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Abstract
An objective account of the action of a Stern-Gerlach apparatus on spin-1

2
particles is given, using the Dirac equation. This generalizes earlier work
on a causal interpretation of the Pauli equation to the relativistic domain,
leading to a more natural choice for the current in the model.
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1 Introduction
Dewdney et al. [1, 2] have described the action of an inhomogenous magnetic field
on an uncharged spin-1

2 particle, as in a Stern-Gerlach type spin measurement.
Their aim was to demonstrate that there is a causal interpretation of quantum
mechanics which is not only consistent with the equations of quantum mechanics,
but which quantitatively reproduces the results of measurements made on ensembles
of identically prepared systems. According to such an interpretation we may assign
well-defined trajectories and spin vectors to particles and study how these interact
with the apparatus during the course of a measurement. For a spin measurement,
the conventional collapse of the wavefunction onto eigenstates of the spin operators
along the field direction is replaced by a continuous evolution of the particle’s
spin vector towards either alignment or anti-alignment with the field direction.
Dewdney et al. interpret this alignment as the consequence of ‘quantum torques’
which act in addition to the usual spin precession in the magnetic field. These
quantum torques depend on the wavefunction and hence are sensitive to the whole
experimental context.

In this letter we provide a fully relativistic account of a similar spin measurement.
It is well known that the current employed by Dewdney et al. is inconsistent with
that obtained from Dirac theory in the non-relativistic limit, the two differing by
a term in the curl of the spin vector [3, 4]. However, the qualitative results of
Dewdney et al. for the behaviour of the streamlines and the spin vector coincide
with our predictions in the non-relativistic case. Our results demonstrate that
the deterministic evolution of the wavefunction suffices to account for the discrete
outcomes of a quantum spin measurement. We do not need the relativistic analogue
of Bohm/de Broglie theory in order to accept the validity of these results. Besides
dealing with a well-defined current, a relativistic treatment is necessary as a
foundation for future work extending these ideas to correlated spin measurements
made over spacelike intervals, as in EPR-type experiments, so as to take issues
of locality properly into account. The treatment presented here is, at the first
quantised level, appropriate to scattering from arbitrarily large magnetic field
gradients. However we shall see that pair production becomes significant in such
cases, demanding ultimately a field-theoretic treatment. With an appropriate
change in the electromagnetic interaction term, the present treatment could be
extended to model the motion of an electron in an inhomogeneous external magnetic
field. This would shed light on Bohr’s statement that no measurement of the
magnetic moment of the electron could be made, by simply observing the beam
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splitting on passage through such a field (see e.g. appendix to [5]).
In the extension of Bohm’s original ideas to include the concept of spin [6], the

Pauli spinor is parameterised as

|Φ〉 = Reiψ/2
 cos(θ/2)eiφ/2

i sin(θ/2)e−iφ/2

 (1.1)

where {θ, φ, ψ} are Euler angles describing the state of rotation of the particle.
This spinor is assumed to evolve according to the Pauli equation,

ih̄∂t |Φ〉 = − h̄2

2m∇
2 |Φ〉 − µσ̂ ·B |Φ〉 , (1.2)

where µ is the anomalous magnetic moment of the particle. The particle velocity
v is defined by J = ρv, where ρ = 〈Φ|Φ〉 and the current J has components Jk
given by

Jk = ih̄

2m (〈∂kΦ|Φ〉 − 〈Φ|∂kΦ〉) . (1.3)

Note that no spatial integration is implied by the use of bra-ket notation. The
spin-vector s has components sk given by

ρsk = h̄

2 〈Φ|σ̂k|Φ〉 = h̄

2 (sinθ sinφ , sinθ cosφ , cosθ ) , (1.4)

where the {σ̂k} are the Pauli spin operators. The Pauli equation can now be used
to determine the equation of motion for the spin vector along a chosen streamline.
The resulting equation differs from the classical equation by the inclusion of the
‘quantum torque’ which is a non-local term involving spatial derivatives of the spin
current ρs.

