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Abstract

Kerr-Schild solutions to the vacuum Einstein equations are considered
from the viewpoint of a gauge-theoretic formulation of gravity. This for-
mulation employs the spacetime algebra (the Clifford algebra of space-
time), which offers a number of novel insights into the nature of the solu-
tions. Working with gauge fields defined over a background Minkowski
spacetime allows the Einstein equations to be recast as integral equations,
which can be used to explore the nature of the gravitational singularities.
For the Schwarzschild and Vaidya solutions the fields are shown to result
from a δ-function point source. For the Reissner-Nordstrom solution the
integral equations reveal that inclusion of the gravitational fields removes
the divergent self-energy familiar from classical electromagnetism.

1 Introduction

Many of the important solutions to the Einstein field equations can be expressed
in Kerr-Schild form (see, for example, the discussion in [1]). In this and a
following paper [2] Kerr-Schild solutions are analysed from the viewpoint of
the gauge theory approach to gravity introduced in [3, 4]. In this approach
the gravitational fields are gauge fields defined over a flat Minkowski spacetime.
These fields ensure that all relations between physical quantities are independent
of the position and orientation of the matter fields — a scheme which ensures
that the background spacetime plays no dynamic role in the physics and has no
measurable properties. Kerr-Schild metrics are constructed from a null vector
field in the background Minkowski spacetime, so are particularly well-suited to
analysis via this gauge-theoretic approach. Furthermore, the aproach developed
in [3, 4] enables all manipulations to be carried out in a coordinate-free manner,
affording a clear separation between physical effects and gauge artefacts.

In order to fully develop a coordinate-free gauge theory of gravity, the the-
ory developed in [3, 4] is presented in the language of ‘spacetime algebra’ [5, 6].
The algebraic structure of the spacetime algebra (STA) is that of the Dirac
γ-matrices. Using this algebraic structure one can develop a mathematical lan-
guage which is adept at describing many aspects of relativistic physics. This
language includes a calculus which goes some way beyond what is available in
alternative languages. The theory developed in [3, 4] takes on its most natural
and compelling form when expressed in the STA, and for this reason the ap-
plications discussed in this and the following paper are also formulated in the
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STA. A brief introduction to the STA is included here, giving only the neces-
sary conventions and notations. Further details can be found in [4, 6, 7] and
references contained therein. Reference [4] includes an appendix describing how
STA-based expressions can be converted into conventional tensor calculus.

After introducing the STA, this paper proceeds to a derivation of the grav-
itational field equations. It is shown that for all fields of Kerr-Schild type the
Einstein tensor is a total divergence in the background Minkowski spacetime.
In this paper, various consequences of this result are explored for spherically-
symmetric fields. Gauss’ theorem is used to convert volume integrals of the
Einstein tensor to surface integrals, so probing the nature of the matter sin-
gularities generating the gravitational fields. Here three spherically-symmetric
solutions are considered: the Schwarzschild, Reissner-Nordstrom and Vaidya
solutions. In all cases the integrals provide sensible results for the total en-
ergy contained in the fields, with the mass contribution to the energy residing
in a point-source δ-function. For the Reissner-Nordstrom solution the inclu-
sion of gravitational fields removes the infinite electromagnetic self-energy for a
point charge familiar from classical electromagnetism [8]. This is achieved via
a simple regularisation procedure, which ensures that the total electromagnetic
self-energy is zero.

2 Spacetime Algebra

The basic algebraic structure behind the STA will be familiar to most physicists
in the guise of the algebra of the Dirac γ-matrices. The geometric interpretation
the STA attaches to this algebra may be less familiar, though it is remarkably
well-suited to most problems in relativistic physics [5, 7]. The STA is gener-
ated by four vectors {γµ}, µ = 0 . . . 3, equipped with an associative (Clifford)
product denoted by juxtaposition. The symmetric and antisymmetric parts of
this product define the inner and outer products, and are denoted with a dot
and a wedge respectively:

γµ ·γν ≡ 1

2
(γµγν + γνγµ) = ηµν = diag(+ − − −) (1)

