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Summary. Recent developments in geometric algebra have shown that by moving
from a projective to a conformal representation (5d representation of 3d space),
one is able to extend the range of geometrical operations that can be carried out
in an efficient and elegant way. For example, while in projective space one is able
to intersect lines and planes in a simple fashion, in conformal space one is able
to intersect and represent spheres, lines, circles and planes. In addition, all the
operations of Euclidean geometry (dilations, translations, rotations and inversions)
are smoothly integrated with the projective representation.

The paper will use the conformal representation to look at the problems of sur-
face representation and evolution, and of wavefront propagation from such surfaces.

1 Introduction

The mathematical language we will use throughout will be that of geometric
algebra (GA). This language is based on the algebras of Clifford and Grass-
mann and the form we follow here is that developed by David Hestenes [1].
There are now many texts and useful introductions to GA, [2-5] so we do no
more here than outline some aspects used in the problems we will discuss.

In a geometric algebra of n-dimensions, we have the standard inner prod-
uct which takes two vectors and produces a scalar, plus an outer or wedge
product that takes two vectors and produces a new quantity we call a bivector
or oriented area. Similarly, the outer product between three vectors produces
a trivector or oriented volume etc. Thus the algebra has basic elements which
are oriented geometric objects of different orders. The highest order object in
a given space is called the pseudoscalar with the unit pseudoscalar denoted
by I, e.g. in 3d I is the unit trivector e; AeaAes for basis vectors {e;}. Mul-
tivectors are quantities which are made up of linear combinations of these
different geometric objects. More fundamental than the inner or wedge prod-
ucts is the geometric product which can be defined between any multivectors
— the geometric product, unlike the inner or outer products, is invertible. For
vectors the inner and outer products are the symmetric and antisymmetric
parts of the geometric product;

ab=a-b+ and (1)
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In effect the manipulations within geometric algebra are keeping track of the
objects of different grades that we are dealing with (much as complex number
arithmetic does). For a general multivector M, we will use the notation (M),
to denote the rth grade part of M.

In what follows we shall use the convention that vectors will be represented by
non-bold lower case roman letters, while we use non-bold, upper case roman
letters for 5d vectors and certain multivectors — exceptions to this are stated
in the text. Unless otherwise stated, repeated indices will be summed over.

1.1 Rotations

If, in 3d, we consider a rotation to be made up of two consectutive reflections,
one in the plane perpendicular to a unit vector m and the next in the plane
perpendicular to a unit vector n, it can easily be shown [4] that we can
represent this rotation by a quantity R we call a rotor which is given by

R=nm
Thus a rotor in 3D is made up of a scalar plus a bivector and can be written
in one of the following forms

R=e8"?=exp (—Ign> = cosg — Insin g, (2)

which represents a rotation of # radians about an axis parallel to the unit
vector n in a right-handed screw sense. Here the bivector B represents the
plane of rotation. Rotors act two-sidedly, ie. if the rotor R takes the vector a
to the vector b then

b= RaR

where R = mn is the reversion of R (i.e the order of multiplication of vectors
in any part of the multivector is reversed). We have that rotors must therefore
satisfy the constraint that RR = 1. One huge advantage of this formulation
is that rotors take the same form, i.e. R = +exp(B) in any dimension (we
can define hyperplanes or bivectors in any space) and can rotate any objects,
not just vectors; e.g.

R(aAb)R = (RabR); = (RaRRbR),
= RaRARDR (3)

gives the formula for rotating a bivector.
2 Conformal Geometry in Geometric Algebra
It has long been known that going to a 4d, projective, description of 3d

Euclidean space can have various advantages — particularly when intersec-
tions of planes and lines are required. Such projective descriptions are used
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extensively in computer vision and computer graphics where rotations and
translations can be described by a single 4 x 4 matrix and non-linear projec-
tive transformations become linear. Projective geometry fits very nicely into
the geometric algebra framework and applications are given in [6,7]. In [1]
conformal geometry was briefly discussed and recently, [8,9], the application
of these ideas in which a 5d conformal space is used as the representation of
3d Euclidean space has been the subject of renewed interest. In this confor-
mal space we have, as a subset, the projective geometry, but also the ability
to extend to circles and spheres. Below we describe the basics of this confor-
mal representation and outline how it can be of use in specific problems, e.g.
reflecting a general wavefront from a spherical surface.

We start with the simplest formulation of Hestenes’ conformal geometry
work in 3d. However, unlike the treatments given in [1,8,9], we will use reflec-
tion as the key to inversion which will enable us to treat circles and spheres
very easily and efficiently.

