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Thanks etc.
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Outline
• 4 phenomena to give a classical and 

quantum description for

Classical Quantum

xEmission

Bound states

Absorption

Scattering
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Classical Scattering
• Main method of comparison is the differential 

cross section

b
pi

pfGM

θ

For r-1 potential get 
Rutherford formula
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Classical Dynamics
• The Schwarzschild line element contains all 

relativistic information (c=1)

• The geodesic equation for a radially infalling 
particle is essentially Newtonian
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Painlevé Coordinates
• Necessary for later calculations to remove the 

singularity at the horizon
• Convert to time as measured by infalling 

observers

• Find metric is now (no problem at horizon)
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Geodesic Equation
• The geodesic equation can be written

• Vectors in 3-space
• Overdots denote proper time derivatives
• r is a local observable obtained from the 

strength of the tidal force – not just a coordinate
• Summarise in effective potential (per unit mass) 
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Radial geodesics

From rest

From infinity

Light-like 
geodesics
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Geodesic Motion
• Geodesics can be quite complicated
• Write the geodesic equation in form (u=1/r)

• A cubic equation, so solution is an elliptic 
function

• For intermediate angular velocities, get 
spiralling

• Complicates the calculation of the cross 
section 
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Sample Geodesics

=0.9cv=0.5c vSpiralling
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Cross-section
• Analytic formula for the motion involves an 

elliptic integral
• Best evaluated numerically, for a range of 

velocities 
• Collins et al. J. Phys A 6 (161), 1973
• Result in a series of cross-section graphs
• Can do small angle case analytically
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Numerical Results

Corresponds to v=0.995c

Rutherford
at small θ

Additional 
scattering 
as θ ≈ π
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Quantum Treatment
• Concentrate on fermions.
• These are described by the Dirac equation
• Uses apparatus of spinors, Dirac matrices, 

tetrads and spin connections
• Typically neglected in black hole treatments –

favour massless scalar fields
• But in fact, Dirac theory is easier

– First order
– Simple, Hamiltonian form
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Dirac Equation
• Standard notation, in full gruesome detail

• Of course, much easier using geometric 
algebra – which is how we do it!

Spin 
Connection

Dirac spinor
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Hamiltonian Form
• Return to the metric

• Convert to Cartesians
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Hamiltonian Form
• Return to the metric

• Now introduce the matrices / vectors

‘Flat’ 
Minkowski 
vectors 

Gravitational 
interaction
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Hamiltonian Form II
• Now insert matrices into Dirac equation

• Convert to Hamiltonian form
• All interactions contained in the interaction 

Hamiltonian  

Flat space Interaction
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The Interaction Hamiltonian

• All gravitational effects in a single term
• This is gauge dependent
• In all gauge theories, trick is to

1. Find a sensible gauge
2. Ensure that all physical predictions are 

gauge invariant
• Hamiltonian is scalar (no spin effects)
• Independent of particle mass
• Independent of c
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Non-relativistic limit
• The non-relativistic limit of the Dirac equation 

is the Pauli equation
• No spin effects - insert directly into 

Schrödinger equation

• Substitution
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Implications
• Recovered Newtonian potential
• With a Hamiltonian independent of mass!
• Solutions are confluent hypergeometrics
• Phase factor irrelevant to density, hence to 

cross-section
• Non-relativistic limit of cross-section must be 

Rutherford formula (exact)
• Also expect a bound state spectrum 

equivalent to Hydrogen atom (later)
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Iterative Solution
• Borrow technique from quantum field theory

• Has an iterative solution

+ + + …
Feynman
Diagrams
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Amplitude
• Convert to momentum space

Amplitude Plane wave 
spin states

Use amplitude to 
compute differential 
cross section
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Vertex Factor
• Fourier transform of interaction term is

• Evaluates to

Energy conserved so this vanishes on shell
Process must be second order
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Vertex Factor II
• Evaluate the second order diagram

pi pf

k

Result 
is
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Cross-section
• Reinsert the asymptotic spinors.  Get 

differential cross-section

• q is the momentum transfer pf -pi  

• Unpolarised version, after spin sums, is

Scattering angle θVelocity
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Comments

• Result is independent of particle mass
• Equivalence principle holds to lowest order in 

quantum theory
• Small angle approximation agrees with point 

particle dynamics
• No boundary conditions specified at horizon
• Can extend to higher order and include 

radiation
• Get terms violating equivalence principle
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Comments II
• Massless limit well defined (v =1)