γµ∧γν ≡ 1

2
(γµγν − γνγµ). (2)

The outer product of two vectors defines a bivector — a directed plane segment
representing the plane defined by the two vectors. A full basis for the STA is
provided by the set

1 {γµ} {σk, iσk} {iγµ} i
1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar,
grade 0 grade 1 grade 2 grade 3 grade 4

(3)

where σk ≡ γkγ0, k = 1 . . . 3, and i ≡ γ0γ1γ2γ3 = σ1σ2σ3. The pseudoscalar i
squares to −1, anticommutes with all odd-grade elements and commutes with
even grade elements. Both the {σk} and {γµ} are algebraic entities with clear
geometric significance. They should not be thought of as matrices acting on
an internal spin space. (The same symbols as employed in quantum theory are
used here simply because the algebraic relations are the same.)

An arbitrary real superposition of the basis elements (3) is called a ‘mul-
tivector’ and these inherit the associative Clifford product of the {γµ} generat-
ors. For a grade-r multivector Ar and a grade-s multivector Bs we define the
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inner and outer products respectively by:

Ar ·Bs ≡ 〈ArBs〉|r−s|, Ar∧Bs ≡ 〈ArBs〉r+s, (4)

where 〈M〉r denotes the projection onto the grade-r components of M . We also
employ the commutator product,

A×B ≡ 1

2
(AB − BA). (5)

Vectors are usually denoted in lower case Latin, a = aµγµ, or Greek for basis
frame vectors. In the absence of brackets the inner, outer and commutator
products take precedence over geometric products.

An inertial system is picked out by a future-pointing timelike (unit) vector.
If this is chosen to be the γ0 direction then the γ0-vector determines a map
between spacetime vectors a = aµγµ and the even subalgebra of the full STA
via

aγ0 = a0 + a, (6)

where
a0 = a·γ0, and a = a∧γ0. (7)

The ‘relative vector’ a can be decomposed in the {σk} frame and represents
a spatial vector as seen by an observer in the γ0-frame. Relative (or spatial)
vectors in the γ0-system are written in bold type to record the fact that in
the STA they are actually bivectors. This distinguishes them from spacetime
vectors, which are left in normal type. The {σk} generate the (Pauli) algebra
of three-dimensional space, and we occasionally require that the dot and wedge
symbols define the three-dimensional inner and outer products. The convention
we adopt is that if both arguments of a dot or wedge product are written in
bold, then the product takes its three-dimensional meaning. For example, a∧b

is a relative bivector, and so also a spacetime bivector, and not a spacetime
four-vector.

The vector derivative, ∇, is defined by

∇ ≡ γµ ∂

∂xµ
(8)

where the {xµ} are a set of Cartesian coordinates and the {γµ} are the reciprocal
frame to the associated coordinate frame. The spacetime split of the vector
derivative ∇ goes through slightly differently, since it is desirable to have the ∇

symbol agreeing with its conventional 3D meaning. To achieve this we define

γ0∇ = ∂t + ∇, (9)

so that ∇ = σi∂xi . The ∇ operator has the algebraic properties of a vector,
and often acts on objects which it is not adjacent to. The ‘overdot’ notation is
a convenient way to encode this:

∇̇AḂ ≡ γµA
∂B

∂xµ
. (10)

The ∇ operator acts on the object to its immediate right unless brackets or
overdots are present. If brackets are present then ∇ operates on everything in
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the bracket, so that, for example, ∇(AB) = ∇AB + ∇̇AḂ. The same rules
apply to ∇.

