je

Carrying out the z’ and z” integrations and using one of the resultant d-functions
we have

M = 278(E; — E;)Mr

where the extra contribution to My is

o [ sttt
and
wip) = [ Eaerg - Ale) = 7
Using

k* —m? =p? — k?

and the integrals

" - Pk 1+k
Wbt = G T
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we have
Méﬂ = 72 [’)/0%(])2- —l—pf)fz + (pi + ')/OE)Il] :

In the limit A — 0 our total My to second order is therefore

— 72

Mr = Pl + 2% [(Evo — 3lps + pil) L2+ (pi + 10 E) I

where the integrals are (Itzykson & Zuber, 1980)

-J |y 2Plsin(8/2)
167 |p|>sin®(8/2) A
1 m[sin(8/2) —1] . A I
Iz 167|p|3 cos?(6/2) { ! } + cos?(6/2)"

L =

2sin2(8/2) " 2/p|
We see that M has some j dependence, so writing Iy = (A4 C)jand I = B+ (Cj
where A, B, and C' are scalars, and replacing the j-dependence with S;-dependence,

this becomes
Ze? 2.4 & 2.4 3 1 &
Mr =0 | =" + EZ% {B+@C+4)8}|+2%" [pi(AS; - B) - La(B+C5).
The term proportional to ¢ cancels in the calculation of T;. Using the result that
pipi+m’ = EQE+q) —p° — psp;
we have
Zé 2 4 & 2 47 2 3
Ty =(12FE+ q) 7 +2E7°e*(A+ C)S;| + Z7e*(p” + psp;) (B — AS;).
Keeping terms up to o the cross section is then governed by

VATAEN VAP

Tal? = (B = g))" = = BB+ pop) + mAPiAp))- 5

where 5’? is the initial rest spin. As expected the divergent parts of the integrals

have cancelled out, and we are only left with the finite terms B and

_ Insin(6/2)
~ 167|p|3cos?(8/2)

One can obtain the cross section for unpolarized scattering by averaging over the
initial spin. This gives the spin-independent part of the cross section since the spin

dependent part averages to zero.
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8 Spin Dependence and Double Scattering

As an example of handling spin dependence we can work out the asymmetry para-
meter for double scattering from a Coulomb potential. The idea is that since the
second order correction to Coulomb scattering is spin dependent the scattered beam
will be partially polarized even with an unpolarized incident beam. The scattered
beam can then impinge on a second target, which leads to an observable asymmetry
in the scattered intensity. The asymmetry was first worked out by Mott (Mott,
1929; Mott, 1932).

The first thing we need to know is the spin after the first scattering. This is
given by

Sy = RySiRy;

so we have

N n o~ VA E A 2736 A
Sy oo TpiSilyi= = (QE+ @820 —q) - — 53— ((P* +psp)(2E - q)),

where we have only kept the lowest order terms in the spin dependent and spin-
independent parts. The first term depends on the initial spin but the second term
does not, so if we average over the initial spin the spin independent part will de-
termine the final polarization. We define S® to be the polarization in the plane S°.
This is a bivector in the plane of S0 with modulus equal to the polarization of the
beam. Since the incoming beam is taken to be unpolarized the resultant polarization
plane will be given by the spin-independent part of Sf deboosted to rest. To get

the polarization we then just divide by the magnitude of the spin-dependent part:

27e*q*A ~
St = _ml/f (P’ +pp))2E—q)), Ly
27e%q%A

So the beam after the first scattering is polarized in the scattering plane p;Ap;. The
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spin-dependent part of the cross section for the second scattering is then given by

do 473e5mA
(do) _ mema
spin

a; PICIE
B 64(27)2Z%atqim? A1 Ay
a5 (4E7% — qi)

(PsAPy) - (PiAPy)

where the 1 and 2 subscripts refer to the first are second scattering respectively (e.g.
qy = py — py). We see that the asymmetry will depend on the cosine of the angle
¢ between the psApy and p;Ap; planes. The asymmetry parameter ¢ is defined so

that the final intensity depends on ¢ through the factor
1+ écosao.

In the case where p;-ps = ps-py = 0 (p; Py = —p?cos¢) we find that the first

non-zero contribution to the asymmetry factor is

64(27)2Z%a*m?A? q*
(AET—q%) ' Z2a2(1E% - q¥)
Z*a*(In 2)262(1 — )

(2-p%)?

in agreement with the answer quoted by (Dalitz, 1951). It is of course only the
first approximation, and for large Z nuclei higher order corrections will be far from

negligible.

9 Partial Spin Sums in QED

Much of the simplicity and elegance of the above method comes from the fact we
were considering a single electron. As a more complicated example consider electron-
muon scattering. For each of the fermion lines one has a scattering operator with

an M of the form

M = EDF’)/aJa
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where D is the photon propagator and .J, is given by
Jo = 6<ﬂs7a‘¢’270>5

Here (...)s denotes the scalar and ¥ projection, and provides the usual complex
structure, u, is the normalized final state of the other particle, and 1) is the incoming
state of the other particle. Now we can proceed to calculate cross sections as before
if we sum over the final spin of the other particle to get the result

4
|Tpil? = 2522821 ph-phpr-pa + Py prp2-ph — miph-po

+mip)-pr + 2mimi — [g-(S1Ap1)]-[g- (S2Ap2)]|.

One could also calculate final polarizations and spins in the same way as before.

Whilst the scattering operator approach offers little advantage if one is just in-
terested in unpolarized cross sections, it may still useful when one wants to consider
spin dependent results. If you are just interested in the spin dependence of a partic-
ular fermion line the scattering operator approach works well once you have summed
over the spins of the other particles. So in this approach one still has to perform a
spin sum, but only over the spins of the other particles. One can of course introduce
spin projection operators to single out particular spins of the other particles in the

usual way.

10 Conclusions

We have seen how Hestenes’ STA formulation of Dirac theory provides a useful
and elegant method of performing cross section calculations. Spin is handled in a
simple manner, and the logic of calculating cross sections is simplified considerably.
We don’t perform unnecessary spin sums and spin dependence is manifest in the
spin bivector dependence of the scattering operator. It’s a simple matter to calcu-

late spin precessions, polarizations and spin dependent results, and the results are
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automatically expressed in terms of physical spin bivectors and the other scatter-
ing parameters. We can perform unpolarized calculations simply by averaging over
spins.

In the multiparticle case things are more complicated. We do not yet have a
neat method for performing arbitrary spin dependent calculations, and still have to
resort to spin sums over terms involving complex conserved currents. However we
can still write down a scattering operator for any given fermion line, retaining the
benefits of the scattering operator for calculations involving the spin of the particle.

For clarity we have only considered electron scattering, but all our results are
easily extended to positron scattering and electron-positron annihilation (Lewis,

1999).
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