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Abstract

The spin-torsion sector of a new gauge-theoretic formulation of gravity is

analysed and the relationship to the Einstein-Cartan-Kibble-Sciama theory

of gravity is discussed. The symmetries of the Riemann tensor and the con-

servation laws of the theory are derived. This formalism is applied to the

problem of a Dirac field coupled self-consistently to gravity. The equations

derived from a minimally-coupled gauge-invariant Lagrangian naturally give

the gauge-theoretic analogues of the Einstein-Cartan-Dirac equations. Finally,

a semi-classical model for a spinning point-particle moving in a gravitational

background with torsion is considered.

1 Introduction

The problem of formulating gravity as a gauge theory has been considered by many
authors (see [1]–[8] for a representative sample). The gauge-theoretic approach leads
naturally to an extension of General Relativity known as spin-torsion theory [9].
Such theories build upon Cartan’s suggestion [10] that torsion (the antisymmetric
part of the connection) should be identified as a possible physical field. The connec-
tion between torsion and quantum spin emerged later [2, 11, 12] when it was realised
that the stress-energy tensor for a massive fermion field was asymmetric [13, 14].

A new approach to gauge theory gravity (GTG) was developed in [15, 16]. In
this approach, gravitational effects are described by a pair of gauge fields defined
over a flat Minkowski background spacetime. The gauge fields ensure the invariance
of the theory under arbitrary local displacements and rotations in the background
spacetime. All physical predictions are extracted in a gauge-invariant manner, which
ensures that the background spacetime plays no dynamic role in the physics. Most of
the discussion in [15] was simplified by setting the torsion to zero. Even if the torsion
does vanish, differences between GTG and General Relativity still arise over global
issues such as the role of topology and horizons. These differences are highlighted by
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the discussion of the Kerr singularity in Doran et al. [17]–[19]. Further applications
of GTG to situations with vanishing torsion can be found in [20].

In this paper we consider the spin-torsion sector of GTG in more detail. This
is important both for theoretical considerations, such as spinor-driven inflationary
models, and for comparisons with possible experiments or observations. Within
GTG, torsion is viewed as a physical field derived from the gravitational gauge
fields. This viewpoint has some conceptual advantages over that used in differen-
tial geometry, where torsion is regarded as a property of a non-Riemannian mani-
fold. A further feature of the GTG approach is that the type of torsion which can
arise physically is constrained [15]. This constraint follows from the requirement
that minimally-coupled equations for the matter fields should be derivable from a
minimally-coupled, gauge-invariant action.

The paper is arranged as follows. We begin with an introduction to the ‘spacetime
algebra’ [21, 22]. This algebraic structure is well suited to many aspects of relativistic
physics, enabling manipulations to be carried out in a coordinate-free manner. The
theory developed in [15] takes on its most compelling form when written in the
spacetime algebra, so we employ it here. One aim of this paper is to advertise
the advantages of the algebraic techniques provided by spacetime algebra, which
extends the language of differential forms to incorporate spinors and quaternions,
and provides very clean and clear methods for encoding rotations. These advantages
are perhaps not as widely known as they deserve to be. The relations derived in
this paper may be translated into more conventional languages using the schemes
described in Appendix D and in [15].

We next introduce the equations of GTG and discuss the relationship between
GTG and the Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity. We then
proceed to a covariant expression for the Riemann tensor in the presence of torsion.
From this we are able to relate the Riemann tensor, and its contractions, to the
equivalent tensors in the absence of torsion. We then consider the symmetries of
the Riemann tensor and the gauge theory version of the Bianchi identity. As is well
known, much of the symmetry of the Riemann tensor is lost when torsion is included.

The Dirac field coupled self-consistently to gravity provides an example of a sys-
tem with torsion, which may be relevant to discussions of the early universe. The
equations for this setup are derived from a minimally-coupled, gauge-invariant ac-
tion. The resulting equations are the GTG analogues of the Einstein-Cartan-Dirac
equations. Appendix A contains a number of results for the gravitational fields
particular to the case of spin generated by a single Dirac fermion. The analogues
of the Einstein-Dirac equations are also given. These equations describe the Dirac
field coupled to gravity via the (symmetric) stress-energy tensor only. In this ar-
rangement the torsion vanishes. The Einstein-Dirac equations can also be derived
from an action, but only if one is prepared to sacrifice the gauge structure of the
theory. In Appendix B we give the GTG proof of the useful result, first given by
Seitz [23], relating solutions of the Einstein-Cartan-Dirac equations and solutions of
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the Einstein-Dirac equations.
Finally, we consider a simple, semi-classical model for a spin-1/2 point-particle

moving in a gravitational background with torsion, which builds upon the model
discussed in [15]. This displays a coupling of the particle’s motion to the torsion,
unlike some previous models [24]. This model is used in a separate paper [25] to
discuss the anisotropy of a new cosmological solution of the Einstein-Cartan-Dirac
equations. Throughout the main part of this paper we assume that the spin tensor
has a vanishing contraction, which is necessary for consistency with the minimal
coupling procedure. Results for the case where the contraction of the spin tensor
does not vanish are contained in Appendix C.

Natural units (G = c = ~ = 1) are used throughout this paper.

2 Gauge Theory Gravity

We begin with a brief introduction to the ‘spacetime algebra’ — the geometric (or
Clifford) algebra of spacetime. This is familiar to physicists in the guise of the algebra
generated from the Dirac γ-matrices. Further details may be found in [21, 22]. The
spacetime algebra (STA) is generated by four vectors {γµ}, µ = 0 . . . 3, equipped
with an associative (Clifford) product, denoted by juxtaposition. The symmetrised
and antisymmetrised products define the inner and outer products between vectors,
denoted by a dot and a wedge respectively:

γµ·γν ≡ 1

2
(γµγν + γνγµ) = ηµν = diag(+ − − −)

γµ∧γν ≡ 1

2
(γµγν − γνγµ).

(2.1)

The outer product of two vectors defines a bivector — a directed plane segment,
representing the plane including the two vectors.

