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Abstract

We consider a fully relativistic method for the calculation of tunnelling
times based on the streamlines of the conserved probability flux. This method
is similar to that proposed by Leavens [1, 2] but is not based on the Bohmian
interpretation. The method is applied to single and two-particle tunnelling in
Dirac theory.

1 Introduction

There have been many attempts to define a physical time for quantum mechanical
tunnelling processes, since the question was raised by MacColl [3] in 1932. Orthodox
quantum theory is unable to give a definite answer to this problem since time is
not an observable (in the sense of being represented by an Hermitian operator)
in the conventional formulation. There is renewed interest in this problem due,
in part, to recent experimental advances which have observed directly the times
involved in optical photon and microwave analogues of quantum tunnelling [4]–[9].
Comprehensive reviews of the various approaches to the problem have been given
by Hauge & Støvneng [10] and Landauer & Martin [11]. Of these approaches, only
the dwell time introduced by Smith [12] is widely accepted. This is a statement
of the average time spent in a given region of space averaged over all scattering
channels. Other authors have proposed definitions of the duration of the tunnelling
process which differentiate between those particles that are ultimately transmitted
by the barrier and those that are reflected. These include (classical) phase times,
the Larmor times suggested by Baz’ [13], the Büttiker & Landauer [14] time and the
complex time of Sokolovski & Baskin [15]. The Larmor, the Büttiker & Landauer
and the Sokolovski & Baskin times are all attempts to define the length of time
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a transmitted particle spends inside the barrier region. These definitions may be
extended to consider incident states that are not monochromatic [16, 17, 18] and
to generate distributions for the times involved [19, 20]. The methods which we
group under the title of phase times involve following the peaks of incident and
transmitted wavepackets through the tunnelling event. This may be used to define a
barrier interaction time, although the validity of this time is highly questionable [14].

Leavens and coworkers [1, 2, 21, 22] and others [23, 24, 25] have applied the
Bohmian interpretation of non-relativistic quantum mechanics to the problem of
one-dimensional tunnelling. In this approach (classical) particles follow the integral
curves (streamlines) of the conserved probability current under the action of a new
‘quantum force’. In this interpretation, the distribution of tunnelling times is ob-
tained from the ensemble of times that the particles spend inside the barrier. In this
paper we consider a similar, but fully relativistic method, for predicting times associ-
ated with the tunnelling process. This approach also uses the spacetime streamlines
of a conserved current, but we do not require that these be identified with the traject-
ories of (classical) particles. Instead we require only that the flow of the probability
density reflects the temporal aspects of the tunnelling process. By construction, the
predictions of this approach will agree with orthodox quantum mechanics in those
situations where orthodoxy is able to predict. However, streamline-based techniques
go on to give unambiguous predictions even in situations where standard quantum
theory cannot. The barrier traversal time is one such example.

This paper is concerned with electron tunnelling only, although we expect stream-
line methods to be of value in other situations as well (see, for example, Prosser [26,
27] for non-covariant applications to the classical electromagnetic field, and Hol-
land [24] for other applications). In particular, an extension of streamline techniques
to quantum-optical problems should aid the discussion of the recent two-photon ex-
periments of Steinberg et al. [4, 5, 6]. Our single-particle calculations are based
in first-quantised Dirac theory, thus ensuring that the streamlines always lie inside
the forward light cone [28], contrary to predictions derived from the Schrödinger
equation [10]. It follows that traversal times are always bounded above by the light
travel time. Furthermore, we are assured that any spin-dependent effects are prop-
erly accounted for. We shall see that for a low energy electron, incident normally in
a helicity eigenstate, our predictions agree with the earlier work of Leavens. We also
discuss how these predictions are modified when the spin is varied. Finally, we con-
sider the streamlines for a pair of normally incident electrons. In this case, the Pauli
principle must be considered, and this has a significant effect on the distribution of
interaction times.
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2 The method

