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Outline

* 4 phenomena to give a classical and
quantum description for

Classical Quantum

Scattering v v
Absorption v
Bound states v
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Classical Scattering

« Main method of comparison is the differential

GM /Pf/

Cross section
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Classical Dynamics

« The Schwarzschild line element contains all
relativistic information (c=1)

2GM\
d32=<1— )dtz—(l—

T

— r2(d6® 4 sin®0 d¢*)

* The geodesic equation for a radially infalling
particle is essentially Newtonian

i =

2
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Painlevé Coordinates

* Necessary for later calculations to remove the
singularity at the horizon

« Convert to time as measured by infalling
observers
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Geodesic Equation

The geodesic equation can be written

Vectors in 3-space

Overdots denote proper time derivatives

r Is a local observable obtained from the
strength of the tidal force — not just a coordinate

Summarise in effective potential (per unit mass)
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Radial geodesics

Light-like
/ geodesics
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Geodesic Motion

« (Geodesics can be quite complicated
* Write the geodesic equation in form (u=1/r)

* A cubic equation, so solution is an elliptic
function

* For intermediate angular velocities, get
spiralling

« Complicates the calculation of the cross
section
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Sample Geodesics
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Cross-section

* Analytic formula for the motion involves an
elliptic integral

« Best evaluated numerically, for a range of
velocities

* Result in a series of cross-section graphs
« Can do small angle case analytically

_ A(GM)*(2B% —1)°
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Numerical Results

Rutherford
at small @

. -t(GeV/e)?)
Ad d Itl O n a I igure2? Differential cross section for a particle ofmass | GeV/c? and momentum 10 GeV/e,
scattering

fh a scattering centre of mass 10~ ' cm in gravitational units.
as 0~ r Corresponds to v=0.995¢
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Quantum Treatment

Concentrate on fermions.
These are described by the Dirac equation

Uses apparatus of spinors, Dirac matrices,
tetrads and spin connections

Typically neglected in black hole treatments —
favour massless scalar fields

But in fact, Dirac theory is easier
— First order
— Simple, Hamiltonian form
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Dirac Equation

« Standard notation, in full gruesome detail

« Of course, much easier using geometric
algebra — which is how we do it!
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Hamiltonian Form

 Return to the metric

« Convert to Cartesians
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Hamiltonian Form

 Return to the metric

2GM - 2(2GM>1/2xidxidt

ds® = Nuvdat dax” — dt=——

T T

* Now introduce the matrices / vectors

‘Flat’ 75 7 Gravitational
Minkowski ' ) s interaction

vectors r i
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Hamiltonian Form |l

 Now insert matrices into Dirac equation

0 +4%)w=mw

or

 Convert to Hamiltonian form

 All interactions contained in the interaction
Hamiltonian
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The Interaction Hamiltonian

Hpp = iﬁ(QGM/'r)l 2p 3149, (r3/%)
« All gravitational effects in a single term
 This is gauge dependent

* In all gauge theories, trick is to

— 1. Find a sensible gauge
2. Ensure that all physical predictions are
gauge invariant

« Hamiltonian is scalar (no spin effects)
* Independent of particle mass
* Independent of ¢
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Non-relativistic limit

* The non-relativistic limit of the Dirac equation
Is the Pauli equation

* No spin effects - insert directly into
Schrodinger equation

V2+iR(2GM /) 2r=3/%9,.(r3/ %) = Enri)

D

 Substitution RUEE=IETEIYe (—i(ST/aG)l/Q)

ac = T2/ (2GMm?)
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Implications

Recovered Newtonian potential

With a Hamiltonian independent of mass!
Solutions are confluent hypergeometrics
Phase factor irrelevant to density, hence to

cross-section

Non-relativistic limit of cross-section must be
Rutherford formula (exact)

Also expect a bound state spectrum
equivalent to Hydrogen atom (later)
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lterative Solution

* Borrow technique from quantum field theory

[i)o — B(xo) — m]Sc(xo, 1) = 6" (20 — 1)
« Has an iterative solution

Sa(xg,x;) = Sp(xy,z;) + /d45€1 Sp(xs,v1)B(x1)Sp(w1,2;)

+//d4x1 d4a; SF(CUf,xl)B(iﬁl)SF({B mQ)B(xQ)SF(mini)—F“

>+
Feynman
Diagrams
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Amplitude

« Convert to momentum space

Use amplitude to
compute differential el
cross section dS?
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Vertex Factor

 Fourier transform of interaction term is

Energy conserved so this vanishes on shell
Process must be
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Vertex Factor I

« Evaluate the second order diagram

P; Pr

/ k. prP -k f4+m k2 —p?
1—

(27)3 pr— k|7/2k2—m2—|—ze|k p;|7/2

Result

) on2q? (2m + 3@+ ¥i) — 4E’YO)
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Cross-section

« Reinsert the asymptotic spinors. Get
differential cross-section

‘US(Pf)(QE’Y — m)UT(Pz)‘Q

* g Is the momentum transfer p;-p;
* Unpolarised version, after spin sums, is

(1—|—2f02—3v2 sin?(0/2)+v*—v*sin?(0/2)

~ 40%sin?(6/2)

Velocity

Scattering angle 6
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Comments

(1—|—2f02—3v2 sin?(0/2)+v*—v*sin?(0/2)

T 40%sin?(6/2)