A full basis for the STA is provided by the set

1 {γµ} {σk, iσk} {iγµ} i
1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar
grade 0 grade 1 grade 2 grade 3 grade 4

(2.2)

where σk ≡ γkγ0, k = 1 . . . 3, and i ≡ γ0γ1γ2γ3 = σ1σ2σ3. The pseudoscalar i
squares to −1 and anticommutes with all odd-grade elements. The {σk} generate
the geometric algebra of Euclidean 3-space, which will be familiar as the algebra of
the Pauli spin matrices. An arbitrary real superposition of the basis elements (2.2) is
called a ‘multivector’, and these inherit the associative Clifford product of the {γµ}
generators. For a grade-r multivector Ar and a grade-s multivector Bs we define the
inner and outer products via

Ar·Bs ≡ 〈ArBs〉|r−s|, Ar∧Bs ≡ 〈ArBs〉r+s, (2.3)
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where 〈M〉r denotes the grade-r part of M . The subscript 0 is dropped when de-
noting the scalar part of a multivector, 〈M〉 = 〈M〉0. We shall also make use of the
commutator product,

A×B ≡ 1

2
(AB −BA). (2.4)

The operation of reversion, denoted by a tilde, is defined by

(AB)̃ ≡ B̃Ã, (2.5)

and the rule that vectors are unchanged under reversion. We adopt the conven-
tion that in the absence of brackets, inner, outer and commutator products take
precedence over Clifford products.

Vectors are usually denoted in lower case Latin, or Greek for a frame of or-
thonormal vectors. Let {eµ} be an arbitrary basis for the grade-1 vector space. The
reciprocal basis, denoted by {eµ}, satisfies eµ·e

ν = δν
µ. The vector derivative ∂aF of

a multivector-valued function F (a), with respect to the vector argument a, is defined
by

∂aF (a) ≡ eµeµ·∂aF (a), (2.6)

with the directional derivative operator eµ·∂a defined by the limit

eµ·∂aF (a) ≡ lim
ε→0

(

F (a+ εeµ) − F (a)

ε

)

. (2.7)

We shall use the symbol ∇ for the vector derivative with respect to spacetime posi-
tion, so that ∇ ≡ ∂x.

Linear functions mapping vectors to vectors are usually denoted with an under-
bar, f

¯
(a) (where a is the vector argument). The adjoint function f̄(a) satisfies

f
¯
(a)·b = a·f̄(b). (2.8)

Linear functions extend to act on multivectors via the rule

f
¯
(a∧b∧ · · · ∧c) ≡ f

¯
(a)∧f

¯
(b)∧ · · · ∧f

¯
(c), (2.9)

which defines a grade-preserving linear operation. The determinant of a linear func-
tion is defined by

f
¯
(i) ≡ det(f

¯
)i. (2.10)

Contractions of a linear function may be written as ∂a·f
¯
(a), and the protraction of

a linear function is defined to be ∂a∧f
¯
(a). Throughout, the argument of a linear

function is assumed to independent of position, unless stated otherwise.
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Gravitational effects are introduced via two gauge fields, h̄(a) = h̄(a, x) and
Ω(a) = Ω(a, x), where x is the STA position vector x = xµγµ and the dependence
on x is often left implicit. The first of these, h̄(a), is a position-dependent linear
function mapping the vector argument a to vectors. The gauge-theoretic purpose of
h̄(a) is to ensure covariance of the equations under arbitrary local displacements of
the matter fields in the background spacetime [15, 16]. The second gauge field, Ω(a),
is a position-dependent linear function which maps the vector a onto the space of
bivectors. Its introduction ensures covariance of the equations under local (Lorentz)
rotations of fields, at a point, in the background spacetime. It is useful to define
another gauge field ω(a) by

ω(a, x) ≡ Ω(h
¯
(a), x) (2.11)

which also maps vectors to bivectors. This field has the advantage of transforming
covariantly under position-gauge transformations x 7→ x′:

ω(a, x) 7→ ω′(a, x) ≡ ω(a, x′). (2.12)

From these gauge fields we assemble the covariant derivative D, whose action on
a multivector M is given by

DM ≡ ∂aa·DM

= ∂a(a·h̄(∇)M + ω(a)×M), (2.13)

which also defines the operator a·D. We shall also make use of the operator Da

defined by

DaM ≡ a·∇M + Ω(a)×M. (2.14)

The covariant derivative contains a grade-raising and lowering component, so that
we may write

DM = D·M + D∧M, (2.15)

where

D·M ≡ ∂a·(a·DM), D∧M ≡ ∂a∧(a·DM). (2.16)

The field strength corresponding to the Ω(a) gauge field is defined by

R(a∧b) ≡ a·∇Ω(b) − b·∇Ω(a) + Ω(a)×Ω(b). (2.17)

From this we define the covariant Riemann tensor

R(a∧b) ≡ R[h
¯
(a∧b)]. (2.18)
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The Ricci tensor, Ricci scalar and Einstein tensor are formed from contractions of
the Riemann tensor:

Ricci Tensor: R(a) = ∂b·R(b∧a) (2.19)

Ricci Scalar: R = ∂a·R(a) (2.20)

Einstein Tensor: G(a) = R(a) − 1

2
aR. (2.21)

In any expression containing the symbol R the argument determines whether the
Riemann or Ricci tensors, or Ricci scalar is implied.

Differential operators act on the multivector to their immediate right unless
brackets are present. When acting on multivectors to which they are not immedi-
ately adjacent, the ‘overdot’ notation is employed to denote the scope of a differential
operator, so that

∇̇AḂ = ∂aAa·∇B. (2.22)

As an example, Leibniz’ rule can be written

∇(AB) = ∇AB + ∇̇AḂ. (2.23)

The overdot notation extends to covariant derivatives. For example, for a general
multivector-valued tensor T (b, . . . c) we define

a·ḊṪ (b, . . . c) ≡ a·DT (b, . . . c) − T (a·Db, . . . c) − · · · − T (b, . . . a·Dc).
(2.24)

The resultant object a·ḊṪ (b, . . . c) is also a covariant tensor. The utility of the a·Ḋ
operator for tensors is that it commutes with contractions and protractions. The
proof is straightforward, involving only the results that

∂ba·ḊṪ (b, c, . . . d) = a·ḊṪ ′(c, . . . d) − ω(a)·∂bT (b, c, . . . d) − ∂bT (ω(a)·b, c, . . . d)
(2.25)

where T ′(c, . . . d) ≡ ∂bT (b, c, . . . d), and

∂b·ω(a)T (b, . . . ) − ∂bT (ω(a)·b, . . . ) = ∂bT ((ω(a)·b)·∂ee, . . . ) − ∂bT (ω(a)·b, . . . )

= 0. (2.26)

The field equations are obtained from variation of a suitable gauge-invariant ac-
tion with respect to the gravitational gauge fields and the matter fields [15]. Varying
with respect to the h̄-field leads to the GTG analogue of the Einstein equation:

G(a) = κT (a), (2.27)
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where T (a) is the covariant matter stress-energy tensor (which need not be symmet-
ric if spin is present) and κ ≡ 8π. On varying the Ω(a)-field we find that

D∧h̄(a) = κS[h̄(a)] + 1

2
κ[∂b·S(b)]∧h̄(a), (2.28)

where S(a) is the covariant spin tensor and a is independent of position. The defin-
ition of S(a) in terms of the matter Lagrangian is given in [15] and for the Dirac
field it is discussed in Section 5 below.