Using these definitions of s and v, Dewdney et al. calculate the integral curves
of the velocity vector (streamlines) and the Euler angles {θ, φ, ψ} as functions of
spatial position and time for a Gaussian wavepacket which is localised along the
field direction. They find that the wavefunction evolves in just the way required to
give either alignment or anti-alignment with the field direction.

Our treatment of the relativistic problem uses the Dirac equation expressed in
the spacetime algebra (STA) formalism of Hestenes [7], which we briefly review in
the next section before applying it to the spin measurement in Sections 3 and 4.
We believe that the STA is not only a powerful computational tool for discussing
quantum mechanics but one which brings genuine new insight into the geometric
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structure of Dirac theory, implying far-reaching consequences for the quantum
theory of measurement. Of course, the results presented here are independent of
the representation in which the underlying theory is expressed, but we believe their
interpretation is most transparent when considered in the STA. We use natural
units (c = 1, h̄ = 1) except when presenting the results of our simulations.

2 Dirac Theory in the STA
The spacetime algebra [7, 8] is a real, geometric (Clifford) algebra [9] on Minkowski
spacetime. Vectors a, b are equipped with a single product that is associative (and
distributive over addition), which we denote ab. It is convenient to introduce four
orthonormal basis vectors {γµ}, µ = 0, 1, 2, 3, satisfying

γµ ·γν ≡ 1
2(γµγν + γνγµ) = ηµν = diag (+−−−), (2.1)

where γ0 is a timelike unit vector. The algebra of the vectors {γµ} is the same as
that of Dirac’s γ̂-matrices, but they now form an orthonormal basis for spacetime,
rather than the four components of a single vector in an internal ‘spin-space’.

By repeated multiplication we generate a basis of sixteen elements for the STA,

1 {γµ} {σk, iσk} {iγµ} i

1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar,

where σk ≡ γkγ0 and
i ≡ γ0γ1γ2γ3 = σ1σ2σ3. (2.2)

The grade-4 element i is the highest-grade element in the space, and i2 = −1.
However, unlike the uninterpreted scalar imaginary used in conventional quantum
mechanics, which we denote by j, it now has a definite geometric interpretation.
The timelike bivectors {σk} obey the same algebraic relations as the Pauli spin
matrices, but in the STA they represent an orthonormal frame of ‘relative’ vectors
in the Euclidean 3-space relative to an observer whose 4-velocity is γ0. We shall
take this frame as our laboratory frame. To describe observations made in this
inertial system we make use of the space-time split: if x is a vector labelling an
event in spacetime, this event is seen to occur at time t and position x where

xγ0 = t+ x = x·γ0 + x∧γ0. (2.3)
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The ‘relative’ vector x is denoted in bold typeface to distinguish it from (proper)
vectors. We denote the derivative with respect to spacetime position by ∇. This
operator has the space-time split γ0∇ = ∂t +∇, where ∇ is the usual gradient
operator in three-dimensional space, ∇ ≡ σk∂k.

Two useful operations are reversion, denoted by a tilde, which reverses the
order of 4-vectors in an STA expression, and Hermitian conjugation, denoted by a
dagger, which reverses the order of relative 3-vectors in a non-relativistic expression.
Angled brackets 〈ψ〉k are used to denote the grade-k part of the enclosed expression,
with the subscript zero suppressed when discussing the scalar part. Our notation
and conventions follow those in [8, 10].

We shall need the STA representation of the Faraday tensor, in order to discuss
the interaction of an anomalous magnetic moment with the electromagnetic field.
The components Fµν may be assembled with the set of bivectors {γµ∧γν} to form
the Faraday bivector F , given by

F ≡ ∇∧A = 1
2γ

µ∧γνFµν . (2.4)

This has the space-time split F = E + iB, where E and B are the electric and
magnetic fields in the γ0 system.

The even sub-algebra of the STA comprises a representation for the Dirac spinor
ψ, allowing a reformulation of Dirac theory in the STA. This formalism and some
applications to electron physics have been discussed at length in [11], which includes
a preliminary summary of the results presented here.