Linear functions mapping vectors to vectors are usually denoted with an
underbar, h

¯
(a) (where a is the vector argument), with the adjoint denoted with

an overbar, h̄(a). Linear functions extend to act on multivectors via the rule

h
¯
(a∧b · · ·∧c) ≡ h

¯
(a)∧h

¯
(b)∧· · ·∧h

¯
(c), (11)

which defines a grade-preserving linear operation. The pseudoscalar is unique
up to a scale factor, and the determinant is defined by

h
¯
(i) = det(h

¯
)i. (12)

The underbars are not strictly necessary and are often dropped for symmetric
functions, but many expressions take on a more symmetric appearance if they
are employed. For example, a function and its adjoint are related by [6]

Ar ·h̄(Bs) = h̄[h
¯
(Ar)·Bs] r ≤ s

h
¯
(Ar)·Bs = h

¯
[Ar ·h̄(Bs)] r ≥ s. (13)

A number of manipulations in linear algebra are simplified by using the
vector derivative in place of frame contractions. For example, the trace of h

¯
(a)

can be written as
Tr(h

¯
) = γµ ·h

¯
(γµ) = ∂a ·h

¯
(a), (14)

where ∂a is the vector derivative with respect to a. The following results are
also useful:

∂a a·Ar = rAr (15)

∂a a∧Ar = (n − r)Ar (16)

∂aAra = (−1)r(n − 2r)Ar, (17)

where Ar is a multivector of grade r and n is the dimension of the space.
Natural units (G = c = ε0 = 1) are employed throughout this and the

following paper.

3 The Field Equations

The gravitational gauge fields are a linear function h̄(a) mapping vectors to
vectors and a linear function Ω(a) mapping vectors to bivectors. Both of these
gauge fields have an arbitrary position dependence. The gauge-theoretic origin
of these fields is described in [3, 4]. The gauge fields are related by the equation

2Ω(a) = −h̄(∇∧g(a)) + h
¯
−1(∂b)∧(a·∇h̄(b)), (18)

where
g(a) ≡ h̄−1h

¯
−1(a). (19)

The linear function g(a) defines the line element via

ds2 = eµ ·g(eν)dxµ dxν = gµνdxµ dxν , (20)
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where the {xµ} are a set of arbitrary coordinates and the {eµ} are the associated
coordinate frame,

eµ ≡ ∂x

∂xµ
, (21)

with x the flatspace position vector.
The field strength corresponding to the Ω(a) gauge field is defined by

R(a∧b) ≡ a·∇Ω(b) − b·∇Ω(a) + Ω(a)×Ω(b) (22)

and is a linear function mapping bivectors to bivectors. From this the covariant
Riemann tensor is defined by

R(a∧b) ≡ Rh
¯
(a∧b). (23)

The Ricci and Einstein tensors are defined from the Riemann tensor in the
obvious way,

Ricci Tensor: R(b) ≡ ∂a ·R(a∧b) (24)

Ricci Scalar: R ≡ ∂a ·R(a) (25)

Einstein Tensor: G(a) ≡ R(a) − 1

2
aR. (26)

The h̄(a) field ensures that one only ever has to make ‘flatspace’ contractions,
which is an attractive feature of the gauge-theory approach.

We are interested in fields of the form

h̄(a) = a + a·l l (27)

where l is a (flatspace) null vector, l2 = 0. This is the gauge theory analogue of
the Kerr-Schild ansatz. The function (27) extends to act on multivectors as

h̄(A) = h
¯
(A) = A + A·l l, (28)

and we see immediately that det(h̄) = 1. The following results are also useful:

h
¯
−1(A) = h̄−1(A) = A − A·l l (29)

g(A) = A − 2A·l l (30)

h̄(l) = l. (31)

The Ω(a) field defined by (27) has the simple form

Ω(a) = h̄[∇∧(a·l l)]
= ∇∧(a·l l) − a·l v∧l (32)

where
v ≡ l·∇l. (33)

It follows that l·v = 0 and Ω(l) = 0.
Following the route adopted by Chandrasekhar in Section 57 of [9], we next

form the quantity

l·R(l) = l·[∂a ·R(a∧l)]

= (l∧∂a)·R(a∧l)

= (l∧∂a)·[a·∇Ω(ľ) − l·∇Ω(a)], (34)
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where the check on ľ denotes that this vector is not differentiated. Substitut-
ing (32) into the above we find that

l·R(l) = (l∧∂a)·
(

−∇̇[(a·∇l)· l̇ ]∧l − l·∇∇∧(a·l l)
)