The approach we employ to predict the physical times associated with tunnelling
processes between free asymptotic states is as follows. We require that the wavefunc-
tion determines a conserved probability flux field Jµ(x, t), with the time component
J0 interpreted as the probability density (in the laboratory frame) for locating the
particle at (x, t). The streamlines of this flux field never cross in spacetime, since
they are the integral curves of a conserved vector field. Furthermore, the time com-
ponent J0 flows along these streamlines without ‘leaking’ between them. For this
reason, the streamlines are a very useful tool for studying the flow of the particle’s
position probability density. The incident particle is represented by a wavepacket,
whose future development is governed by fully deterministic equations. The stream-
lines of the flux field can then be followed through spacetime from the initial packet.
Each streamline is assigned a statistical weight, given by the value of J 0 at its start-
ing point in the initial wavepacket, and a parameter representing the time we wish to
determine. For example, if we seek the length of time spent by a tunnelling particle
in the barrier region, the parameter assigned to a given streamline is simply the
amount of time τ the streamline spends in that region. The statistical ensemble of
streamlines may then be used to calculate probability distributions for the time of
interest. We believe it is natural to expect this distribution to be realised exper-
imentally, given the standard interpretation of the conserved flux field. We have
given a preliminary report of the application of this method to electron tunnelling
elsewhere [28, 29]. When applied to the Schrödinger equation, the results of this
approach coincide with those of Leavens et al. [1, 2, 21]. However, since this ap-
proach does not require that the streamlines determine the trajectories of (classical)
particles, it is of wider applicability. In particular, we expect that quantum optical
problems may be addressed without the need for the problematic concept of the
photon trajectory [30, 31].

Consider a typical experiment where a particle, which we represent by a spatially
localised wavepacket, is prepared at some time t0, well outside the barrier region.
Subsequently the particle interacts with the barrier and may be scattered into one
of several scattering channels. We wish to calculate the distribution PB(tB) for the
length of time tB the particle interacts with the barrier, given that it appears in
some specified channel after the scattering event is completed. Let each streamline
be identified by its starting position x0 in the initial packet at time t0. We consider
that region of x0 space formed from all streamlines that enter the scattering channel
of interest. Each such streamline spends a time τ inside the barrier region. If we
assume that τ(x0) is a differentiable function of x0 over the interior of this region,
then the distribution PB(tB) is given by

PB(tB) ∝
∫ J0

|∇τ |dS, (2.1)
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where the integral is taken over the surface τ(x0) = tB, and dS is the magnitude of
the surface element.

Now consider a one-dimensional experiment where the barrier is normal to the z
direction, and the particle is localised only along this direction. The particle’s motion
is entirely along the z-axis. In this configuration the particle is either reflected or
transmitted by the barrier. The surface in x0 space which divides these channels is
now a plane parallel to the barrier. If we wish to calculate the distribution PA(tA)
of arrival times tA at a planar screen located at zA on the far side of the barrier, we
would label each streamline with its arrival time at the plane zA. This labelling is
potentially ambiguous in the presence of back-flow, where a streamline may intersect
the plane zA more than once [22]. However, it appears that this may be avoided if
the screen is sufficiently far from the barrier [32]. We will assume that this is the
case. Evaluating the integral (2.1) we find that

PA(tA) ∝ J0(t0, z0)|dz0/dtA|, (2.2)

where (tA, zA) and (t0, z0) are connected by a streamline. But the conservation law
∂Jµ/∂xµ = 0 implies that

|J3(tA, zA)dtA| = J0(t0, z0)|dz0|. (2.3)

It follows that, in the absence of back-flow (J 3 > 0),

PA(tA) ∝ J3(tA, zA), (2.4)

which states that, in one dimension, the distribution of arrival times at a point is
proportional to the spatial current evaluated at that point. Expressions such as (2.4)
were criticised by Allcock [33, 34, 35] who claimed that it was impossible to give an
operational procedure which would yield an ‘ideal’ arrival time measurement (ideal
in the sense that the result is independent of the details of the measuring device), and
hence that the concept of arrival times has no place in standard quantum theory.
Muga et al. [32] have shown that this claim is incorrect. By demonstrating the
existence of the ideal absorber, they were able to show that the mean time for
absorption of the probability density can be made arbitrarily close to the mean of
the distribution (2.4).

Returning to barrier traversal times, it is simple to show [21] that the average
time tD a streamline is inside the barrier is given by

tD =
∫

∞

t0

∫

dt d3
x J0(x, t), (2.5)

where the spatial integration is taken over the region containing the barrier. This is
equivalent to the expression for the dwell time derived in [15] from a path integral
analysis.
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Figure 1: The time component of the probability flux as a function of position at
t = −5 fs (Figure 1a), t = +1 fs (Figure 1b) and t = +5 fs (Figure 1c). In all
plots the vertical scale to the right of the barrier is multiplied by 104 to enhance the
features of the small transmitted packet. The peak of the transmitted wave is slightly
advanced from where the peak of the wavefunction would have been in the absence of
the barrier.