The notation we use will follow the original notation given in [1]. Let x be
a vector in a space A(p, q), where the signature (p,q) implies that the space
has a basis {e;}, i = 1,...,n = p+ ¢q where e = +1 for i = 1,...,p and
e? = —1fori =p+q+1,...,n—i.e. we take a general mixed signature space.
Now extend this to a space A(p+1,¢+ 1) via the inclusion of two additional
basis vectors, e and €, such that

e=+4+1, &=-1, ee=0
Note that if z € A(p,q), then e-x = éx = 0 since e;-e = e;-¢ = 0 for
i=1,...,n. We now introduce the vectors n and 7 where
n=e+eée n=e—é (4)
1 ~ 1 _
=>e=§(n+n) ezi(n—n) (5)

n and 7 are null vectors since
n*=(e+e)(e+te)=e>+2e+e’=14+0-1=0
P =(e—e&-(e—€) =e’—2ee+&=1-0-1=0

Note also that

)=¢e
zn=0 and zn=0

for x € A(p,q). We now map a point z in A(p,q) to a point F(z) in A(p +
1,q + 1) via the Hestenes ([1], p.302) representation

F(z)=—(z—e)n(z —e) (6)

Substituting for n = e + € and using the fact that &z = 0 = é-e = n-x, it is
not hard to rewrite this equation in terms of the null vectors as follows:

F(z)=2’n+2x—n (7
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which is precisely the form which is used in the more recent ‘horosphere’

formulations of the conformal framework [8,9].

Now for any z; € A(p, q) we evaluate [F(z)]
[F(2)]? = (z%n + 2z — 7)-(2®n + 2z — @)

= —rinn+42? = 42 + 422 =0 (8)

2

Thus we have mapped vectors in A(p, ¢) into null vectors in A(p+1,¢+1)
— this is precisely the horosphere construction.

More generally, it can be shown that any null vector in A(p +1,q + 1)
can be written as

X = Mz?n + 2z —n) 9)

with X a scalar. We can now use this to provide a projective mapping between
A(p,q) and A(p + 1,q + 1): the family of null vectors, A(z?n + 2z — n), in
A(p+1,q+ 1) are taken to correspond to the single point x € A(p, q).

At this point it is interesting to see what happens when we take the inner
product of any two such null vectors:

A-B = {a*n+2a—n}-{b’n+2b—n} = —2a® —2b>+4a-b = —2(a—b)?  (10)

We see therefore that taking the inner product of two 5d representative vec-
tors gives a scalar which is proportional to the distance between the 3d vec-
tors. This is where the formulation can be related to the study of distance
geometry [10].

We will be especially interested in Conformal Transformations in
A(p,q), and we shall see later that these are represented by rotors and re-
flections in A(p + 1,¢q + 1). We now look at the operations of rotation and
reflection more closely.

1. Rotations

If z — RxR with z € A(p, ¢) and R arotor in A(p, ), then what happens
when R acts on F(z)?

RF(z)R = R(z’n + 2z — 7)R = 2> RnR + 2RzR — RAR

Since R is a rotor, it contains only even blades and therefore commutes
with n and 7 (e;n = —ne;, so if we have an even number of es we have
commutation), so that RnR = RRn = n and RAR = fi. Thus we have

RF(z)R=1""n+22' —n (11)

where 2 = RzR. That is, rotors in A(p, ¢) remain rotors in A(p+1, g+1),
ie.

z+ RzR = F(z) = F(RzR) (12)
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2. Inversions

Here we have z — % or equivalently, z — z~' (since z=" = %). Firstly,
we look at the properties of relection in e:

—ene = —een = —n

using the fact that ne = £(e + €)e = 1(e* + ée) = 3 (e? — e€) = ef. Simi-
larly, we can show that the following reflection properties hold: —ene =
—, —efie = —n and —exe = x. Now we look at what happens to F(x)
under reflection in e

—eF(z)e = —e(z’n + 2z — R)e = —2°A + 2z +n
5| 1 x _ . x
=a? L—QTLJF2$—2 —n] :sz(m—z) (13)

Therefore, we have that inversion in A(p, q) is brought about by reflection
inein A(p+1,q+1), ie.

=) (14)

z _ 2
T = F(z) » —eF(zx)e=2x F(ﬁ

Note here that it is irrelevant whether we take —e(...)e or e(...)e as the
reflection — henceforth we will use e(...)e for convenience.

3. Translations

Here we wish to achieve a translation £ — z + a; we will show that this
is performed by a rotor R =T, = e 2 , where a € A(p, q);

na na 1 /na\?2 na
R—Ta—e2—1+7+§(7) +oo=14 2 (15)
since n is null and an = —na. Firstly we see how R acts on n, 7 and =x.
- na an
= (1+3)(+3)
RnR ( + 5 )" + 2
=n+ ! + L + - = (16)
=n+ gnan + gnan + gnanan = n
again using an = —na and n? = 0. Similarly we can show that
RAR =7 — 2a — a’n (17)
RxzR =z + n(a-x) (18)

We can now see how the rotor acts on F(z)

RF ()R = (1 + %) (£®n + 2z — ) (1 + %)
= 2’n 4+ 2(z + n(a-z)) — (A — 2a — a?
=(z+a)n+2@x+a)—n

=2”n+22' — 7 = F(z + a) (19)

n)
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where z' = x + a. Thus, translations in A(p, ¢) can be performed by the
Alp+1,9+1) rotor R =1T,, a € A(p,q) so that

T zT+a = F(z) » F(z+a) (20)