• Reproduces photon deflection formula at 
small angles

• Zero in backward direction – a neutrino 
diffraction effect

• Can apply to scalar fields as well
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Gauge Invariance
• Important issue to address
• Do not have a general proof, but can 

reproduce calculation in another gauge
• In Kerr-Schild gauge set

• Calculation is a different order
• But result is unchanged – a physical prediction

First-order in M
+
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Absorption
• Particles too close to the horizon end up 

captured
• See this from the effective potential

Plot of increasing J

Higher J values 
are scattered

E too high get 
absorbed

Low J are absorbed
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Absorption Cross-section
• Impact parameter b is critical distance from 

hole for fixed velocity and angular momentum
• Total absorption cross-section is 

• For photons find that b2=27(GM)2

• Hole appears of a disk of radius b
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Absorption Cross-section II
• Slightly more complicated calculation gives

Photon 
limit



Black Holes 2002 32

Quantum Equations
• Radial Schrodinger equation is

• Convert to first-order form (rψ=u1)

• With |κ|=l+1 recover the correct Dirac radial 
separation

• Energy term tells us how to add in interaction
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Black Hole Case
• Black hole Hamiltonian includes derivative 

terms.  Find that radial equations are (G=1)

• See that singular points exist at the origin (r-3/4)      
horizon, and at infinity (irregular)

• Special function theory underdeveloped for 
this problem
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Units and Dimensions
• Convert to dimensionless form by introducing 

distance function x=2r/r0
• Dirac equation controlled by dimensionless 

coupling constant α and energy ε

• α also ratio πr0/λ – horizon/Compton w/length
• α ≈ 1 corresponds to primordial black holes
• Also have



Black Holes 2002 35

Horizon
• Series expansion about horizon η=(r-2M)

• Get indicial equation

• Roots are 

Regular branch -
physical

Singular branch -
unphysical

Gauge 
invariant
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Regular Solutions (α=0.01)
ε=0.1, l=0 ε =0.2, l=0

ε =0.1, l=1 ε =0.2, l=1
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Singular modes (α=0.01)
ε =0.1, l=0 ε =0.2, l=0

ε =0.1, l=1 ε =0.2, l=1
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Asymptotic Behaviour
• At large r have

• Similar for u2

• Normalise such that
• Absorption cross section is
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Massless Case
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Massive Case
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Classical Bound States
• Can have stable, classical orbits outside a 

black hole 

Precessing ellipse

Find minimum bound 
state energy 0.95mc2

No stable orbits 
within 6M
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Semi-Classical Model
• Carry out a ‘Bohr’ quantisation L=n~
• Find that energy is

Dimensionless 
coupling

Angular momentum of 
ground state increases 
with coupling
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Quantum Bound States
• Hamiltonian is not Hermitian

• Origin acts as a sink 
• Dirac current is future-pointing, timelike
• Inside horizon, all current streamlines are 

swept onto the singularity
• Any normalizable states must have an 

imaginary component to E – resonance mode
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Method
• Start with regular solution at horizon and 

integrate outwards
• Simultaneously, integrate in from infinity, 

assuming exponential fall-off
• If both u1 and u2 meet at a fixed distance, 

have a solution
• Four terms to vary – real and imaginary 

energy and normalisation 
• Four terms to set to zero – use a Newton-

Raphson method 
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Probability Density α=0.1



Black Holes 2002 48

Probability Density α=0.35
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Probability Density α=0.5
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Variation with κ

α=0.5First excited 
states with 
Increasing 
angular 
momentum

Further out, 
become 
Hydrogen-like
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Expectation value h r i

1S1/2

2S1/2

3S1/2

Horizon
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Imaginary Energy
1S1/2

Decay rate 
increases with 
coupling constant 
α and decreases 
with κ

2P3/2
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Comments
• α ≈ 1 is the scale appropriate to primordial 

black holes
• Solar mass black holes have α ≈ 1,000
• Corresponding spectrum of antiparticle states 

also all have decay factors
• Decay rates can be extremely slow for orbits 

a long way from horizon
• Binding energies much larger than classical 

predictions
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Emission
• Return to singular branch at horizon and 

compute radial currents

• Form ratio of outgoing to total current

Outgoing

Ingoing

Fermi-Dirac distribution at 
the Hawking temperature
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Future Work
• Carry our scattering work to higher order
• Include radiation effects
• Partial wave analysis of cross-section
• Find bound state spectrum for larger coupling
• Repeat analysis for Kerr states
• Investigate QFT description of unstable states 

(quasi-normal modes)
• Contribution to Hawking radiation?
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