The variation principle leading to (2.28) is different to that usually considered in
the context of Poincaré gauge theory [5, 26]. There one varies the action with respect
to the metric and the torsion tensors, which are considered as separate dynamical
variables. In GTG we vary with respect to the h̄(a) and Ω(a) gauge fields, the
latter of which contains information about both the Christoffel connection and the
torsion. In this respect the GTG approach is closer to the Palatini principle. The
fact that Ω(a) is bivector-valued and coordinate-free removes the problems with the
Palatini approach in ECKS theory first discussed by Sandberg [27]. This is because
the ‘projective transformation’ discussed in [27] is not a permissible transformation
in GTG. Treating Ω(a) as a separate dynamical variable also recovers the link with
a genuine gauge theory since it is the full Ω(a) that appears in the expression for
minimal coupling to a Dirac wavefunction.

An important consequence of equation (2.28) is that minimally-coupled equations
for the matter fields are obtained from a minimally-coupled Lagrangian only if the
contraction of the spin tensor vanishes, that is, if

∂a·S(a) = 0. (2.29)

This is because equation (2.28) implies

Da[h̄(∂a) det(h
¯
)−1] = −1

2
κ∂a·S(a), (2.30)

and the left-hand side must vanish for the minimally-coupled equations to arise from
the minimally-coupled action. Minimal coupling at the level of the field equations
is crucial in ensuring that GTG incorporates the equivalence principle (both clas-
sical and quantum). Minimal coupling at the level of the action, on the other hand,
ensures that one has a genuine gauge theory and is important for constructing a
quantum field theory. We therefore believe that equation (2.29) is a necessary re-
quirement of all physical fields and this condition is assumed throughout the main
part of this paper. Results for the case when ∂a·S(a) is not zero are given in Ap-
pendix C. For scalar fields and Yang-Mills gauge fields the spin tensor vanishes. For
spin-1/2 fields the spin tensor is of the form

S(a) = T ·a, (2.31)

where T is the spin trivector. This form necessarily has vanishing contraction. The
picture is slightly more complicated for spin-1 and spin-3/2 matter fields, where
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there is some freedom in the equations that one can work with. In both these cases,
however, it is possible to construct theories in which equation (2.29) does hold. This
work will be presented elsewhere.

Given that the spin tensor satisfies equation (2.29), equation (2.28) reduces to
the ‘wedge’ equation

D∧h̄(a) = ∂b∧[b·Dh̄(a)] = κS[h̄(a)], (2.32)

or, in the case where a is position-dependent,

D∧h̄(a) = h̄(∇∧a) + κS[h̄(a)]. (2.33)

We refer to the left-hand side of equation (2.32) as the torsion. In the spin-torsion
extension of General Relativity, the torsion is measured by the antisymmetric part
of the connection (the symmetric part is fixed by the requirement of metric compat-
ibility) on the spacetime manifold. The relationship between these two expressions
is described in Appendix D.

The criterion that led us to restrict the torsion type also constrains the Lag-
rangian for the free gravitational field. In particular, it rules out the quadratic
curvature terms in the Lagrangian often considered in the context of Poincaré gauge
theory [5], [28]–[30]. This is because the higher-order terms in the field equations
prevent one from deriving Dah̄(∂a det(h

¯
)−1) = 0. The only additional terms that can

be added to the Lagrangian are quadratic in the torsion [5, 31]. Such terms contain
derivatives of the h̄-field, however, so considerably complicate the theory. Indeed,
the theory looks so simple and compelling with no derivatives of the h̄-function
present that it is tempting to view their absence as suggestive of a deeper principle.
We discuss some ways that derivatives of h̄-field can be incorporated into the action
in Section 5, however, and it is a simple matter to adapt the present work for the
presence of quadratic torsion terms.

Equations (2.27) and (2.28) are locally the same as those of ECKS theory. This
can be made clear by introducing a coordinate frame and following the scheme
described in Appendix D. Globally, however, the theories are not equivalent. This is
because GTG is explicitly constructed as a gauge theory in a flat spacetime and there
is no possibility of the fields altering the topology of this background spacetime. This
leeds to a number of differences between the two theories [15, 17, 18], though these
differences are not the subject of the present paper. Our aim here is to show that
GTG, together with the techniques of spacetime algebra, simplify many otherwise
difficult derivations required in all of GTG, ECKS theory and General Relativity.

This completes the definitions of the quantities required in this paper. Further
details may be found in [15].
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3 The Riemann Tensor

The definition (2.18) for the Riemann tensor can be manipulated into a manifestly
covariant form. We begin by introducing the derivatives

La ≡ a·h̄(∇) (3.1)

and writing

R(a∧b) = Laω(b) − Lbω(a) − ω[h
¯
−1(Lah

¯
(b) − Lbh

¯
(a))] + ω(a)×ω(b),

(3.2)

where in this section the vectors a, b etc. are assumed to be arbitrary functions of
position. To eliminate the derivatives of the h

¯
-function, we first write the ‘wedge’

equation (2.32) in the form

h̄(∇̇)∧ ˙̄h(c) = −∂d∧[ω(d)·h̄(c)] + κS[h̄(c)]

=⇒ 〈b∧a h̄(∇̇)∧ ˙̄h(c)〉 = −〈b∧a ∂d∧[ω(d)·h̄(c)]〉 + κ〈b∧aS[h̄(c)]〉

=⇒ [L̇aḣ
¯
(b) − L̇bḣ

¯
(a)]·c = [a·ω(b) − b·ω(a)]·h̄(c) − κS̄(a∧b)·h̄(c),

(3.3)

where overdots denote the scope of the differential operator and S̄(a) is the adjoint
to the spin tensor, defined by

S̄(B)·a = B·S(a), (3.4)

for an arbitrary vector a and bivector B. The adjoint function S̄(B) is a vector-
valued linear function of its bivector argument B. It follows that

h
¯
−1(Lah

¯
(b) − Lbh

¯
(a)) = Lab− Lba+ a·ω(b) − b·ω(a) − κS̄(a∧b)

= a·Db− b·Da− κS̄(a∧b). (3.5)

If we denote the right-hand side of (3.5) by c then we can write the Riemann tensor
as

R(a∧b) = Laω(b) − Lbω(a) + ω(a)×ω(b) − ω(c), (3.6)

which only differs from the torsion-free expression given in [15] by the definition of
the vector c.