3 One-dimensional electron tunnelling

We shall consider an electron, moving along the z-axis, incident from the left on a
potential barrier of height Eb. The barrier extends infinitely in the plane normal
to the z direction. To avoid the problems associated with pair production at the
barrier we shall suppose that 2mc2 > Eb −Ekin where m is the mass of the electron
and Ekin the electron’s kinetic energy outside the barrier region. We represent the
electron by a one-dimensional wavepacket localised along the direction of motion.
Furthermore, each plane wave component of the wavepacket will be taken to be a
helicity eigenstate. With these conditions we eliminate transverse currents in the
barrier region, and so have a genuinely one-dimensional problem. In the case of
Dirac theory, the required conserved flux 4-vector is given by

Jµ = ψ(x, t)γµψ(x, t). (3.1)

We calculate the streamlines of the Dirac flux field Jµ(x, t) and follow these up to
the barrier, and, if not reflected, beyond the barrier. Those streamlines that cross
the barrier then determine distributions for the time spent in the barrier region.

The interaction of a Gaussian wavepacket with a potential barrier is shown in

Figure 1. The wavepacket has central energy Ekin = 5 eV and width ∆k = 0.04 Å
−1

in momentum space. The barrier has height Eb = 10 eV and extends from z = −5 Å
to z = 0 Å. These parameters are chosen to allow direct comparison with the work
of Leavens and Aers [21]. The corresponding packet in position space is shown in
Figure 1, which plots the time component J 0 of the Dirac probability flux as a
function of position at t = −5 fs, t = +1 fs and t = +5 fs. At t = 5 fs we see that
the peak of the transmitted packet lies at z = 67 Å, while the peak of the initial
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Figure 2: Particle streamlines and time spent in the barrier. Figure 2a shows the
streamlines for the front of the wavepacket, indicating that only the streamlines from
the front of the packet cross the barrier. Each streamline slows down as it passes
through the barrier. Figure 2b is a histogram of time the streamlines spend in the
barrier. Distance is measured in Å and time in 10−14s.

packet would have been at z = 65 Å had the barrier not been present. The size
of this advance, divided by the group velocity 4.4 × 10−3c, gives a time advance
of ∼ 0.2 fs, so that the transmitted wave appears to take 0.2 fs less time to pass
through the barrier than to pass through an equal path-length of free space. This
result is often interpreted as meaning that the electron, on average, spends less time
in the barrier region when the barrier is present, than if it were absent. But this is a
misinterpretation of the result. The only prediction that standard quantum theory
allows us to make is that if we had some device that allowed production of electrons
at a given time to the left of the barrier, and we timed the arrival of the transmitted
electrons, the peak of the resultant distribution of arrival times would be shifted to
earlier times by 0.2 fs when the barrier was inserted.

A sample set of streamlines from the initial wavepacket is shown in Figure 2,
along with a histogram of the time that the transmitted streamlines spend inside the
barrier. The histogram is calculated from (2.1) with dτ/dz0 evaluated numerically
from the streamline data. It is significant that a continuously distributed set of
initial input conditions (the positions within the initial wavefunction from which the
streamlines start) gives rise to a set of disjoint outcomes (whether or not a streamline
passes through the barrier). In this case, deterministic evolution of the wavefunction
alone is able to explain the discrete results expected in a quantum measurement.
This is of fundamental significance to the interpretation of quantum mechanics.
Some consequences of this view — though starting from the Bohmian interpretation
of non-relativistic quantum mechanics — have been explored by Dewdney et al. in
other areas of quantum measurement [25].
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Figure 2 shows that only the streamlines starting near the front of the initial
wavepacket pass through the barrier. They therefore have a ‘head start’ as regards
their arrival at some chosen point on the far side of the barrier. Over the front part
of the barrier, however, the transmitted streamlines slow down to speeds very much
less than the group velocity in free space; this is responsible for the comparatively
long time the transmitted streamlines spend in the barrier (∼ 3.5 fs), whilst both
competing effects contribute to the arrival times at the chosen finishing point. We
can compare this value for the time spent under the barrier with the predictions of
previous authors. For example, the Büttiker & Landauer [14] time (interaction time
with an oscillating barrier) gives a value of 0.38 fs for our electron simulation. This
is an order of magnitude smaller than the average time the streamlines spend under
the barrier, and, for our chosen parameters, it is equal to the time taken by a free
electron to traverse the equivalent distance in free space. The results presented in
Figure 2 are in excellent quantitative agreement with those of Leavens, for the same
parameters.