In this representation we may write [12]

ψ = (ρeiβ) 1
2R, (2.5)

where ρ is a positive scale factor and R is a spacetime rotation (rotor) satisfying
RR̃ = 1. A direct method of translation between matrix-based approaches and the
spacetime algebra of Hestenes is given in Ref. [10]. In the STA, the Dirac equation
may be written as [7]

∇ψiσ3 − eAψ = mψγ0. (2.6)

The components of the Dirac current assemble with the {γµ} vectors to give the
conserved frame-free current J = ψγ0ψ̃. The integral curves of J define a set
of non-intersecting streamlines in spacetime, whose tangents are always future-
pointing timelike vectors. According to the standard Born interpretation of quantum
mechanics, J0(x, t) gives the probability of locating the particle at position x and
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time t. The conservation of J implies that

J0(x0, t0)d3x0 = J0(x1, t1)d3x1, (2.7)

where (t0,x0) and (t1,x1) are joined by a streamline. The density J0 thus flows
along the flux tubes formed by adjacent streamlines, without ‘leaking’ out. For
this reason, the streamlines are a useful tool for studying the flow of density in
dynamic situations, independent of whether one accepts Bohm/de Broglie theory
or any other particulate interpretation. It is in this spirit that we plot streamlines
for the spin measurement in our simulations. The components 〈ψ̄|γ̂µγ̂5|ψ〉 of the
spin current, like those of the Dirac current, assemble with the {γµ} vectors to give
the frame-free spin current ρs ≡ ψγ3ψ̃.

The above discussion suggests that the role of the Dirac matrices in the theory
is simply to define an orthonormal frame of vectors. It follows that claims of
dynamical consequences based solely on their algebraic properties are questionable.
One such example is the deduction that the measured velocity of an electron will
always yield the speed of light (because the eigenvalues of the ‘velocity’ operators
γ̂0γ̂k are ±1). To the extent that we may sensibly define a particle velocity v in the
Dirac theory, consistency with the laws of quantum mechanics requires that the
velocity be in the direction of the Dirac current, i.e. J = ρv. If not, particles would
end up at positions with probabilities inconsistent with those derived from the
Dirac (charge) current. Similar arguments may apply to spin measurements, where
the anti-commutation properties of the Dirac matrices (or, non-relativistically, the
Pauli matrices) are usually taken to imply that no two components of the spin may
be known simultaneously.

Our starting point is a form of the Dirac equation which describes an electrically-
neutral spin-1

2 particle of anomalous magnetic moment µ. In the conventional
representation this equation may be written as [13]

(jγ̂µ∂µ − 1
2µσ̂

µνFµν)|ψ(x)〉 = m|ψ(x)〉. (2.8)

The operators σ̂µν are defined in terms of the Dirac γ̂-matrices by

σ̂µν ≡ 1
2j [γ̂µ, γ̂ν ] . (2.9)

Translating equation (2.8) into the STA we find the equation

∇ψiσ3 − µFψiγ3 = mψγ0. (2.10)
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Note that there are some inconsistencies in the literature with the sign both of F
and the term containing it in the modified Dirac equation. For example, compare
Section 9.11 of Greiner [13], with equation (10.81) of Bjorken and Drell [14]. For this
reason, and to make contact with the non-relativistic treatment, we demonstrate
that the choice made here is consistent with the Pauli equation in a non-relativistic
reduction. Let us define two spinors ψ± where

ψ±(x, t) ≡ 1
2(ψ ± γ0ψγ0)eiσ3mt. (2.11)

The factor eiσ3mt removes the contribution of the rest mass to the phase of ψ±
and, for sufficiently slow temporal variation in ψ±, ensures that we are dealing
with positive-energy solutions of (2.10). We identify the spinor ψ+ with the Pauli
spinor Φ, since it is an even element of the geometric algebra of Euclidean 3-space
(the Pauli algebra [8]). Equation (2.10) then implies that