Evaluating the commutator of La and Lb gives

[La, Lb] = [Lah
¯
(b) − Lbh

¯
(a)]·∇

= c·h̄(∇)

= Lc, (3.7)

9



where c is given by the right-hand side of (3.5). This bracket structure summarises
the content of the ‘wedge’ equation (2.32) in a form that is independent of the
torsion. The structure is essentially that of the Lie bracket, though its use in GTG
is somewhat different. A new method of solving the field equations, which exploits
this bracket structure, was given in [15]. This ‘intrinsic’ method has the advantage of
yielding a set of first-order equations which, although still non-linear, are generally
more tractable than their second-order counterparts in General Relativity.

When solving the field equations in the presence of torsion it proves useful to
introduce the new field

ω′(a) = ω(a) + κS(a) − 3

2
κa·T (3.8)

where

T ≡ 1

3
∂a∧S(a) (3.9)

is the spin trivector. The ω′(a)-field satisfies the equation

D′∧h̄(a) ≡ ∂b∧(L̇b
˙̄h(a) + ω′(b)·h̄(a)) = 0 (3.10)

and is the ω-function in the absence of torsion. We can derive an expression for
ω′(a) in terms of the h̄-function alone by inverting (3.10) to yield [15]

ω′(a) = −H(a) + 1

2
a·(∂b∧H(b)), (3.11)

where

H(a) ≡ h̄(∇∧h̄−1(a)) = −h̄(∇̇)∧ ˙̄h(h̄−1(a)). (3.12)

In GTG, ω′(a) plays the same role as the Christoffel symbol (the symmetric part of
the connection) in the spin-torsion extension of General Relativity.

On defining

$(a) ≡ ω(a) − ω′(a) = −κS(a) + 3

2
κa·T (3.13)

we see that the Riemann tensor can be written as

R(a∧b) = R′(a∧b) + a·Ḋ′$̇(b) − b·Ḋ′$̇(a) +$(a)×$(b), (3.14)

where the primes denote the equivalent quantities in the absence of torsion. (In the
literature these are often denoted with a pair of curly braces to denote the use of
the Christoffel connection.)

On contracting equation (3.14) with ∂a we find the following expression for the
Ricci tensor:

R(b) =R′(b) + Ḋ′·$̇(b) − b·D′[∂a·$(a)] + ∂a·[$(a)×$(b)]

=R′(b) − κḊ′·Ṡ(b) − 3

2
κb·(D′·T ) + 〈∂a$(a)$(b)〉1 − ∂a$(a)·$(b)

=R′(b) − κḊ′·Ṡ(b) − 3

2
κb·(D′·T ) − κ2S̄[S(b)] + 3

2
κ2S̄(b·T ), (3.15)
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where again R′(a) is the Ricci tensor in the absence of torsion and we have assumed
a vanishing contraction of the torsion tensor. Finally, we make a further contraction
to obtain the following expression for the Ricci scalar:

R = R′ + 9

2
κ2T 2 − κ2S(∂a)·S(a). (3.16)

No derivatives of S(a) appear in this expression, which is a feature of assuming that
the spin tensor has a zero contraction [5, 31].

4 Symmetries and Conservation Laws

In this section we discuss some of the symmetries of the Riemann tensor and conser-
vation laws of GTG when torsion is present. These have already been given in [15],
for the case of vanishing torsion. The zero torsion results may be combined with the
expressions of the previous section to extend them to the torsion sector. However, for
reasons of completeness, we shall not follow this route but shall give derivations from
‘first principles’. Many of these results have immediate counterparts in differential
geometry, though the conciseness of their derivations here compares favourably with
tensor-calculus techniques.

Our starting point is the equation

D∧h̄(c) = κS[h̄(c)], (4.1)

where c is independent of position. Taking the covariant exterior derivative of this
equation gives

D∧(D∧h̄(c)) = κD∧S[h̄(c)]. (4.2)

But,

D∧(D∧h̄(c)) = h̄(∂a)∧Da[h̄(∂b)∧(Dbh̄(c))]

= [D∧h̄(∂b)]∧[Dbh̄(c)] + h̄(∂a)∧h̄(∂b)∧[DaDbh̄(c)]

= κS[h̄(∂b)]∧[Dbh̄(c)] + 1

2
h̄(∂a)∧h̄(∂b)∧[R(a∧b)·h̄(c)],

(4.3)

so that

(2κ)−1∂a∧∂b∧[R(a∧b)·h̄(c)] = D∧S[h̄(c)] − S[h̄(∂b)]∧[Dbh̄(c)]

= Ḋ∧Ṡ[h̄(c)] + ∂a∧S[a·Dh̄(c)] − S(∂b)∧[b·Dh̄(c)].
(4.4)

The final two terms on the right-hand side of equation (4.4) are

∂a∧S[a·Dh̄(c)] − S(∂b)∧[b·Dh̄(c)] = S(∂a)∧[∂b a·(b·Dh̄(c)) − a·Dh̄(c)]

= −S(∂a)∧[a·(D∧h̄(c))]

= −κS(∂a)∧[a·S(h̄(c))], (4.5)
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so equation (4.4) reduces to the covariant equation

∂a∧∂b∧[R(a∧b)·c] = 2κḊ∧Ṡ(c) − 2κ2S(∂a)∧[a·S(c)]. (4.6)

Protracting equation (4.6) with ∂c yields

∂a∧∂b∧R(a∧b) = 3κD∧T + κ2S(∂a)∧S(a), (4.7)

and dotting back with c gives

2∂b∧R(c∧b) − ∂a∧∂b∧[R(a∧b)·c] = 3κcD∧T + κ2cS(∂a)∧S(a). (4.8)

Hence, applying equation (4.6) again, we find that

∂a∧R(a∧b) = −κ[Ḋ∧Ṡ(b) + 3

2
bD∧T ] + κ2S(∂a)∧[a·S(b)] − 1

2
κ2bS(∂a)∧S(a).

(4.9)

In the absence of spin the right-hand side of (4.9) vanishes, leaving the simple equa-
tion ∂a∧R(a∧b) = 0 which, as noted in [15], encodes all the symmetries of the
Riemann tensor in the absence of torsion.

The adjoint function to R(B) is written R̄(B) and is defined by

A·R(B) = B·R̄(A) (4.10)

for any two bivectors A and B. The Riemann tensor and its adjoint are related by

R(B) − R̄(B) = −∂b∧[B·(∂a∧R(a∧b))] + 1

2
B ∂b∧∂a∧R(a∧b)

(4.11)

and equation (4.9) can be used to express the right-hand side in terms of the spin.
Clearly a vanishing spin tensor implies that R(B) = R̄(B), though the relation
∂a∧R(a∧b) = 0 contains more information and is more useful in practice.