= ∂a ·l (a·∇l)·v − l·∇(∇·l l + v)·l
= v2 − (l·∇v)·l
= 2v2. (35)

If we were looking solely for vacuum solutions, we would conclude from this that
v must be null. Since v·l = 0, it would then follow that v must be parallel to l,

v = φl, (36)

where φ is an arbitrary scalar. We restrict attention to solutions for which this
relation does hold, even if matter is present. (This clearly restricts the form of
matter distribution that can be described by fields of the type (27)). It follows
from equation (36) that Ω(a) reduces to the simpler form

Ω(a) = ∇∧(a·l l). (37)

The Riemann tensor now splits into terms that are second-order and fourth-
order in l. The fourth-order contribution is

R4(a∧b) = −Ω̇
(

[(a∧b)·l l]·∇̇
)

+ Ω(a)×Ω(b). (38)

After some rearrangement this can be brought to the form

R4(B) = 1

4
∂a ·∂b (a·∇l)lBl(b·∇l) − 1

4
(a·∇l)·(b·∇l) ∂alBl∂b. (39)

Both the contraction, ∂a · R(a ∧ b), and the protraction, ∂a ∧ R(a ∧ b), of this
contribition to the Riemann tensor vanish, as can be seen easily from the result
that

∂aB1a∧bB2 = ∂aB1(ab − a·b)B2 = −bB1B2, (40)

for any two bivectors B1 and B2. The presence of the null vector l in the
analogous terms in R4(B) ensures that B1B2 = 0, and hence that R4(B) makes
no contribution to the Ricci tensor.

The only part of R(B) which contributes to the Einstein tensor is therefore
the second-order term

R2(a∧b) = a·∇Ω(b) − b·∇Ω(a). (41)

Contracting this and setting the result to zero we find that the vacuum Einstein
equations reduce to solving the equation

R(a) = ∇·Ω(a) − a·∇ ∂b ·Ω(b) = 0. (42)

The Ricci scalar and Einstein tensor are now straightforward to calculate:

R = −2∇·(∂a ·Ω(a)) (43)

and

G(a) = ∇·[Ω(a) − a∧(∂b ·Ω(b))]. (44)
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The above formulae for Ω(a) (37) and G(a) are valid for any Kerr-Schild
type solution for which l ·∇l = φl. For such fields the Einstein tensor (44) is
a total divergence in Minkowski spacetime. In general, the field equations will
be satisfied everywhere except for some singular region over which the fields
are discontinuous. This singular region contains the source of the fields. By
converting integrals over this source region to surface integrals, we learn how
the source matter is distributed. (For the case of static fields, Virbhadra [10]
gave a formula which agrees with (44) for a = γ0, but the fact that the expression
is a total divergence was not exploited.)

3.1 Spherically-Symmetric Solutions

For the remainder of this paper we restrict attention to spherically-symmetric
solutions. For these it is useful to introduce a standard set of polar coordinates:

t ≡ x·γ0 cosθ ≡ x·γ3/r

r ≡
√

(x∧γ0)2 tanφ ≡ (x·γ2)/(x·γ1).
(45)

We also define
er ≡ x∧γ0 γ0/r, σr ≡ erγ0, (46)

and
e± ≡ γ0 ± er. (47)

The solutions of interest here can be written in the form

l =
√

α e±, (48)

where α = α(t, r). For fields of this type it is a simple matter to demonstrate
that the fourth-order contribution to the Riemann tensor (39) vanishes. To see
this consider the case of e+, for which we obtain

R4(B) =
α2

4

(

−∂a ·∂b a·∇σr(1 − σr)B(1 + σr)b·∇σr

+ (a·∇σr)·(b·∇σr) ∂ae+Be+∂b

)

=
α2

4r

(

∇̇(1 − σr)B(1 + σr)σ̇r − ∇̇(1 − σr)B(1 + σr)σ̇r

)

= 0, (49)

with the same result holding for e−. It follows that the Riemann tensor is given
entirely by (41), which is also a total divergence and so can be analysed using
Gauss’ theorem. We now turn to three applications of these results.