4. Dilations

To investigate how dilations are formed we start by considering the rotor
R = D, = €2 and the following relations which can easily be verified:

een =—n=—-neé and eén =n = —neeé (21)
Using these relations it is straightforward to show that RF(z)R gives

Do F(z)Dy = €2 {2°n + 2z — i}e 2°€
e {m'Qn + 20— ﬁ} (22)

where ' = e %z. The above can be verified by expanding e 2% as
1—Z2ee+4: (%eé)2+. .. etc. and using the relations given in equation (21).
Thus, dilations in A(p, q) can be performed by the A(p + 1,¢ + 1) rotor
R = D,, so that

T e Yz = F(z) = e*F(e™ %) (23)

2.1 Special Conformal Transformations

We have seen above that we are able to express rotations, inversions, trans-
lations and dilations in A(p, q) by rotations and reflections in A(p+1,¢+1).
This now leads us to consider special conformal transformations of the form

1
T
1+ azx

x> (24)

which is actually a combination of inversion, translation and inversion again:

— Z
T inversion 2
— x
translation 3z T @
. I—)l ZL'% + a
inversion (273 4)(Z +q)
T + az? 1
= =z (25)
1+ 2a-x + a?z? 1+az
The final line in the above expression shows us that z—— is indeed a vector.

14az
As we have built up the special conformal transformation via inversions and
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translations, we know exactly how to construct the A(p + 1,q + 1) operator
that performs such a transformation — the required rotor is

K,=eTe=1— %, so that r— K,zK, (26)
and
KoK, =€ {Ta(e;ve)fa} e (27)

Now, when we act on F'(z) with K, we can use our previous results to obtain

- 1
K, F(z)K, = (1 + 2a- 22\ F 2
JF (@)K, = (1 + 2a-7 + a®z?) (w1+ax) (28)

which therefore tells us that

1

T
1+ax

= F(z) = (14 2a-z+a*2>)F (xl +1aw) (29)

2.2 Projective geometry in the conformal space

In this section we first consider the part A(2z —7) of the conformal represen-
tation of a point x and show it enables us to deal with projective geometry
and the incidence of planes, lines etc. Indeed it is very similar to forming
A(z +7,) (x in Euclidean 3-space) — in the conformal representation the sig-
nature of the bit we add on is irrelevant for projective geometry. Indeed it
is generally better, if dealing only with projective geometry, that we do not
have null structures present, which implies adding a 4th basis vector which
gives a A(4,0) space. So, we need to ask ourselves if there is any advantage
in going to a A(z%n + 2x — 71) representation.

The key fact here is that by enlarging the representation and employ-
ing the reflection formula to do inversions, we can now study the incidence
relations of spheres, circles, lines and planes and not just lines and planes.
A second, linked, advantage, is that in the conformal representation we can
represent incidence relations via wedge products just as we can in the GA
version of projective geometry. For example, in projective geometry, if a line,
L, passes through two points a, b, whose (4d) homogeneous representations
are A, B, we can write the line as a bivector, L = AAB. Then, any X lying
on the line L will satisfy

XAL=0

In the conformal representation, rotations, translations, dilations, inversions
are all represented by rotors or reflections, which tells us that any incidence
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relations remain invariant in form under such operations — we can see this
explicitly as follows.
Suppose we have the incidence relation

XAYAN...AZ =0
where X,Y,....Z € A(p+1,q+ 1). Then under reflections in e we have
XAYA...AZ = (eXe)A(eYe)A... NeZe) = e(XAYA...AZ)e (30)

where we have used the fact that (eXe)A(eYe) = L(eXeeYe — eYeeXe) =
1e(XY =Y X)e = e(XAY)e, since €2 = 1. Thus, if XAYA....AZ = 0 then so
too does (eXe)A(eYe)A....A(eZe).

Similarly, under rotations we have

XAYA...AZ = (RXR)A(RYR)A...AN(RZR) = R(XAYA...AZ)R
(31)

where again we use (RX R)A(RYR) = 2(RXRRY R-RYRRXR) = 1R(XY -
YX)R = R(XAY)R, since RR = 1. Thus, if XAYA...AZ = 0 then so too
does (RXR)A(RY R)A...A(RZR).

We see therefore that translations, rotations, dilations and inversions can
now be brought into the context of projective geometry — a significant increase
in the usefulness of the projective representation. It is now possible to build
up a set of useful results in this projective conformal representation.

2.3 The equation of a line

Because the incidence relations are invariant under rotations and translations
in the A(p, q) space, wlog we can consider a line in the direction e; passing
through the origin.