Figure 1 demonstrates that the effect of selecting streamlines from the front of the
packet outweighs their subsequent slowing down, shifting the distribution of arrival
times to earlier times by ∼ 0.2 fs. Similar shifts in arrival times have been observed
in the photon experiments performed by Steinberg et al. [4, 6]. The preferential
selection of the streamlines from the front of the packet is a graphic illustration of
the pulse reshaping that underlies this phenomenon.

4 Spin dependent effects

The analysis of the previous section was simplified by aligning the spin along the
normal to the barrier, and considering a packet composed of plane waves with mo-
menta also along this direction. For other spin orientations, or for oblique incidence,
we must consider wavepackets that localise the incident particle in two or three-
dimensions. In this section we consider briefly the spin dependence of arrival times
and traversal times for normal incidence.

We first consider the distribution of arrival times as measured by a detector which
responds to particles arriving over some region S of the plane z = zA. The analogue
of (2.4) for the arrival time distribution is

PA(tA) ∝
∫

dx dy J3(x, tA), (4.1)

where the integral is taken over the surface S, and we have assumed that J 3 > 0
over this surface. We consider the tunnelling of a particle of mass m, and kinetic
energy Ekin, through a barrier of height Eb. The barrier has width d and lies in the
x− y plane. It is straightforward to show that the transmission coefficient T is spin
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Figure 3: A two-dimensional simulation. Figure 3a shows streamlines in the y-
z plane, which are all started off at the same time. Clearly the left-hand side of
the packet, which ‘spins’ into the barrier, is preferentially transmitted. Figure 3b
shows the same streamlines in the z-t plane. Distance is measured in Å and time in
10−14 s.

independent. In units where ~ = c = 1, we have that

T =
e−ipzdκpz

κpz cosh(κd) − i(p2
z − EEb) sinh(κd)

, (4.2)

where pz is the component of the incident momentum along the normal to the barrier,
E is the total energy (E = Ekin +m), and κ is given by

κ2 = −p2

z − Eb(Eb − 2E) |E − Eb| <
√

E2 − p2
x. (4.3)

The spin independence of the transmission coefficient ensures that there is no change
of spin polarisation on transmission [36]. The stationary phase approximation sug-
gests that the position of the peak of the transmitted packet is the same for incident
packets that differ only in spin polarisation. However, the arrival time distribu-
tion, given by (4.1) will be weakly spin dependent because the current Jµ(x, t) in a
wavepacket contains oscillating components which are spin dependent [37].

To consider the effect of spin polarisation on the traversal time distribution,
we consider a specific two-dimensional example. We construct a wavepacket where
the average momentum is along the normal to the barrier, with all momentum
components lying in a plane. Such a packet represents a normally incident particle
localised in two-dimensions, which we take to be the y-z plane. Provided that we take
the incident spin polarisation to be along the normal to this plane (the x direction),
then the spatial current is confined to the plane of incidence.

In Figure 3 we show the streamlines for such an arrangement, where the incid-

ent Gaussian wavepacket has a width ∆k = 0.04 Å
−1

and kinetic energy 5 eV. The
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barrier is at z = 0 and has width 2.5 Å and height 10 eV. The incident packet has
spin polarisation along the −x direction. Transverse currents are clearly displayed
in Figure 3. The motion near the barrier is highly complex; the appearance of closed
loops of current are suggestive of the formation of vortices. Similar effects have been
reported by Hirschfelder et al. [38] in the context of Schrödinger theory. It is clear
from the Figure that the packet no longer divides (in x0 space) in the plane of the
barrier. That part of the packet which ‘spins’ into the barrier is preferentially trans-
mitted. Numerical investigations with three-dimensional wavepackets of arbitrary
spin polarisation suggest that the packet divides over a spin dependent surface, but
qualitatively it is still the front part of the packet which ‘spins’ into the barrier which
is more strongly transmitted. It seems likely that this will be the most significant
effect controlling the spin dependence of the traversal times. The streamline plots
show that the component of the streamline velocity normal to the barrier is lower
inside the barrier than in the freely propagating packet. This effect offsets the fact
that it is the front of the wavepacket that crosses the barrier, in determining the
distribution of arrival times.

In principle, we could calculate the traversal time distribution from (2.1), with the
streamline traversal time τ(x0) calculated directly from the streamlines. However,
the need to identify the level surfaces of τ(x0) suggests that this distribution is far
from trivial to evaluate. The mean traversal time should be easier to calculate, since
it is given simply by an integral of τ over the region of x0, from which transmitted
streamlines start. Fortunately, many of the qualitative features of these distributions
may be seen from inspection of the streamline plots alone.