2mψ− ≈ −∇Φiσ3 − µEΦiσ3, (2.12)

where we have neglected the terms ∂tψ−iσ3 and µBψ−σ3, which are small compared
to 2mψ− in non-relativistic situations. Using this approximation for ψ−, we find
the equation of motion for the Pauli spinor:

∂tΦiσ3 = − 1
2m

(
∇2Φ + µ∇(EΦ)− µE∇Φ− µ2E2Φ

)
− µBΦσ3. (2.13)

The terms involving E are relativistic corrections to the Pauli equation arising
from the motion of the magnetic moment through the electric field. In the limit
c → ∞ these terms vanish, leaving the STA form of the Pauli equation. In the
STA, the parametrisation of Φ used by Dewdney et al. (equation (1.1)) takes the
transparent form

Φ = ρ1/2eiσ3φ/2eiσ1θ/2eiσ3ψ/2, (2.14)

where the rotor term is precisely that needed to describe a rotation in terms of
Euler angles.

Using equation (2.12) it is readily shown [3] that a space-time split of the Dirac
current gives a 3-current J where

mJ = −
∗
∇ 〈

∗
Φ iσ3Φ†〉 − 1

2∇·(Φiσ3Φ†), (2.15)

and we have taken E = 0. The overstars in this equation denote the action of the
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gradient operator. The first term is just the STA equivalent of the current employed
by Dewdney et al. The second term can be written as 1

2∇×(ΦΦ†s), which includes
the curl of the spin 3-current ΦΦ†s, obtained as an approximation to the Dirac spin
current on splitting in the γ0 system. This spin 3-current has components given by
equation (1.4). Hence the current initially employed by Bohm et al. [6] and more
recently by Dewdney et al. is inconsistent with the non-relativistic reduction of
the Dirac theory, although, as already noted, this does not affect their qualitative
conclusions. This fact seems to be widely known [4] but is still ignored in many
causal treatments of the Pauli equation. The Dirac current arises naturally as the
conserved current conjugate to U(1) gauge transformations of the Dirac field, and
hence appears as the source term in the QED Lagrangian. It is thus natural to
adopt this definition of the current in any causal approach to Dirac theory.

3 A model for the spin measurement
Suppose we wish to measure the z component of the spin of an uncharged spin-1

2
particle. Let the mass of this particle be m and the magnetic moment µ. We
observe the deflection of the particle after passage through an inhomogeneous
magnetic field directed along our z coordinate axis, and so infer the component
of spin along the field direction. We will take our laboratory system to be the γ0

system.
Let the initial state of the particle be a positive-energy plane-wave solution of

the free-particle Dirac equation. We write this state in the form ψ = ψ0e
−iσ3p·x,

where p is the momentum and the constant spinor ψ0 satisfies

pψ0 = mψ0γ0. (3.1)

An explicit form for ψ0 is (see e.g. Ref. [15] )

ψ0 = eu/2Φ, (3.2)

where Φ is an arbitrary Pauli spinor and

pγ0 = E + p = meu. (3.3)

E and p are the energy and momentum of the particle in the γ0 system. We follow
Dewdney et al. [1] by assuming that, at time t = 0, the particle receives an impulse
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from a magnetic field gradient, F = B′ziσ3δ(t), where B′ is the field gradient
along the z-direction. Clearly this field is not a physically realisable magnetic field,
since it has non-vanishing divergence. This could be rectified by the addition of
components along the orthogonal directions with suitably chosen spatial gradients.
However, we believe that such components would have little effect on the motion
along the z direction, and so for simplicity we ignore them. Around this impulse,
the equation of motion for the system is given by the split of equation (2.10) in
the γ0 system, which approximates to

∂tψiσ3 = ∆pzδ(t)γ3ψγ3, (3.4)

with ∆p ≡ µB′. It follows that

∂t(ψ ± γ3ψγ3) = ∓∆pzδ(t)(ψ ± γ3ψγ3)iσ3. (3.5)

We may summarise the effect of the impulse by

(ψ ± γ3ψγ3)t=0+ = (ψ ± γ3ψγ3)t=0−e
∓∆pziσ3 , (3.6)

where t = 0− is just before the impulse and t = 0+ just after. If we decompose the
spinor ψ0 into