Let three points on this line be 1, 22, 3 with A(p + 1, ¢+ 1) representa-
tions X7, X3, X5. Now, the {X;} contain only the vectors n,7 and e; (since
Z; = Ase1). Thus, if X is the representation of any other point on the line we
have

XAXiNXoNX3 =0 (32)

This is because each of the above 5d vectors contains only the three vectors
n,n and e; and therefore the wedge of four of them must be zero since
each term will involve a wedge of two identical vectors. By invariance of the
incidence relations under rotations and translations, we see that (32) is the
equation of a line for any three general points X3, X5 and X3 on the line.
It is interesting to see how this parallels the projective case and also to note
that we appear to need 3 points in this conformal representation to describe
a line — we will return to this later.
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2.4 The equation of a plane

Exactly the same sort of thing goes through here. By translational and rota-
tional invariance we can, wlog, take the plane as that spanned by e; and e,
and passing through the origin. If z lies in this plane then we can write

T = dey + pes

and its conformal representation, X, therefore only contains the vectors
n,n,ep,es, i.e.

X =zn+2(ey + pes) —n

Take & = X1 AXoAX3A Xy, where X;, i =1,...,4 lie in the plane; follow-
ing the same reasoning as given for the line, we see that for any X on ¢ we
must have XA® = 0, therefore

XAXIAXoAXSAX, =0 (33)

is the equation of the plane passing through points X;, ¢ = 1,...,4. Once
again we note here that in the conformal representation we appear to require
4 points rather than 3 to specify the plane.

Extending this to higher dimensions we see that to specify an r-d hyper-
plane (where a line is r = 1, a plane is r = 2 etc) the equation is

X/\X]_/\XQ/\ .. XT+]_/\X7-+2 =0 (34)

where X;, ¢ = 1,...,7 + 2 are conformal representations of the r + 2 points x;
lying in the hyperplane.

2.5 The role of inversion

It may be thought strange that we need to specify r + 2 points in order to de-
termine an r-d hyperplane. For example, 2 points clearly suffice to determine
a line, 3 points for a plane etc. So what is the role of the extra points?

We can best understand this, and the role inversion plays, by considering
a simple example. Let the A(p, q) space be A(2,0), i.e. the ordinary Euclidean
plane with basis (e1,e2), €2 =1, €2 =1.

Let the line L be z = 1i.e. (1,y) : —o0o < y < +o0 and let a = (z,y).
Suppose we want to invert points on this line — we then obtain the set of
points

a 1 y
- — = L—|——,—— 35
T (1+y2 1+y2) (3)
Parameterizing the original line as ¢ = 1,y = t; —oo < t < 400, the

inversion produces (z',y') = (ﬁ, p:—tz) — it is then easy to show that
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Hence the inversion produces a circle, centre (3,0) radius 3.

—

inversion circle

straight line

Any three points on this line, X;, i = 1,2, 3 (conformal representation) there-
fore invert to give three points, X/, i = 1,2,3 on this circle. Let the general
point on the line be X; we know that

XANXiANXonX3 =0

Thus, if X' is a general point on the circle,, we know that
X'AXIAXIAXE =0

Recall that we see this by performing an inversion via reflection in e; i.e.
e(XAX1AX2AX35)e = eXeNeXieNeXqeNeXse

This gives a very useful form for the equation of a circle. Here, we derived
it for a special case but since we know that we can dilate and translate as
we wish, it must in fact be true for a completely general circle. Thus if X;,
i = 1,2,3 are any three points, the equation of the circle passing through
these points is

XAX{AXsAX5 =0 (36)

If we now invert this equation via e(...)e we will in general obtain another
circle since X = eX;e will be another three general points in the plane. This
only fails if X|, X}, X4 are collinear and this will occur if the original circle
passes through the origin (as in the case we started with here). Recall that if
=0, X = 22n+2x—7n = —n, so that A represents the origin — by inversion,
ene = n, we see therefore that we can associate n with the point at infinity
— the inversion of the origin. What happens for the original circle passing
through the origin is that the representation of the origin, any multiple of 71,
is transformed by inversion to a multiple of n, the point at infinity. Thus, the
equation of a line can always be written as

XATL/\XI/\.XQ =0 (37)

where X; and X, are any two (finite) points on the line — we can see this by
choosing the origin as one of the 3 points on the circle before inverting. This
therefore explains the extra point we appeared to need in describing a line
earlier — what is really going on is that

XANXiANXoNX3=0

describes a circle and therefore genuinely requires 3 points — while a line is
just a special case of a circle which passes through the point at infinity.
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2.6 Extension to higher dimensions

All of the previous section transfers immediately to higher dimensions and
different signatures — although for indefinite metrics, hyper-hyperboloids have
to be considered as well as hyperspheres. Here we just illustrate the extension
from A(2,0) to A(3,0), i.e. Euclidean 2-space to Euclidean 3-space.

The special case we start from this time — from which everything else can
be derived — is the z = 1 plane, i.e. the set of points (1,y,z2) : —oo <
y < 400, —00 <z < +40o0. Inverting this plane we have

1 Y z
1’ , — I’ I’ ! — , ,
Ly.2) = (@82 = (T T s 2 T 2+ 22

It is then not difficult to show that z',y’, 2’ satisfy the following equation

n: ., . 1\?
r_ - 2 2 _
(w 2) +y°+z (2)
1

which is the equation of a sphere, radius 5 and centre (%, 0,0). We already
know that the equation of a plane is

XAXIAXoAXAX, =0 (38)

where X;, 1 = 1,..,4 are any 4 points on the plane. By inversion, translation,
dilation and rotation we can now see that the equation of a sphere is given
by the same equation

XAXAiNXoANX3N X4 =0

for X;, ¢ = 1,..,4 any 4 points on the sphere. The arguments are precisely
as before — since we can always translate and rotate our plane to the plane
z = 1 and we have shown that under inversion the plane x = 1 gives a sphere,
then we know that we must have the general equation for a sphere. Thus, as
expected, it really does take 4 points to describe a sphere.