4 The Schwarzschild Solution

The simplest solution to the field equations is the Schwarzschild solution, ob-
tained from

α = M/r, l =
√

α (γ0 − er). (50)

The derivation of this solution is contained in [2] (see also [11]). The line element
generated by this solution is that of the advanced Eddington-Finkelstein form
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of the Schwarzschild solution, and is therefore not time-reverse symmetric. It
turns out that in the gauge theory approach the presence of a horizon implies
the breakdown of time-reversal symmetry [3, 4]. The solution (50) lies in the
gauge sector of solutions picked out as the endpoint of a collapse process.

The Riemann tensor for the solution (50) can be constructed using equa-
tion (41), from which we find

R(a) = a·∇Ω(γ0)

= a·∇
(

∇∧(M(γ0 − er)/r)
)

= Ma·∇ x

r3
, (51)

and

R(ib) = Ω̇[(ib)·∇̇γ0]

= ∇∧
(

−M

r
(ib∧σr)·∇σrγ0

)

= Mi∇·
(

b∧ x

r3

)

. (52)

Away from the origin, these derivatives evaluate to

R(a) =
M

r3
(a − 3a·σrσr), R(ib) =

M

r3
(b − 3b·σrσr), (53)

so we can write the vacuum Riemann tensor in the manifestly self-dual form

R(B) = − M

2r3
(B + 3σrBσr). (54)

(Self duality of the Weyl tensor has the simple expression W(iB) = iW(B) in
the STA [4]). The above form of the Riemann tensor (54) for the Schwarzschild
solution was first given in [3] and [12].

The form of the Riemann tensor in equation (54) is valid everywhere away
from the singularity. To study the form of the singularity, we return to the
differential expressions for the Riemann tensor and integrate over a sphere of
radius r0, centered on the origin. Using Gauss’ theorem to convert the volume
integrals to surface integrals, we obtain

∫

r≤ro

d3xR(a) = M

∫ 2π

0

dφ

∫ π

0

dθ sinθ a·σr σr =
4πM

3
a, (55)

and
∫

r≤ro

d3xR(ib) =

∫ 2π

0

dφ

∫ π

0

dθ sinθ iσr ·(b∧σr) = −8πM

3
ib. (56)

These results combine to give

∫

r≤ro

d3xR(B) =
4πM

3
(B ·γ0γ0 − 2B∧γ0γ0) = −2πM

3
(B + 3γ0Bγ0), (57)
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which contracts to yield

∫

d3xR(a) = 4πM γ0aγ0 (58)

∫

d3xR = −8πM (59)

∫

d3xG(a) = 8πMa·γ0 γ0. (60)

Since R(a) = 0 everywhere except for the origin, the integrals (58)–(60) can
be taken over any region of space enclosing the origin. It is clear then that
the solution represents a point source of matter, with the matter stress-energy
tensor given by

T (a) = Mδ(x)a·γ0γ0. (61)

The same conclusion was reached in [4], where the calculations were performed
in a different gauge. This result confirms Feynman’s speculation in Lecture 15
of [13]. The integrals performed above are not gauge invariant, but gauge-
invariant information is extracted from them in the form of the matter stress-
energy tensor (61). Furthermore, the integral of the Ricci scalar provides a direct
measure of the mass of the source, without the need to resort to constructing
integrals in an asymptotically flat region of spacetime.

5 The Reissner-Nordstrom Solution

The Reissner-Nordstrom solution can be written in the form

h̄(a) = a + ηa·e− e− (62)

where (in natural units)

η ≡ M

r
− q2

8πr2
, (63)

q the charge of the source. The Einstein tensor for this solution is

G(a) = ∇·
(

∇(ηa·e−)∧e− −∇·(ηe−)a∧e−
)

. (64)

Away from the origin we know that the mass term can be ignored, which leaves

G(γ0) = − q2

4π
∇·

(σr

r3

)

=
q2

4πr4
γ0, (65)

G(aγ0) =
q2

8π
∇·

(

∇
(a·σr

r2

)

∧e−

)

= − q2

4πr4
σraγ0σr. (66)