Returning to equation (4.9) and contracting with ∂b we obtain

∂a∧R(a) = ∂a∧G(a) = −κṠ(Ḋ) + κ2[∂b·S(∂a)]∧[a·S(b)], (4.12)

and the same expression must hold for the matter stress-energy tensor. The final
term can be simplified by noting that

iS̄(iB) = i∂a〈iBS(a)〉 = S(a)∧(∂a·B) (4.13)

(since ∂a·S(a)=0). We can therefore write

[∂b·S(∂a)]∧[a·S(b)] = ∂b·[iS̄(iS(b))] = −i∂b∧S̄(iS(b)). (4.14)

The gauge theory version of the Bianchi identity follows from the Jacobi identity
applied to covariant derivatives of an arbitrary multivector M :

[Da, [Db,Dc]]M + cyclic permutations = 0. (4.15)
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Evaluating the commutators we find that

DaR(b∧c) + cyclic permutations = 0, (4.16)

which we want to replace by a covariant expression. We first extend to the case
where a, b and c are position-dependent:

DaR(b∧c) −R[(a·∇b− b·∇a)∧c] + cyclic permutations = 0. (4.17)

Next, we replace a with h
¯
(a) etc. to find

a·DR(b∧c) −R[(h
¯
−1Lah

¯
(b) − h

¯
−1Lbh

¯
(a))∧c] + cyclic permutations = 0.

(4.18)

Recalling equation (3.5), equation (4.18) becomes

a·DR(b∧c) −R[(a·Db− b·Da)∧c]

+ κR[S̄(a∧b)∧c] + cyclic permutations = 0,
(4.19)

which simplifies to give

a·ḊṘ(b∧c) + κR[S̄(a∧b)∧c] + cyclic permutations = 0. (4.20)

The adjoint form of this equation is

∂c∧∂b∧∂a〈a·ḊṘ(b∧c)B〉 = −κ∂c∧∂b∧∂a〈R[S̄(a∧b)∧c]B〉, (4.21)

where B is an arbitrary bivector. Equation (4.21) evaluates to

Ḋ∧ ˙̄R(B) = κ∂a S(a)∧R̄(B), (4.22)

or, alternatively,

∂a∧[a·DR̄(B) − R̄(a·DB)] = κ∂a S(a)∧R̄(B), (4.23)

which is our gauge theory version of the Bianchi identity.
On contracting equation (4.22) we obtain

(∂a∧∂b)·[Ḋ∧ ˙̄R(a∧b)] = κ(∂a∧∂b∧∂c)S(c)∧R̄(a∧b),

=⇒ 2b·Ḋ ˙̄R(∂b) −DR = κ(∂a∧∂b∧∂c)S(c)∧R̄(a∧b), (4.24)

which may be written as

˙̄G(Ḋ) ≡ a·Ḋ ˙̄G(∂a) = −κ∂a·R̄[S(a)] + κ∂a·S[R̄(a)]. (4.25)

Taking the inner product with an arbitrary vector b, we obtain the adjoint form

Ḋ·Ġ(a) = κS(∂b)·R(b∧a) − κ[a·S(∂b)]·R(b). (4.26)

In the absence of torsion, we obtain the simple result

Ġ(Ḋ) = 0, (4.27)

which is the GTG version of covariant conservation of the Einstein tensor.
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5 The Self-Consistent Dirac Field

A simple way to produce gauge fields with torsion is to consider matter described
by a Dirac spinor field |ψ(x)〉. In the STA, it is convenient to represent such a
spinor by an even multivector ψ (see [32, 33] for an explicit map for the Dirac-Pauli
representation). The {γ̂µ} operators, and the conventional unit scalar imaginary j
have actions which are represented by:

γ̂µ|ψ〉 ↔ γµψγ0 (µ = 0 . . . 3)

j|ψ〉 ↔ ψiσ3.
(5.1)

In this manner, all matrix manipulations are eliminated, and the geometric content
of the Dirac theory is made manifest [34].

Spinors transform single sidedly under Lorentz rotations, which leads to the
introduction of the spinor covariant derivative Dψ ≡ ∂aa·Dψ where

a·Dψ ≡ Laψ + 1

2
ω(a)ψ. (5.2)

The equations of motion for the Dirac field and the gauge fields are derived from the
minimally coupled action [15]

SECD =
∫

|d4x| det(h
¯
)−1 [1

2
R− κ〈Dψiγ3ψ̃ −mψψ̃〉], (5.3)

where m is the mass of the particle. Varying with respect to ψ and the gravitational
gauge fields leads to the system of equations

‘wedge’: D∧h̄(a) = κT ·h̄(a)

Einstein: G(a) = κT (a)

Dirac: Dψiσ3 = mψγ0,

(5.4)

where

T ≡ 1

2
ψiγ3ψ̃ (5.5)

is the spin trivector, and the matter stress-energy tensor T (a) is given by [15]

T (a) = 〈a·Dψiγ3ψ̃〉1. (5.6)

These equations are the gauge theory equivalents of the Einstein-Cartan-Dirac equa-
tions. The ‘wedge’ equation summarises Cartan’s suggestion [10] that the torsion be
identified with the spin of the matter present. Note that the minimally-coupled Lag-
rangian has given rise to the minimally-coupled Dirac equation, on variation of ψ.
As noted in the introduction, this is because ‘trivector’ spin of the type S(a) = T ·a
automatically has a vanishing contraction. A number of results for the gravitational
field particular to this case of trivector spin are contained in Appendix A.
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Protracting the stress-energy tensor (5.6) with ∂a, we find that

∂a∧T (a) = ∂a∧〈a·Dψiγ3ψ̃〉1

= 1

2
〈Dψiγ3ψ̃ − ∂aψiγ3(a·Dψ)̃ 〉2. (5.7)

However, the Dirac equation implies that 〈Dψiγ3ψ̃〉2 = 0, so we can write

∂a∧T (a) = −1

2
〈∂a[a·Dψiγ3ψ̃ + ψiγ3(a·Dψ)̃ ]〉2

= −〈∂a(a·DT )〉2

= −D·T. (5.8)

This demonstrates that the Dirac equation and the definition (5.6) for the stress-
energy tensor are consistent with equation (4.12), since the final term on the right-
hand side of equation (4.12) vanishes for the case of trivector spin. It can also
be shown that the Dirac equation is consistent with the contracted Bianchi iden-
tity (4.25). The proof of this is simplified by employing the results of Appendix A.
A new, exact solution to the Einstein-Cartan-Dirac equations in GTG, describing
an almost homogeneous universe with a spin-induced anisotropy, is given in [25].