We shall now show how a plane is a special case of a sphere. Its inverse is
a sphere passing through the origin — again, we see this using the arguments
we have used previously. Equation (38) is the equation of a sphere passing
through the 4 points X;, ¢ = 1,..,4. We now invert this to give

X'AXIANXIAXINX; =0

where X! = eX;e. The X/ are generally another set of general points, so we
get another sphere through these new points. However, if the X/ are coplanar
then the above construction will not give a sphere — this occurs if the original
sphere passes through the origin. In this case the equation of the original
sphere can be written as

X/\TL/\XQ/\X;;/\X4 =0
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so that when we transform to give a plane we will get (since ene = 7)
XAAAXIAXINX, =0 (39)

That is, any plane passing through the points X3, X4, X} is given by equa-
tion (39). So indeed we only need 3 points to describe a plane — we can think
of a plane as a sphere passing through the point at infinity.

Finally we consider a plane passing through the origin — we know that we
can write this as

XAnARAX1AXy =0
with X7, X5 lying on the plane. Now invert this to get
XARARAX{AXS =0

since ene = 7, ene = n. Under inversion we know that z; — ;—% and
similarly for x5; we therefore see that the plane is mapped onto itself under
this inversion operation. Thus a plane passing through the origin is its own
inverse since the null vectors n,7i are just swapped under inversion. These
results are all well known using a conventional approach of course, [11]. The
novelty here is to show how easy they are to derive in the conformal approach
using the key idea of reflection to perform inversion.

3 Intersections of Surfaces

In problems in computer graphics, robotics and inverse kinematics, large parts
of the tasks involve intersecting lines, planes, circles, spheres, and indeed more
general surfaces. In this section we will begin to put the formalism described
so far to work in particular problems involving such intersections and hope to
show that it provides a very elegant framework for carrying out these tasks.

Before looking at particular examples we will look briefly at representa-
tions of linear combinations of points. In order to take full advantage of the
projective representation we should be able to consider linear combinations
of points in the A(p,q) space. We know that a linear combination of two
points a, b of the form

Aa+pb where A+p=1

gives another point on the line joining a and b. Similarly, a linear combination
of 3 points, a, b, ¢ of the form

Aa+ pb+ve where A+p+v=1

gives another point on the plane containing a,b and ¢. The usual projective
representation, where we go up just one dimension, has the advantage of still
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being linear in the representatives of the points e.g. if x = Aa + ub + ve
(A4 p+ v = 1) then its 4d projective representation, X, can also be written
in the form

X=M+uB+vC

Here we note that we have insisted that the point X is ‘normalised’, i.e. that
X = x + e rather than some multiple of this. With the conformal represen-
tation, working in A(p + 1,q + 1), we appear to have lost this advantage of
linearity. For example, if A and B are the A(p + 1,q + 1) representatives of
a and b, then in general

A + (1= )X)B # amultiple of F(Aa+ (1 —A)b)

This is due to the presence of the z?n term in the representation, which
removes linearity. However, the following is true and is easy to show from
the definition of F(z):

FQa+ (1-Xb) =M+ (1-NB+ %A(l ~ NA-Bn (40)

We therefore see that the departure from linear behaviour is given by the
addition of a multiple of the point at infinity. This is relatively benign be-
haviour and means that many of the techniques we use in the GA version
of projective geometry will still work here. For example, this gives us an-
other way of seeing that the equation for a line passing through points @ and
b is XAnAAAB = 0 — the wedging with n knocks out the non-linear term
1X(1—X)A-Bn and we are left with the usual GA projective geometry result.

Precisely the same sort of thing goes through for a plane: let a, b, ¢ define
a plane and let

z=aa+ fb+yc where a+pB+vy=1
be a general point on the plane. Then it is easy to show that the representative
of z, X = F(z) satisfies
1
X =aA+pBB+~yC+dn where 0= i(aﬂA-B +avA-C + pyB-C) (41)

— again making it clear why the equation of the plane can be written as
XAANAABAC =0

Note that in this section, and subsequent sections where we use the same
multiples (a, 8,7 etc) in A(p+1,q+ 1) space as in A(p, q) space, it is impor-
tant that the representatives are taken as F(a), F(b) etc and not arbitrary
multiples of these. What it amounts to is that we have to use normalised
representatives (as referred to previously) satisfying

Xn=-nn=-2 (42)

Working with these normalised points will also turn out to be useful shortly
when we consider an alternative representation for spheres, circles etc.
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3.1 Intersection of a line and a sphere