These combine to give a corresponding matter stress-energy tensor of

T (a) =
1

8π
G(a) = − 1

2
FaF (67)

where F ≡ qσr/(4πr2). This is the expected form for the electromagnetic
stress-energy tensor due to a point source of charge q. (See [4] for a detailed
explanation of how to handle electromagnetism in gauge-theory gravity.)
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To study the behaviour of the fields near the origin we return to the differ-
ential form for G(a) and again construct integrals over a sphere of radius r0.
For this case we find that
∫

r≤ro

d3xG(γ0) =

∫

r≤ro

d3x∇·
(2M

r2
σr −

q2

4πr3
σr

)

γ0 = (8πM − q2

r0
) γ0, (68)

∫

r≤ro

d3xG(aγ0) =

∫

r≤ro

d3x
q2

8π
γ0∇·

( 1

r3
a∧σr

)

=
q2

3r0

aγ0, (69)

which combine to give

∫

r≤ro

d3x T (a) = Ma·γ0 γ0 +
q2

24πr0

(a − 4a·γ0 γ0). (70)

The mass term here is precisely as expected and shows again that a point source
is located at the origin. The electromagnetic contribution is traceless, as one
expects for the electromagnetic stress-energy tensor. Focusing attention on the
γ0-frame energy component of the stress-energy tensor, we see that

∫

r≤ro

d3x γ0 ·T (γ0) = M − q2

8πr0

. (71)

This result was also obtained by Tod [14], who calculated the quasi-local mass
for the Reissner-Nordstrom solution as defined by Penrose [15]. Tod argued that
this result implies that a source for the Reissner-Nordstrom solution should have
r > q2/(8πM) at the surface in order to meet the dominant energy condition.
However, this misses the point that the negative contribution to the integral
comes entirely from the origin. Everywhere off the origin the stress-energy
tensor satisfies the dominant energy condition. Taking the integrals over the
volume defined by r0 < r < ∞ we find that the electromagnetic field energy is
q2/(8πr0), which agrees with the formula given by Virbhadra [10] and is simply
the classical result.

The electromagnetic contribution to (71) is negative and finite for all fi-
nite r0, and tends to zero as the integral extends over all space. This is in
stark contrast to the standard picture from classical electromagnetism, where
the integral of the γ0-frame energy E

2/2 diverges for the interior of any surface
enclosing the origin — the classical self-energy problem discussed by many au-
thors (see [8, 16], for example). Inclusion of the gravitational field has removed
this divergence, ensuring that the total electromagnetic self-energy is zero. The
manner in which this regularisation is achieved is both simple and instructive.
The electromagnetic energy density is rewritten as

1

2
E

2 =
q2

32πr4
= − q2

32π
∇·

( x

r4

)

, (72)

so that the integral over space of the electromagnetic energy density can be
converted to a surface integral, recovering the contribution to (71). Since the
electromagnetic energy density near a point source is very large, it is unsurpris-
ing that the inclusion of gravity has significant consequences, and these clearly
have implications for the status of self-energies in classical field theory. However,
since only classical fields are employed above, it is not clear whether this result
has similar implications for the divergent self-energies encountered in QED.
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6 The Vaidya Solution

As a final example of the use of integral equations for spherically-symmetric
Kerr-Schild fields, we consider Vaidya’s ‘shining star’ solution [1]. This is gen-
erated by the field

h̄(a) = a +
µ(t − r)

r
a·e+ e+, (73)

which is clearly similar to the Schwarzschild solution, except that now the mass
µ = µ(t − r) is variable and the null geodesics e+ are outgoing rather than
incoming. The solution (73) is clearly of Kerr-Schild type, and defining l =
√

µ/r e+ we find that

l·∇l =
(µ

r

)1/2
e+ ·∇ [

(µ

r

)1/2
e+] = − 1

2

( µ

r3

)1/2
l, (74)

so that equation (36) is satisfied. The Einstein tensor for (73) is

G(a) = ∇·
(2µ

r2
a·e+ σr

)