The gauge-invariant action (5.3) naturally gives rise to a spin-torsion theory, with
the torsion (measured by the left-hand side of the ‘wedge’ equation) given by the spin
of the matter. Such an interaction is inevitable if the gravitational fields are intro-
duced via a gauge theoretic route. This is good reason to prefer the Einstein-Cartan-
Dirac equations over the Einstein-Dirac equations, which result from coupling the
Dirac equation with the torsion-free spacetime of General Relativity. However, as
most of the literature focusus on solutions of the Einstein-Dirac equations (see, for
example, [35]–[38]), it is interesting to see how the present techniques can be ad-
apted to such a setup. We start by replacing ω(a) in the action by the equivalent
expression in terms of h̄(a) and its derivatives. The action then becomes

SED =
∫

|d4x| det(h
¯
)−1 [1

2
R′ − κ〈h̄(∇)ψiγ3ψ̃ + 1

4
∂a∧H(a)ψiγ3ψ̃ −mψψ̃〉],

(5.9)

where H(a) is as defined in equation (3.12) and R′ is now a function of h̄(a) and its
first and second derivatives. The dynamical variables are now h̄(a) and ψ, with the
‘wedge’ equation replaced by the identity

D′∧h̄(a) = 0. (5.10)

Variation with respect to ψ produces the equation

D′ψiσ3 = mψγ0, (5.11)

where the prime again denotes that the covariant derivative does not contain a
contribution from the spin. Variation with respect to h̄(a) yields

G ′(a) = κT ′(a) (5.12)
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where T ′(a) is obtained by variation of the matter action with respect to h̄(a). The
derivation of T ′(a) is more complicated now due to the presence of derivatives of
the h̄(a)-function in the matter Lagrangian. The calculations are not too difficult,
however, and yield

T ′(a) = 〈a·D′ψiγ3ψ̃〉1 + 1

2
a·(D′·T ). (5.13)

Satisfyingly T ′(a) is a symmetric tensor, which it has to be since G ′(a) is automatic-
ally symmetric. The pair of equations (5.11) and (5.12) constitute the GTG version
of the Einstein-Dirac equations. These are usually obtained from the system (5.4) by
the Belifante-Rosenfield procedure [39, 40]. It is perhaps surprising that to derive the
equations rigorously from an action involves replacing the symmetric metric tensor
gµν with h̄(a) as the dynamical variable, since it is the latter that unambiguously
yields a symmetric stress-energy tensor.

Despite the neat features of the GTG derivation of the Einstein-Dirac set of
equations, there are still good reasons to prefer the Einstein-Cartan-Dirac set, though
of course no experiment has yet been devised which could distinguish between them.
The key reason, as stated earlier, is that the Einstein-Cartan-Dirac set maintain
the link with gauge theories, which is lost if one pushes the Riemannian geometry
viewpoint of the Einstein-Dirac set. Such considerations are clearly important in
attempting to construct a fully quantum theory. Furthermore, the clean separation
into the h̄(a) and Ω(a) gauge fields of the GTG approach is particularly appealing
in looking for extensions to a multiparticle quantum theory of gravity.

It is worth pointing out that if h̄(a), ω(a) and ψ satisfy equation (5.4), then the
fields h̄(a), ω′(a) and ψ satisfy equations (5.11) and (5.12) if the condition

Tψ = 1

2
ψiγ3ψ̃ψ = 0 (5.14)

is satisfied. It is a simple matter to show that this is equivalent to the condition [21]

ψ̃ψ = ψψ̃ = 0. (5.15)

The proof of the analogous result between Einstein-Dirac and Einstein-Cartan-Dirac
theory was given by Seitz in [23]. The gauge theory proof is given in Appendix B.
Condition (5.15) is always satisfied for neutrino solutions.

6 Spinning Point-Particle Models

In recent years there has been considerable interest in obtaining semi-classical equa-
tions describing the dynamics of a fermion, while maintaining the concept of a def-
inite particle trajectory x(λ) (see, for example, [41, 42]). One of the aims of this
work is to obtain a quantum theory via a path-integral quantisation of a suitable
classical model [43, 44]. In [15], an action was proposed to describe the dynamics of
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a spin-1/2 particle in a gravitational background, but the resulting equations were
only given in a full classical approximation, which neglected the spin. In this section
we derive the semi-classical equations of motion resulting from this action, including
the effects of torsion in the gravitational background.

The action is given by

S =
∫

dλ 〈Ψ̇iσ3Ψ̃ + 1

2
Ω(ẋ)Ψiσ3Ψ̃ + p(v −mpeΨγ0Ψ̃) +m2

pe〉, (6.1)

where v ≡ h
¯
−1(ẋ) is the covariant tangent vector to the trajectory and, for this

section, overdots denote differentiation with respect to λ. The Lagrange multiplier
p is identified with the momentum of the particle (which has mass mp) and an
einbein e is included to ensure invariance of the equations under reparameterisation
of the path. The spinor Ψ(λ) contains information about the spin and velocity of
the particle. In general, p and v will not be collinear. The dynamical variables are
x(λ),Ψ(λ), p(λ) and e(λ). Varying Ψ, p and e gives the equations

Ψ̇iσ3 + 1

2
ω(v)Ψiσ3 = mpepΨγ0 (6.2)

v = mpeΨγ0Ψ̃ (6.3)

p·v = em2
p. (6.4)

Equation (6.2) may be written in manifestly covariant form

v·DΨiσ3 = mpepΨγ0. (6.5)

Equations of motion for v and the spin bivector S ≡ Ψiσ3Ψ̃ follow from (6.2). We
find that

ev·D(v/e) = −2m2
pe

2p·S (6.6)

v·DS = 2p∧v. (6.7)

In the presence of trivector type torsion the geodesic equation reduces to v·Dv = 0,
where v is the unit tangent vector to the path (this is not true for more general
types of torsion, in which case it is necessary to distinguish between geodesics and
auto-parallels). It follows from (6.6) that, in general, the motion is not geodesic.
Furthermore, if we construct the unit spin vector along Ψγ3Ψ̃, we find that this is
not Fermi transported in general. These effects, which are present even in the absence
of gravitation [33], were present in the classical dipole model of Papapetrou [45].

The equation of motion for p is obtained by variation of x. We find that

∂λh̄
−1(p) + 1

2
∂λ∂a(Ω(a)·S) =

∗

∇(ẋ·
∗

h̄−1(p)) + 1

2
∂a〈a·

∗

∇
∗

Ω(ẋ)S〉, (6.8)

where, for this section, we employ overstars in place of overdots for the scope of a
differential operator. This equation yields

h̄−1(ṗ) + h
¯
(v)·(

∗

∇ ∧
∗

h̄−1(p)) = 1

2
∂a〈(a·

∗

∇
∗

Ω(ẋ) − ẋ·
∗

∇
∗

Ω(a))S − Ω(a)Ṡ〉

= 1

2
h̄−1[v·R̄(S)] − 1

2
∂a Ω(a)·[Ṡ + ω(v)×S].