For reflection of a wavefront from a spherical surface, we need to find the
intersection points of a sphere, S, and a line, L. Let the line be specified
by A(3,0) points a and b and the sphere by .A(3,0) points p, ¢, r and s. A
general point, z, on the line is therefore given by

z=Aa+ (L-A)b

where A is a scalar. Writing as usual the .4(4, 1) representations of the points
as the corresponding captial letters, e.g. x — X etc., the 4-vector representing
the sphere can be written as

¥ = PAQARAS

Thus, taking x = Aa + (1 — \)b as a general point on the line, we can use
equation (40) to write the intersection of the line and the sphere as

A+ (1= VB + %)\(1 _ A)A-Bn]AZ =0 (43)

If we write A = % 1 we obtain the following, symmetric form for the intersec-
tion equation

1 1
—E/LQA-Bn +u(A-B)+ i(A + B+ iA-Bn) AX =0 (44)

Multiplying this by I = ejeseseé, we get the scalar quadratic in p that we
desire — this time with explicit coefficients.
3.2 Alternative representation for spheres and circles
We know that XAX = 0 can be rewritten as
X(IX)=0 = XX*=0

where X* = X T7! is the dual to X and is a vector. This therefore suggests a
very useful alternative representation for a sphere (or a circle in one dimension
down), which we now discuss.

We know that for any two normalised points A and B

A-B=—-2(a—1b)? (45)

Thus, if X is a point on a sphere and C is its centre we know that we can
write

X-C = —2(z —c)? = —2p*
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where p is the radius of the sphere. For a normalised point X this therefore
implies that

X-(C—p*n)=0

since X-n = —2. Comparing this with X-X* we see that provided we nor-
malise X* after taking the dual, then we will find
X*=C-p’n (46)

Thus, the vector X* encodes, in a very neat fashion, the centre and radius of
the sphere. As an immediate application, writing equation (44) in dual form
and multiplying out, gives the following explicit equation for the intersection
points of a line through a and b with the sphere centre ¢ and radius p:

p?A-B+ u(A - B)-C + %(A+B)-C— iA-B+2p2 =0 (47)

Whether one wishes to use this form or the form given in equation( 44)
depends on whether it is most useful to specify the sphere by 4 points lying
on it or by its centre and radius. Note also that given a X* (via taking the
normalised form of the dual of X' = PAQARAS) we can immediately get the
radius from

() = (€ —p*n?
= —2p°C'n = 4p° (48)
using the facts that C? = 0, n? = 0 and C-n = —2. From this it then follows

that C' = X* + 1(2*)?n. To summarise, from the vector form of the sphere,
we can easily obtain the centre and radius as follows

(5*)? = 49 (49)

C = [1 + iﬂn] (50)

4 Surface Evolution and Representation

Here our aims are threefold:

1. We would like to be able to represent a surface by piecewise spherical or
planar patches — this would be useful in a variety of contexts.

2. We would like to be able to evolve a surface — here the idea is that
a surface may have complicated features such as cusps or catastrophes,
and we want to find a differentiable representation. We can then generate
such a surface by evolution from some simple smooth starting point.

3. Wavefront propagation and reflection — this turns out to be linked with
(2), and of course is useful in its own right.

These three are linked overall by the way geometric algebra helps with
them, and particularly the conformal representation.
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4.1 Surface representation

Here the machinery of the conformal representation turns out to be very
useful. We start by triangulating the surface in the sense of putting down a
grid of points where we identify groups of 3 points together with one interior
point.

A

Fig. 1. Example of points for triangulation

If the interior point is to be taken as in the same plane as the other
three points we will have a planar representation; if not, then we have a
spherical representation. The conformal representation of the sphere is S7 =
AANBACAD say, so that S; is a vector and S} is a 4-vector — note that if
we compare with the notation used in previous sections, Y = S*. Now take
another sphere, represented by the 4-vector S5 and the vector Sz, where
S35 = BACAD'AE where D and E are as shown in Figure 1. Now we find the
equation of the intersection of these spheres. A point X on the intersection
must simultaneously satisfy

X5’1=0 and XSQZO

Now X-(S1AS2) = (X-51)S2 — (X-S2)S1 and we know Sa # AS; for any
scalar A (i.e. the spheres are distinct). Thus X lies on the intersection iff

X-(S1ASs) =0 (51)
= XA[(S1AS2)I] =0 (52)

The intersection is thus the circle C' = (S1AS2)I. This is a very neat way
of finding the intersection in the case where the two spheres were originally
specified by 4 points each (if the spheres were specified by the radius and
centre, then we could do this fairly easily by conventional means). Indeed,
given 4 points it is also not too hard to recover the conventional equation of
a sphere in terms of its radius and centre, but things become slightly more
complex when we are considering general 3d circles.