5 Two particle tunnelling

The method employed by Leavens et al. [1, 2] is easily extended to more than one
particle, since single-particle Schrödinger theory generalises to a multiparticle theory
in a straightforward manner. For a two particle theory the wavefunction is of the
form ψ(r, s, t), where r and s are the spatial positions of the two particles. The
dependence of ψ on both r and s introduces spatial correlations between the two
particles. The straightforward generalisation of this method to the Dirac equation
results in a theory which is not manifestly Lorentz covariant [39]. In [29] we out-
lined a manifestly covariant wavefunction-based approach to multiparticle relativistic
quantum theory. This employed a wavefunction ψ(r, s), where r and s are the space-
time positions of the two particles. Such a wavefunction clearly encodes correlations
between the spacetime motions of the two particles. In this section we sketch the
outline of an extension of the single-particle streamline method to the multiparticle
domain. We shall assume that the particles interact with the external field, but not
directly with each other.

We shall restrict attention to states in the direct product space of two single-
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particle spinors. Such states may always be written as

ψ =
∑

j

φj ⊗ χj, (5.1)

where φj and χj are single-particle Dirac spinors. The adjoint ψ̄ for such states is
defined by

ψ̄ ≡
∑

j

φ̄j ⊗ χ̄j, (5.2)

where the single-particle adjoint takes its usual meaning.
In [29], we proposed a Lorentz-covariant equation of motion for ψ which employed

anti-commuting operators from the different spaces. The associated conserved cur-
rent (in the two-particle configuration space) J has components Jµ

1 associated with
particle 1 and Jµ

2 with particle 2, where

Jµ
1 = ψ̄γµ ⊗ Iψ Jµ

2 = ψ̄I ⊗ γµψ, (5.3)

where I is the identity operator. The streamlines of the current in configuration space
may be projected into pairs of correlated streamlines rµ(λ) and sµ(λ) in spacetime.
The parameter λ encodes correlations between the spacetime behaviour of the two
individual streamlines. Similar ideas were discussed in the recent paper by Berndl et
al. [40].

By supposing that these streamlines represent the correlated trajectories of clas-
sical particles, we would arrive at the relativistic analogue of the multiparticle Bo-
hmian interpretation. An immediate problem with this interpretation is that the
projected streamlines are not necessarily timelike curves. For this to happen re-
quires the presence of negative energy states, and it is possible that this means that
the method may offer a ‘realistic’ description of pair production and annihilation
processes. These ideas will be expanded elsewhere.

For a wavefunction of the form ψ = φ(r) ⊗ χ(s), a streamline in configuration
space projects to a pair of spacetime streamlines which coincide with integral curves
of the one-particle currents formed from φ and χ. This will be the case for dis-
tinguishable particles. We suggest that the projected streamlines may still provide
useful information about the kinematics of the tunnelling process, even for non-
factored states. In the tunnelling situation described here, the projected currents
are always timelike since pair production is not important. In such cases, there is
no possibility of superluminal transmission of a streamline. To extract quantitative
information we require a probabilistic measure (weight function) on the space of
correlated streamlines. Tunnelling time distributions would then be obtained in the
same manner as for the single-particle case. The details of this weighting procedure
will be given elsewhere. Here, we just wish to explore some of the qualitative features
of the distributions obtained with this method when the particles are indistinguish-
able.
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Figure 4: Correlated streamlines for a pair of identical, non-interacting fermions
incident on a potential barrier. The streamlines start off from equal time points
r0 = s0, with an initial separation of 150 Å along the z direction. Figure 4a shows
streamlines from the front of the two wavepackets. Figure 4b shows streamlines from
the back of the two packets. In the latter case, exchange terms are clearly significant.
Distance is measured in Å and time in 10−14s.