(75)

and away from the origin (where we can set ∇·(σr/r
2) = 0) this becomes

G(a) = −2µ̇

r2
a·e+ e+, (76)

where µ̇ = ∂tµ. This tensor represents a radially-symmetric flux of outgoing
massless particles, though it does not have the form expected for purely elec-
tromagnetic radiation. Again, the presence of a δ-function point source at the
origin can be inferred from the differential form of the Einstein tensor. By eval-
uating the integral of G(a) over a sphere centred on the origin, and shrinking
the radius to zero, we find that

G(a) = −2µ̇

r2
a·e+ e+ + 8πµδ(x)a·γ0 γ0. (77)

The solution (73) therefore describes a point mass at rest at the origin which is
losing mass at some arbitrary rate. This is borne out by the Riemann tensor,

R(B) = − µ̇

r2
B ·e+ e+ − µ

2r3
(B + 3σrBσr), (78)

which exhibits a neat split into a source term describing the energy outflow and
a Weyl term due to the point mass at the origin.

The fact that the Einstein tensor is given by the divergence of a bivector
implies that

∇·G(a) = 0. (79)

We can therefore define a conserved total energy by

E ≡
∫

d3x γ0 ·G(γ0)

=

∫

d3x∇·
(

2µ
σr

r2

)

= 8πµ(−∞). (80)

The total conserved energy is therefore determined by the mass of the source at
t = −∞, before it began radiating, which is clearly a sensible result. A conserved
energy of this form will exist for any Kerr-Schild field of the type (27), provided
that the null vector l satisfies l·∇l = φl.
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7 Conclusions

Many of the significant solutions to the Einstein equations can be represented
in Kerr-Schild form and the STA-based gauge-theoretic approach of [3, 4] is
well suited to their analysis. For all solutions of Kerr-Schild type where the
null vector l satisfies l ·∇l = φl the Einstein tensor is a total divergence. The
structure of the sources generating the fields can therefore be elucidated by
employing Gauss theorem to transform volume integrals to surface integrals.
This approach is fully justified within the gauge-theory formulation, since one
only ever deals with fields defined over a flat spacetime.

For the case of the Schwarzschild, Reissner-Nordstrom and Vaidya solutions
the gravitational fields are seen to result from a δ-function point source of mass
at the origin. This result is not surprising, though it does differ from the ac-
cepted picture in general relativity. For the Schwarzschild solution this picture
involves two distinct universes connected by a ‘throat’, with separate future
and past singularities [17, 18]. No such picture is available in the gauge the-
ory approach, where one is forced to work with time-reverse asymmetric fields
generated by a single δ-function [3, 4]. For the Reissner-Nordstrom solution the
result of maximum analytic extension is an infinite ladder of possible ‘universes’
connected by wormholes [18]. Again, the gauge theory approach does not ad-
mit such a possibility, forcing us instead to a less elaborate picture of a single
δ-function point source surrounded by a Coulomb field. An unexpected bonus
of this approach is that the infinite self-energy of the Coulomb field is removed
by the gravitational field.

From these comments it is clear that the results of this paper enjoy a some-
what ambiguous status. If one accepts that gravitational forces should be de-
scribed by gauge fields, and follows the derivation of these fields given in [3, 4],
then one is forced to accept the validity of results obtained from applying Gauss’
theorem to fields defined over the background Minkowski spacetime. If, on the
other hand, one believes that a theory of gravity should be free from the to-
pological constraints implied by the gauge theory formalism, then one could
argue that Gauss’ theorem is not applicable in the way it is used here. Given
that both approaches agree for all experimentally-testable effects, there are as
yet no physical grounds for preferring one approach over the other. Ultimately,
however, the interface with quantum theory is likely to favour one approach,
and in this respect there are clear reasons for preferring the gauge theory route
to describing gravitational interactions.

In the following paper [2] the techniques developed here are applied to the
Kerr solution, revealing the presence of a ‘tension disk’ surrounded by the ring
singularity. Elsewhere these techniques will be applied to Kinnersley’s and Bon-
nor’s work on accelerating and radiating masses [19, 20].
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