Given a general circle C (a trivector), how do we find its radius? (the
radius of curvature of the intersection line in the above case). To do this we
start with the unit circle in the z—y plane and take as three points on it
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A\ 4

Fig. 2. Unit circle with three key points marked

those shown in Figure 2. Now for any unit length vector, Z say, we know that
F(2) =n+2& — 7 = 2(& + €), recalling the definition of n,# in equation 5.
In particular we have

F(el)/\F(€2)/\F(—€1) = 16i€3/\é = 167:635

where ¢ = ejeze3 and we have used the facts that e;Aex = ie3 and (ies)-e = 0.
Normalising, we can write C' = iezé (C meaning the unit circle, in this case,
in the z—y plane). Next, we note that

since (iesé)(iesé) = 1 and nAC = iegee. This therefore gives us a way of
finding the radius of any circle centred on the origin. Let C' = D,CD,, where
D, is the dilatation rotor D, = €2 introduced earlier, which satisfied

Do F(z)Dy = e*F(e™%x)
Now, DonDgy = e~ %n (recall equations 22) and thus
nAC = e*Dy(nAC) Dy

since D, (n/\é)ﬁa = DonD,AD,CD,. If we dilate the unit circle to a circle
of radius p (so that p = e~®) we thus find that
—C? 9
2 =P
(nAC)

(53)

Therefore, we can now position this circle anywhere we wish in 3d by apply-

ing the rotors for spatial rotations and translations. Neither of these involve
2

further scale factors, so we deduce that % = p? is an identity for any
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circle C in 3d space. Note that nAC is the plane in which the circle lies (recall
Section 1.4).

We now have the spheres and their intersections which can be used to
represent the surface. The GA approach is again very useful here, since it
enables us to retain full information for any point in space as to whether it is
inside or outside any given spherical patch. This is because all orientation
information is preserved and the representation for a hole differs from that
of a sphere. Also for lines in space which we may wish to intersect with the
surface, the fact that we can still use the AA + (1 — X)B type construct (even
though working in the conformal geometry) means that we can tell where
an intersection occurs relative to an ordered list of points on the line. For
example, for the above construct

A<0 = intersection occurs past B
0<A<1 =— intersection occurs between A and B

A>1 — intersection occurs before A

Overall the GA conformal framework allows a systematic approach to be
taken, based directly upon measured points on a surface and with fast look-
up procedures to determine where a given space point or line lies with respect
to the surface. This methodology is currently being implemented in a case of
simulated surfaces coupled with ray-tracing to simulate radar reflection.

4.2 Surface evolution and wavefront propagation

We treat these two topics together since the particular technique we are
investigating works in similar ways for each. Note a fuller account of the
methods used here is in preparation — our main emphasis here will be on
examples.

In [12] the problem of collisional avoidance in robotics was considered as
an example of ‘propagation’ of surfaces. Suppose we have a surface B (we
will describe shortly how we represent the surface in practice) which is the
surface of a fixed obstacle. Let the surface of the robot interacting with this
fixed surface be A. In [12] it is shown that the collision avoidance problem
for this robot is the same as the Huygens propagation of a wavefront (—.A)
from the surface B (the minus just shows that we have to reverse the normal
direction in moving between the two cases). If the wavefront A in fact just
corresponds to reradiation of spherical wavelets (A is a sphere) then we have
actual spherical wavefront propagation off B, and the caustics (envelopes)
of the wavefronts at successive times will be surfaces of constant phase in
the geometric optics approximation. By using A (or —A) to propagate B, we
‘evolve’ B to successive new surfaces, which may be much more complicated
than B, and in particular by evolving an initially well-behaved surface we may
be able to achieve one which exhibits the typical ‘catastrophes’ which occur
for caustics in wavefront propagation. The method is still able to account
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for these in a fully differentiable manner however, since they are linked via a
deterministic differentiable process to the initial differentiable surface.

In [12] a conformal geometry approach is employed to represent the sur-
face. The key point of the method in [12] is to write the position p on the
surface as a function of the set of normal directions m. In other words we re-
gard the surface as ‘indexed’ by m and represent the position at a given value
of m as p[m] — the square brackets reflect the fact that this is not a single-
valued function, since the same m may have several associated positions p if
the object is not convex. Thus far, we do not need conformal geometry, but
the next step is to write the representation as

R(m) = m — n(p-m) (54)

Here, n is the null vector e + € introduced earlier. Thus, we adjoin to the
normal m a multiple of a null vector given by the projection of p onto the
normal. The neat feature of this is that we can now write

R(m) =T ,mT_, (55)

where T, =1+ %na, as earlier, is the conformal translation rotor. The result
derived in [12] is that if we propagate a surface B(m) using the propagation
function (wavefront) A(m) then the resulting surface, written as A & B(m)
is described by the composition of the rotors corresponding to each surface
individually:

T = T*P.A T*PB

P(A®B)

This then suggests a spectral theory of surfaces with the indexing quantity as
the normal direction and propagation as multiplication of ‘direction spectra’
(the translation rotors).

In any practical application of this formalism we have at some stage got
to invert a given R(m) to find explicitly the current set of positions in the
new surface. Since p enters into R(m) only via its projection on m, there is
not sufficient information in R(m) itself to do this. In [12] this is solved by
introducing derivatives of R(m). This enables p[m] to be recovered, via quite
a complicated inversion formula. Here we suggest a different technique, which
achieves the required propagation much more simply and quickly, at least for
the case of spherical wavefront propagation. We note that the problem we
are addressing here is essentially the same as that considered in the level set
method (see, e.g. [13]) applied in this instance to propagation with a constant
velocity.