(6.9)
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We now employ equation (6.7) in the right-hand side of (6.9) to find (after application
of h̄ to both sides)

ṗ− v·[h̄(
∗

∇)∧
∗

h̄(h̄−1(p))] = 1

2
v·R̄(S) − ∂a ω(a)·(p∧v). (6.10)

Hence, recalling equation (2.32), we find the manifestly covariant equation of motion
for p

v·Dp = 1

2
v·R̄(S) + κv·S(p). (6.11)

The presence of R̄(S) and S(p) in this equation imply a coupling of the particle to
the torsion, unlike some previous models [24]. We exploit this coupling in another
paper [25] to discuss the torsion-induced anisotropy of a cosmological solution for a
self-consistent Dirac field. We can use equation (6.7) to substitute for p in (6.11).
This gives the equation

v·D

(

em2
pv

v2
−
v·(v·DS)

2v2

)

= 1

2
v·R̄(S) + κv·S(p), (6.12)

which is the analogue of the result found by Papapetrou [45] in the absence of torsion
(his equation (5.7)).

The constraint equation (6.4) is consistent with the equations of motion for v
and p since

∂λ(p·v) = (v·Dp)·v + p·(v·Dv) = (ė/e)p·v

=⇒ (p·v)/e = constant. (6.13)

We thus have a complete, consistent set of semi-classical equations describing the
dynamics of a massive spin-1/2 point-particle in a gravitational background. The
equations are under-determined until a choice is made for the einbein. A convenient
choice for comparison to classical models is to take v2 = 1, so that λ is the proper
time for the particle.

7 Conclusions

In this paper we have discussed the symmetry of the Riemann tensor and the con-
servation laws of GTG in the presence of torsion. This extends many of the results
discussed in [15], where the effects of torsion were not considered. Many of the
results presented here have counterparts in the standard tensor-calculus formula-
tion of ECKS theory. A full translation between the two approaches is contained in
Appendix D.

As an example of a model with torsion, we considered the Dirac field coupled
self-consistently to gravity. A minimally-coupled gauge-invariant Lagrangian leeds
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to the GTG version of the Einstein-Cartan-Dirac equations. The Einstein-Dirac
equations may also be formulated consistently but they cannot be derived from
minimal coupling and gauge-theoretic arguments alone. This is a consequence of the
natural association of torsion with the spin of the matter field which arises in GTG.
Finally, we considered a semi-classical model for a massive spinning point-particle,
moving in a gravitational background with torsion. This showed that the motion
is not generally geodesic, the spin vector is not Fermi-transported and the particle
couples to the torsion.

In a separate paper [25] we apply much of this formalism to obtain a new self-
consistent cosmological solution describing a universe arising from a massive Dirac
field. This solution provides a counterexample to the claim of [26] that Einstein-
Cartan theories of gravity and General Relativity are observationally equivalent.
The model presented in [25] contains an isotropic line element, but spinning point
particles see a preferred direction in space due to the spin of the matter field. It
is certainly true that for every solution of the Einstein-Cartan (or GTG) equa-
tions there is an equivalent solution in General Relativity. There must be because
every metric gives a solution to the Einstein field equations; the matter distribu-
tion is whatever the Einstein tensor dictates. This misses the point, however, that
in theories with spin there are extra physical fields present which have observable
consequences. These cannot just be hidden in an effective stress-energy tensor.

A Results for Trivector Spin

The specialisation of the results in the main text to the case of trivector spin is
useful for studying the Einstein-Cartan-Dirac set of equations. In this setup the
spin tensor is given entirely by

S(a) = T ·a (A.1)

where T is the spin trivector. First we have the following expressions for the Riemann
tensor:

R(a∧b) = R′(a∧b) + 1

4
κ2(a∧b)·T T − 1

2
κ[(a∧b)·∂c]·(c·DT ), (A.2)

with the prime denoting the equivalent tensor in the absence of spin. Contracting
equation (A.2) we obtain expressions for the Ricci tensor and scalar:

R(a) = R′(a) + 1

2
κ2(a·T )T − 1

2
κa·(D·T ) (A.3)

R = R′ + 3

2
κ2T 2. (A.4)

These expressions are equivalent to those used in [23], but express the intrinsic
content in a coordinate-free fashion.
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The protraction of the Riemann tensor is

∂a∧R(a∧b) = −κ(b·DT + 1

2
bD∧T ), (A.5)

which produces an antisymmetric term of

R̄(B) −R(B) = κ(B·D)·T − 1

2
κBD∧T. (A.6)

Equation (A.5) contracts to give

∂a∧R(a) = ∂a∧G(a) = −κD·T, (A.7)

so the antisymmetric part of the Einstein tensor is determined by the covariant
divergence of the spin trivector.

The Bianchi identity simplifies to

Ḋ∧ ˙̄R(B) = −κR̄(B)×T. (A.8)

The contracted result is

˙̄G(Ḋ) = 1

2
κ(∂b∧∂a)·[R̄(a∧b)×T ]. (A.9)

Taking the inner product with an arbitrary vector b, we obtain the adjoint form

Ḋ·Ġ(b) = 1

2
κ(∂c∧∂a)·R[(a∧b∧c)×T ]. (A.10)

Equation (A.9) may be written as

˙̄G(Ḋ) = κi∂a∧R(a∧(iT )), (A.11)

which, when combined with (A.5) gives

˙̄G(Ḋ) = −1

2
κ2(sD·s+ 2s·Ds), (A.12)

where the ‘Pauli-Lubansky’ vector s ≡ −iT is the dual of the spin trivector. Equa-

tion (A.12) shows that ˙̄G(Ḋ) is second-order in the spin.

B Solutions of the Einstein-Cartan-Dirac equa-

tions and the Einstein-Dirac equations

In this appendix we give the GTG proof that solutions of the equations (5.4) satis-
fying condition (5.15) are also solutions of the pair of equations (5.11) and (5.12).
The proof is similar to that of Seitz [23].
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Assume that h̄(a), ω(a) and ψ satisfy (5.4) and define ω′(a) via equation (3.11).
The Dirac stress-energy tensor T (a), defined in equation (5.6), decomposes as fol-
lows:

T (a) = 〈a·Dψiγ3ψ̃〉1

= 〈a·D′ψiγ3ψ̃〉1 + 1

2
〈$(a)ψiγ3ψ̃〉1

= T ′(a) + 1

2
κ2(a·T )·T − 1

2
κa·(D·T ). (B.1)

We next use equations (A.3) and (A.4) to write

G(a) = G ′(a) − 1

2
κa·(D·T ) + 1

2
κ2(a·T )·T − 3

4
κ2aT 2 (B.2)

So, given that G(a) = κT (a), the equivalent equation for the primed tensors will
also be satisfied provided that T 2 = 0. This holds if and only if Tψ = 0.