ψ↑ ≡ 1
2(ψ0 − γ3ψ0γ3), ψ↓ ≡ 1

2(ψ0 + γ3ψ0γ3) (3.7)

we see that, immediately after the shock, ψ is given by

ψ = ψ↑eiσ3(p·x+ ∆pz) + ψ↓eiσ3(p·x−∆pz). (3.8)

The spatial dependence of ψ is now appropriate to two different values of the
3-momentum p↑ and p↓, where

p↑ ≡ p+ ∆pσ3, p
↓ ≡ p−∆pσ3. (3.9)

For t > 0 we have F = 0, so that ψ propagates as a linear combination of four
plane-wave states

ψ = ψ↑+e
−iσ3p

↑ ·x + ψ↑−e
iσ3p̄

↑ ·x + ψ↓+e
−iσ3p

↓ ·x + ψ↓−e
iσ3p̄

↓ ·x, (3.10)
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where

p↑γ0 = E↑ + p↑ (3.11)
p̄↑γ0 = E↑ − p↑, (3.12)

and

E↑ = (m2 + p↑2)1/2, E↓ = (m2 + p↓2)1/2, (3.13)

with similar expressions for p↓. Each term in equation (3.10) must separately satisfy
the free-particle Dirac equation, so that

p↑ψ↑+ = mψ↑+γ0 (3.14)
−p̄↑ψ↑− = mψ↑−γ0, (3.15)

which are satisfied together with the condition

ψ↑ = ψ↑+ + ψ↑−. (3.16)

These equations hold also for ψ↓, ψ↓+ and ψ↓−. From these conditions we find that

ψ↑+ = 1
2E↑ (p

↑γ0ψ
↑ +mγ0ψ

↑γ0), (3.17)

ψ↑− = 1
2E↑ (p̄

↑γ0ψ
↑ −mγ0ψ

↑γ0), (3.18)

with the expressions for ψ↓± following similarly.
We see that the effect of the impulse on a monochromatic plane wave is to split

it into four plane waves, each with distinct phase velocity. The first two terms in
equation (3.10) have phase velocities in the directions ±(p+ ∆pσ3) respectively,
whilst the last two are in the directions ±(p − ∆pσ3). A particle incident on
the apparatus could be modelled as a wavepacket, formed by superposing the
incident plane-wave states above. This packet splits into four packets as a result
of the B-field gradient. The two transmitted packets, which are composed of
positive-energy plane-waves, move apart along the field direction until eventually
they no longer overlap significantly, at which point detection of the particle at a
screen would give an unambiguous result for the measurement. The two reflected
wavepackets are composed of negative-energy plane-waves. The appearance of
antiparticle states must ultimately be attributed to pair production in the magnetic
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field, and is significant only in large magnetic field gradients. A rigorous treatment
of this phenomenon requires a multiparticle approach, which we shall not attempt
here.

We now verify that in the non-relativistic limit, this causal approach yields the
same probabilities for a ‘spin-up’ and ‘spin-down’ result as conventional operator
methods. In this limit, in which we neglect pair production, the negative energy
terms in equation (3.10) are negligible and so we take ψ↑+ = ψ↑ and ψ↓+ = ψ↓. If
the initial state is a wavepacket composed of positive-energy plane-wave states,
each having a weight g(p), then after passage through the magnetic field we have

ψ(x, t) ≡ ψu + ψd =
∫
d3p g(p)

(
ψ↑e−iσ3p

↑ ·x + ψ↓eiσ3p
↓ ·x
)
, (3.19)

where ψu denotes the packet moving up the field gradient and ψd the downwards
moving packet. For sufficiently large t the overlap of these packets is small and may
be neglected in calculating the density J0. In this approximation J0 is given by

J0 = ψuγ0ψ̃u + ψdγ0ψ̃d. (3.20)

The probability Pu of obtaining the ‘spin-up’ result is simply equal to the probability
of finding the particle in the region z > 0, which is given by integrating J0 over this
region. The contribution from ψd may be neglected since this packet is localised in
the region z < 0. On performing the spatial integration we find that