In Figure 4 we consider some of the correlated streamlines for a pair of non-
interacting identical electrons incident normally on a potential barrier. The barrier
has height 10 eV and width 5 Å. Since the electrons are identical and non-interacting,
we may assume a wavefunction of the form

ψ(r, s) =
1√
2
(φ(r) ⊗ χ(s) − χ(r) ⊗ φ(s)), (5.4)

where φ and χ are solutions to the single-particle problem. In Figure 4, φ is the
solution for a normally incident, one-dimensional Gaussian wavepacket, with Ekin =

5 eV and ∆k = 0.04 Å
−1

, with spin aligned along the incident direction. The spinor
χ employs the same initial wavepacket as φ but is displaced by −150 Å along the
normal to the barrier (the z direction). The streamlines shown in Figure 4 are
started off from points in configuration space with equal time coordinates in the
laboratory frame, and with a constant separation of 150 Å. For streamlines starting
from the front of each packet, the correlated streamlines are similar to those obtained
for distinguishable particles, where antisymmetrisation of the wavefunction is not
required. For streamlines started off from behind the single-particle bifurcation
points in each wavepacket, there is an initial reflection from the barrier. After
reflection the streamline approaches a point in configuration space with r = s, from
which it is repelled [29]. For an antisymmetrised wavefunction, the currents Jµ

1 and
Jµ

2 are equal at such points. From Figure 4, it is clear that the current components
J3

1
and J3

2
have opposite sign as this point is approached, so these components must
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vanish there. It follows that the pair of correlated spacetime streamlines repel each
other at this point. After the repulsion one of the pair is incident again on the
barrier, and there is a small probability of further transmission.

The plots in Figure 4 should be compared to those given by Leavens et al. [21]
for a single particle, represented by a wavefunction which is initially a coherent
superposition of two widely separated Gaussian components. In the latter case
all of the transmitted streamlines start from the first component, since the single
particle streamlines cannot cross. Landauer & Martin [11] cited this example in a
review of some of the unexpected features resulting from the Bohmian view. Figure 4
demonstrates that if we reinterpret this situation as describing two incident particles,
then streamlines from the second component are able to cross the barrier.

The generalisation of the single-particle method for calculating tunnelling time
distributions, discussed above, involves weighting correlated streamlines with an
appropriate weight function, and then adding up the weights for those streamlines
that ‘describe’ the dynamical situation of interest. For example, one could ask for
a distribution of arrival times for the transmitted particle, given that one particle
is transmitted and one reflected. Such a distribution would include a contribution
from the pair of streamlines in Figure 4 where one member of the pair is transmitted
on its second attempt. In this manner, the Pauli exclusion principle has a significant
effect on the distributions of tunnelling times.

6 Conclusions

We have presented a streamline-based approach for the calculation of tunnelling
time distributions. The results of this method may be regarded as the relativistic
generalisations of those of Leavens [1, 2]. However, we have chosen not to interpret
the streamlines as the world-lines of (classical) particles, as in the Bohmian approach
employed by Leavens. Our use of the streamlines is restricted to following the flow
of probability density through space. The method is based on the assumption that
the dynamics of the probability density flow directly describe the temporal aspects
of the tunnelling process. The arrival time distribution calculated on the basis of
this assumption is in agreement with the mean arrival time predicted by Muga et
al. [32], who employed an operational model of the detection process. Their work
refuted earlier claims [33, 34, 35] that the concept of arrival times has no basis in
standard quantum theory.

The status of the predictions for the traversal times is less clear. Any ‘meas-
urement’ of the elapsed time between entering and leaving the barrier will disturb
the system. This makes the concept of a traversal time problematic in the conven-
tional interpretation, since the ‘observable’ cannot be related to the results of ideal
operational model experiments. This is not the case in the Bohmian interpretation,
where the underlying theory allows intrinsic properties to be defined in terms of the
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particle trajectories alone. We share the view of Landauer & Martin[11] that the
concept of a traversal time, while being useful, is not indispensable. Different pro-
cesses involving tunnelling may well have different relevant timescales, all of which
may be used to define a traversal time. In this letter we have taken the viewpoint
that the flow of probability density provides a natural definition of a traversal time.
It remains to be seen for what tunnelling processes this timescale will be relevant.

A consideration of general spin orientations suggested a picture where the part of
the wavepacket which ‘spins’ into the barrier is preferentially transmitted. Tunnel-
ling time distributions may still be calculated in these more general cases, although
the complexity of the numerical work is greatly increased.

Finally we have considered the problem of two particle tunnelling, in a manifestly
Lorentz covariant framework. We have outlined an extension of the relativistic
streamline method to multiparticle situations. This involves a configuration space
with multiple time coordinates, and may be regarded as the relativistic generalisation
of the multiparticle Bohmian approach [24]. Our treatment of this problem is not
yet complete, but we are confident that the current problems will be resolved in the
future. Our future work in this area will concentrate on multiparticle methods and
an extension of the streamline method to quantum-optical problems.
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