We explain the technique via two examples. First consider an initial sur-
face consisting of a parabola in 2d as shown in Figure 3. We wish to carry
out spherical Huygens propagation starting from this surface. It is easy to
see that for a sphere, radius p and centre ¢, the representation is:

R(m) = m —n(c-m — p)
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2N

Fig. 3. Simple initial parabolic surface in 2d

(this is because the inward pointing normal, the one we are using by conven-
tion, is m = (=) for g point on a sphere).

The Huygens construction effectively recentres each sphere on the points
of the surface we wish to propagate and the construction in terms of com-
posing rotors effectively tells us to add the ps at the same m (composition of
rotors just corresponds to the sum of the translations). Thus the propagated
R(m), starting from R(m) = m — (p-m)n is

R¥™?(m) = m — [(pm) — pln

For the specific example of propagating a parabola, we can write

1
p=te + §t262 (56)
t€1 — €9
m=—_2 57
V142 (57)
where t is a parameter (actually equal to the z-coordinate of a position). We
2
find we can express p-m as —3 % and thus obtain
1 (m-ey)?
RPTOP — S Y 58
() =m+n (p+ 5 58)

It is an expression like this which needs to be inverted to find p[m] using the
differential R?P"°P(m) as in [12].

But this is actually much more complicated than we need. Instead one can
note that propagating spherical wavefronts corresponds to geometric optics,
and therefore just ray tracing, with rays normal to the wavefronts. All we need
is to move out from any given position along the normal at that position by
a distance p, in order to achieve the same effect as above. For example, in
the parabola case, let us write

m = cos fe; + sin fey
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and specify this as the inward normal by taking 8 in the range —7 < 6 < 0.
(The link to the parameter ¢ is cosf = ¢t/v1+12, sinf = —1/v1+t2).
Then we have that

1
p= —cotfe; + 3 cot? fe,
and the propagated position is just
1
p—pm = (—cotf — pcosBe; + (5 cot? § — psinf)es

The surfaces found this way are plotted in Figure 4 for p = 0,1,2. We see

-2 -1 1 2

Fig. 4. Circular wavefront propagation of an initial parabola. Note the development
of a ‘swalowtail catastrophe’.

immediately that we have an initially smooth differentiable surface (p = 0),
developing a cusp (p = 1) and then a swallowtail catastrophe (p = 2).

As a second example, also considered in [12], let us consider an initially
cardioid-type surface, and propagate this. The initial cardioid is shown in
Figure 5. The equation we use is

Pz =a (%+bc050+%c0s20> (59)
Py =a (b sinf + % sin 20) (60)

i.e. an expression in terms of circular harmonics. The corresponding inward
pointing normal is found to be

m= 1 {(bcosb + cos20)er + (bsinf +sin20)es}  (61)

V1 + 2bcos8 + b2
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4 02040608 112141618 2 222/4
21

Fig. 5. Initial configuration of the cardioid-like shape used for circular wavefront
propagation

Forming p — pm as before, we get a succession of surfaces which initially col-
lapse inwards, pass through each other and then eventually propagate out-
wards in a more or less circular fashion except for a swallowtail catastrophe.
This matches what was found in [12] using the inversion approach.

One can also, of course, work in 3d. The above examples have been in 2d,
but all of the formulae are 3-dimensional and may be applied to any initial
surface for which we can find parametric representations of p and m. Figure 6
shows an example of a 3d cardioid surface which has been propagated in this
fashion. Since the apparatus developed in [12] seems to be unnecessary at

Fig. 6. A frame from the 3d development of cardioid propagation

least for this spherical wavefront propagation, it might be wondered where
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the conformal representation, or indeed geometric algebra, enters into this
problem. The answer lies in what happens if we want to reflect a developing
wavefront/surface off another surface. Figure 7 shows what happens when
the developing cardioid figure reflects off a plane surface. This is in 2d, but
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Fig. 7. Reflection of ‘cardioid’ wavefront from a plane sheet

we also have a 3d demonstration where an initially cylindrically symmetric
propagating surface is reflected off an offset spherical surface, resulting in a
quite general 3d shape, see Figure 8. The way in which these examples were
computed used the GA formula for reflection in 3d;

a = —mam
for the reflection of a vector a to a vector a' in the local normal m, together
with the above results for the intersection of lines and planes and lines and
spheres etc in the conformal geometry. The ‘lines’ in this case are the ‘rays’
coresponding to normals to the wavefront. The conformal approach enables
one to have a straightforward synthetic algorithm for all these computations,
which is basically very simple, but generates quite impressively sophisticated
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Fig. 8. Stage in propagation of an initially cylindrically symmetric cardioid-shaped
3d wavefront reflecting off an offset sphere

results. Extensions to non-uniform propagation velocity are currently being
considered.
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