Pu ∝
∫
d3p g(p)2(ψ↑γ0ψ̃

↑)·γ0, (3.21)

with a similar expression for the probability Pd of the ‘spin-down’ outcome. Using
equations (3.2) and (3.7), it is straightforward to show that

(ψ↑γ0ψ̃
↑)·γ0 = 2Φ†Φ(E(p)/m+ s·σ3), (3.22)

(ψ↓γ0ψ̃
↓)·γ0 = 2Φ†Φ(E(p)/m− s·σ3), (3.23)

where Φ†Φs = Φσ3Φ†. If we take the Pauli spinor Φ to be of the form

Φ = α− βiσ2, (3.24)

and set E ≈ m for all momentum components of the non-relativistic wavepackets,
we recover the expected result that the ratio Pu/Pd of the probabilities of the two
outcomes is equal to |α|2/|β|2.
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4 Wavepacket Simulations
For computational simplicity we take the incident particle to be localised along the
field direction only, and with no momentum components transverse to the field.
This two-dimensional (one 3-space and the time coordinate) setup was used by
Dewdney et al. [1] and is sufficient to demonstrate the essential features of the
measurement process. The main deficiency of this model is that all four packets
have group velocities along the field direction.

We take ψ0 to be of the form (3.2), with u = uσ3 and Φ given by equation (3.24).
The parameters α and β are real scalars, where α = 1, β = 0 corresponds to the
‘spin-up’ and α = 0, β = 1 to the ‘spin-down’ eigenstates of conventional operator-
based formulations. These plane wave spinors are superposed numerically to form
a Gaussian packet with standard deviation 1× 10−24kg m s−1 in momentum space,
giving a half-width of 1 × 10−10m in real space. We take the particle’s mass
to be 1 × 10−27kg. After the impulse, the future evolution of ψ is found from
equation (3.10). From this information we can analyse the behaviour of the relative
spin-vector s∧γ0, the probability density J0 = J ·γ0, and the streamlines for initial
values of Φ.

In Figure 1 we plot the evolution of J0, of s∧γ0, and of streamlines starting from
various positions in the initial packet whose spin-vector initially points along the σ1

direction (Φ = 1− iσ2). The impulse imparts ∆p = 1× 10−23kg m s−1. The packet
splits symmetrically into two equal sized packets and the streamlines bifurcate at
the origin. The plot of the spin vector in Figure 2 shows that immediately after the
impulse, the spins are disordered because of the infinite rate of spin precession in
the impulsive field. However, they sort themselves out in around 10−14s such that,
in the upward moving packet, the spin vector points along the field direction, whilst
in the downward moving packet they are aligned in the opposite sense. Thus we
recover the disjoint outcomes conventionally obtained by projection of the initial
ψ onto eigenstates of the spin operators. As Dewdney et al. found, the choice of
which packet a streamline enters is determined by its starting position in the initial
packet. If, for example, the streamline is initially above the bifurcation point, it
enters the upward-moving packet and the spin evolves along this path such that, on
arrival at a particle detector, the spin points along the field direction. We see that,
for this choice of Φ, each outcome is equally likely, as is shown by the symmetrical
splitting of the packet.

A calculation of the relative amplitudes of ψ↑± and ψ↓± shows that the negative
energy packets are negligible for our chosen value of ∆p, which is consistent with
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Figure 1: Splitting of a wavepacket with Φ = 1 − iσ2. The upper figure shows
the probability density, J0, at t = 0, 1.3, 2.6, 3.9× 10−14s with t increasing up the
figure, and the lower figure shows the streamlines in the (t, z) plane.
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Figure 2: Splitting of a wavepacket with Φ = 1− iσ2. The evolution of the spin
vector projected in the (x, z) plane is shown for the setup described in Figure 1.
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Figure 3: The asymmetric splitting of a wavepacket with Φ = 1.618 − iσ2. The
bifurcation point is now below z = 0 so that more streamlines enter the upward
moving packet.
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Figure 4: The asymmetric splitting of a wavepacket with Φ = 1.618 − iσ2 as
described in Figure 3. The figure shows the evolution of s∧γ0 projected in the
(x, z) plane.
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the observation that ∆p� m implying negligible pair production.
In Figure 3 we plot the evolution for unequal mixtures of ‘spin-up’ and ‘spin-