* Result is independent of particle mass

* Equivalence principle holds to lowest order in
gquantum theory

« Small angle approximation agrees with point
particle dynamics

« No boundary conditions specified at horizon

e Can extend to higher order and include
radiation

« Get terms violating equivalence principle
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Comments ||

« Massless limit well defined (v =1)

- (GM)?cos?(6/2)
- sin%(6/2)
 Repr hoton deflection formul

small angles

« Zero in backward direction — a neutrino
diffraction effect

« Can apply to scalar fields as well

(GM)2 (1 +U2)2

~ 4v4sin?(6/2)
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Gauge Invariance

* Important issue to address

* Do not have a general proof, but can
reproduce calculation in another gauge

* In Kerr-Schild gauge set

« Calculation is a different order
* But result is unchanged — a physical prediction

Black Holes 2002 28



Absorption

» Particles too close to the horizon end up
captured

« See this from the effective potential

E too high get Plot of increasing J
absorbed J = br(o0)

Higher J values
are scattered

Low J are absorbed
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Absorption Cross-section

* Impact parameter b is critical distance from
hole for fixed velocity and angular momentum

* Total absorption cross-section is

* For photons find that »°=27(GM)-
* Hole appears of a disk of radius b

277n(GM)

Taps = b2 = 277 (GM)? =

4
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Absorption Cross-section ||

 Slightly more complicated calculation gives
T(GM)

Oabs —

Dy

(8v* +20v% — 1+ (14 8v2)3/2)

Photon
limit

Black Holes 2002
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Quantum Equations

« Radial Schrodinger equation is
1d (14 1)

() = S = —(B = m)(E 4 m)

* Convert to first-order form (ry=u,)

K/r i(m + E + Hy)
—i(m — E — Hy) —K/T
« With |x]{=/+1 recover the correct Dirac radial
separation

* Energy term tells us how to add in interaction
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Black Hole Case

 Black hole Hamiltonian includes derivative
terms. Find that radial equations are (G=1)

i(E +m)— (2M/r)t/2/(4r)
m) — (2M /)12 /(4r) —K/T

 See that singular points exist at the origin (/%)
horizon, and at infinity (irregular)

« Special function theory underdeveloped for
this problem
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Units and Dimensions

« Convert to dimensionless form by introducing
distance function x=2r/r,

* Dirac equation controlled by dimensionless
coupling constant « and energy ¢

~ EM
© T 2m2

* ¢ also ratio nr,/A — horizon/Compton w/length
« a= 1 corresponds to primordial black holes

« Alsohave B I

2

87 11.C
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Horizon

» Series expansion about horizon n (r-2M)

Regular branch - Singular branch -
physical unphysical

Black Holes 2002
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Regular Solutions (0=0.01)
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Singular modes (a=0.01)
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160000
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1200007
100000
BO000
60000
40000

20000

D.
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Asymptotic Behaviour

« Atlarge r have

U1 =Pk eXDi(pT + %(m2 + 2p2) |n(pr)>e2iE(2Mr)1/2

T ak exp —’i<p?“ + M(m2 + 2p?) |n(p7a)>e2’iE(2Mr)1/
p

« Similar for u,
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Massless Case

Momentum

Black Holes 2002
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Massive Case

o
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Classical Bound States

 Can have stable, classical orbits outside a
black hole

Precessing ellipse

Black Holes 2002

Find minimum bound
state energy 0.95mc?

No stable orbits
within 6 M
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Semi-Classical Model

« Carry out a ‘Bohr’ quantisation L=nh
* Find that energy is

Dimensionless -
coupling
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Quantum Bound States

Hamiltonian is not Hermitian

Ay — A = —ih(2GMr3)1/25(x)

Origin acts as a sink

Dirac current is future-pointing, timelike

Inside horizon, all current streamlines are
swept onto the singularity

Any normalizable states must have an
Imaginary component to £ — resonance mode
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Method

« Start with regular solution at horizon and
iIntegrate outwards

« Simultaneously, integrate in from infinity,
assuming exponential fall-off

If both 4, 1, ot o fixed dist |
have a solution

* Four terms to vary — real and imaginary
energy and normalisation

 Four terms to set to zero — use a Newton-
Raphson method
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Probability Density a=0.1
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Probability Density «=0.35
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Probability Density a=0.5
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Variation with x

First excited
states with
Increasing
angular

50 100 150

k=4
Ll | 1 I 1 1

Further out,
become
Hydrogen-like




Expectation value ( r)




Imaginary Energy

Decay rate
Increases with
coupling constant
o and decreases




Comments

o~ 1Iisthe scale appropriate to primordial
black holes

« Solar mass black holes have o =~ 1,000
« Corresponding spectrum of antiparticle states

~ alsoall have decay factors

* Decay rates can be extremely slow for orbits
a long way from horizon

* Binding energies much larger than classical
predictions
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Emission

* Return to singular branch at horizon and
compute radial currents

4 M
A0, ¢)e_2€t|r _ oM[BMeBTME Ingoing

4 N

distribution at

1

~ 8nMkp
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Future Work

Carry our scattering work to higher order
Include radiation effects

Partial wave analysis of cross-section

Find bound state spectrum for larger coupling

Repeat analysis for Kerr states

Investigate QFT description of unstable states
(quasi-normal modes)

Contribution to Hawking radiation”?
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