It remains to consider the Dirac equation. Noting that

D′ψ = Dψ − 1

4
κ∂aa·Tψ

= Dψ − 3

4
κTψ, (B.3)

we see that equation (5.11) will also be satisfied provided that the condition Tψ = 0
is satisfied. This completes the proof. Clearly, the converse is also true.

C Results for Arbitrary Spin Tensors

In this appendix we generalise the main results of this paper to a general spin tensor
S(a) which is not required to have a vanishing contraction. The results are quoted
without proof since the derivations follow those given in the main text.

For consistency with the previous results, we continue to denote the protraction
of S(a) by 3T . The contraction of the spin tensor is denoted t, so we have

∂aS(a) = ∂a·S(a) + ∂a∧S(a) = t+ 3T. (C.1)

Equation (3.5) generalises to

h
¯
−1(Lah

¯
(b) − Lbh

¯
(a)) = a·Db− b·Da− κS̄(a∧b) − 1

2
κ(a∧b)·t. (C.2)

where S̄(a) is the adjoint to the spin tensor, as defined at equation (3.4). The
right-hand side of (C.2) now defines the vector c which appears in the covariant
expression (3.6) for the Riemann tensor. The ω′(a) field (the equivalent field in the
absence of torsion) is given by

ω′(a) = ω(a) + κS(a) − 1

2
κ(3a·T + a∧t). (C.3)
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The Riemann tensor is still given by equation (3.14). On contracting we arrive at
the following expression for the Ricci tensor:

R(a) =R′(a) − κḊ′·Ṡ(a) − 3

2
κa·(D′·T ) − 1

2
κaD′·t

− κ2S̄(S(a)) + 3

2
κ2S̄(a·T ) + 1

2
κ2S̄(a∧t), (C.4)

which is the generalisation of (3.15). Contracting this expression with ∂a, we find
the generalisation of (3.16):

R = R′ − κD′·t+ 9

2
κ2T 2 − 1

2
κ2t2 − κ2S(∂a)·S(a). (C.5)

Of the full spin tensor S(a) only t is differentiated in this expression, though the
corresponding term in the action is a total divergence, so does not contribute to the
field equations.

The protraction of the Riemann tensor (equation (4.9)) is given by

∂a∧R(a∧b) = − 1

2
κ(b∧D∧t+ 2Ḋ∧Ṡ(b) + 3bD∧T ) + 1

4
κ2
(

4iS̄[iS(b)]

− 2bS(∂a)∧S(a) + 2b∧S(t) − 2S(b)∧t+ 3b T∧t
)

. (C.6)

The protraction of the Ricci tensor (equation (4.12)) generalises to

∂a∧R(a) = −κṠ(Ḋ) + κ2∂a·(iS̄[iS(a)]) − 1

2
κ2S(t). (C.7)

For general torsion, the Bianchi identity is still given by the compact expres-
sion (4.22). The contracted Bianchi identity now becomes.

˙̄G(Ḋ) = κ[Ḡ(t) − ∂a·R̄(S(a)) + ∂a·S(R̄(a))]. (C.8)

Taking the inner product with a vector a gives the adjoint relation

Ḋ·Ġ(a) = κ[t·G(a) + S(∂b)·R(b∧a) − (a·S(∂b))·R(b)]. (C.9)

D The Relation with Tensor Calculus

In this appendix we relate the frame-free approach of GTG to the standard ap-
proaches of tensor calculus. These results extend those given in Appendix C of [15].
Throughout this appendix we follow the conventions of [9].

We start with a set of coordinates {xµ} and introduce the vectors

eµ ≡
∂x

∂xµ
, eµ ≡ ∇xµ. (D.1)

From these we construct the vectors

gµ ≡ h
¯
−1(eµ), gµ ≡ h̄(eµ). (D.2)
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These vectors satisfy the relation

gµ·g
ν = eµ·e

ν = δν
µ. (D.3)

The metric is given by the 4 × 4 matrix

gµν ≡ gµ·gν . (D.4)

If the x-dependence in gµν is replaced by dependence on the coordinates {xµ} alone
then Riemann-Cartan geometry is recovered.

The connection is defined by

Dµgν = Γα
µνgα, (D.5)

so that

Γλ
µν = gλ·(Dµgν). (D.6)

Unlike the coordinate-free object Ω(a), the connection contains artifacts from the
chosen coordinate frame. Since

∂µgνλ = (Dµgν)·gλ + gν ·(Dµgλ), (D.7)

we find that

∂µgνλ = Γα
µνgαλ + Γα

µλgαν , (D.8)

which recovers ‘metric compatibility’ of the connection. The covariant derivative of
a covariant vector A = Aαgα = Aαg

α is

DµA = Dµ(Aαgα)

= (∂µA
α)gα + AαΓβ

µαgβ

= (∂µA
α + Γα

µβA
β)gα, (D.9)

as expected.
Equation (D.8) inverts to show that the connection contains a component given

by the standard Christoffel symbol and a ‘contorsion’ term

Γν
λµ =

{

ν
λµ

}

−Kλµ
ν . (D.10)

The components of the contorsion tensor are given by

Kλµ
ν =

{

ν
λµ

}

− gν ·(Dλgµ)

= gν ·[(ω′(gλ) − ω(gλ))·gµ]

= κ(gν∧gµ)·[S(gλ) −
3

2
gλ·T − 1

2
gλ∧t]. (D.11)
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The torsion tensor is defined by the antisymmetric part of the connection:

Sλµ
ν = 1

2
(Γν

λµ − Γν
µλ)

= 1

2
gν ·(Dλgµ −Dµgλ)

= −1

2
[gµ·(Dλg

ν) − gλ·(Dµg
ν)]

= −1

2
(gµ∧gλ)·(D∧gν)

= 1

2
(gλ∧gµ)·[S(gν) + 1

2
t∧gν ], (D.12)

and the modified torsion tensor is defined by

Tλµ
ν = Sλµ

ν + δν
λSµα

α − δν
µSλα

α

= 1

2
κ(gλ∧gµ)·S(gν). (D.13)

For covariant quantities such as the Riemann tensor the translation to tensor
calculus is straightforward:

Rµ
νρσ = (gµ∧gν)·R(gσ∧gρ). (D.14)

A vierbein eµ
i (essentially an orthonormal tetrad) is given by

eµ
i = gµ·γ

i, eµ
i = gµ·γi, (D.15)

where {γi} is a fixed orthonormal frame. Any position dependence in the {γ i} is
eliminated with a suitable rotor transformation.
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