down’ in the initial spinor. The impulse is as before. We now see an asymmetry
in the splitting of the wavepacket, reflected in the lowering of the bifurcation
point. More streamlines enter the upward moving packet and the density J0 is
correspondingly greater in this packet. We can calculate the probability for each
of the two disjoint outcomes by numerically integrating J0 over the spatial extent
of each packet, giving a result in exact agreement with the results of the usual
‘projection onto eigenstates’ approach, as expected from our previous proof.

As a final illustration of our approach, we consider a large field gradient such
that ∆p is comparable to the mass of the particle. We suppose that the initial
packet already has its spin aligned along the field gradient (Φ = 1). For small field
gradients we find that there is no splitting of the packet, all of the streamlines
entering an upward-moving packet. However, for sufficiently large field gradients
we find that a second packet is created which is composed of negative-energy
states. In Figure 5 we plot the effects of an impulse ∆p = 1× 10−18kg m s−1. Both
packets have spin aligned with the field gradient, but the packet composed of
negative-energy states is deflected down the field gradient. The negative-energy
states therefore behave as if they have a ratio of magnetic moment to mass opposite
in sign to their positive-energy counterparts. In a field-theoretic treatment the
appearance of negative-energy states would be attributed to pair production, with
the antiparticles having the opposite sign of magnetic moment but positive mass
and giving the opposite sign for their ratio, as we have observed.

5 Conclusions
Our aim in this letter has been to present a fully relativistic, causal account of the
operation of a Stern-Gerlach apparatus. This analysis extends the calculations of
Dewdney et al. [1] to the relativistic domain, but with the important difference that
our model does not use any specific physical interpretation of quantum mechanics.
Our plots of the streamlines and spin vectors are in qualitative agreement with those
of Dewdney et al. in non-relativistic situations, despite their use of a current that
is inconsistent with the Dirac current in such cases. However, our interpretation
of the streamlines is very different from that of Bohm/de Broglie theory, where
streamlines are taken to be the spacetime trajectories of a statistical ensemble of
particles. Our use of streamlines is solely as a visual aid to monitor the flow of the
density J0. In the example considered here, the streamlines allow us to follow the
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Figure 5: Creation of negative-energy states by a large field gradient, giving an
impulse of ∆p = 1×10−18kgms−1. The initial packet is entirely spin-up (Φ = 1) and
the resulting spin vector field (not shown) points uniformly along the σ3 direction.
The upper figure shows the probability density, J0, plotted at t = 0, 3, 6, 9× 10−19s,
and the lower figure shows the streamlines in the (t, z) plane. The small packet
moving along the −σ3 direction is composed of negative-energy states.
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flow of density from the initial wavepacket, through the region of interaction with
the magnetic field, and into the final wavepackets that emerge from the apparatus.
A similar use of streamlines in tunnelling simulations have allowed us to make novel
predictions for the duration of electron and photon tunnelling processes. These
results will be presented in a forthcoming paper.

Our simulations make it clear that the Stern-Gerlach apparatus acts primarily
as a polariser. It is the dependence of the relative densities of the final state
wavepackets on the incident spin that allows the experimenter to infer information
about the incident spin. We could extend our simulations to include successive
spin measurements, for example by directing particles in one output channel of
an apparatus with the field along σ3, into another apparatus with field along
the σ1 direction. This would not present any difficulty; we would simply find
that the packet selected from the first apparatus would divide symmetrically at
the second apparatus. Having developed a relativistic model for a single particle
spin measurement, we intend to extend the treatment to describe correlated
measurements made on pairs of particles with spacelike separation. This should
shed much light on the issues of non-locality that EPR and other experiments raise.
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