Physical Applications of
Geometric Algebra

Handout 1

An Introduction to Geometric Algebra

The ideas and concepts of physics are best expressed in the language of mathematics.
But this language is far from unique. Many different algebraic systems exist and are
in use today, all with their own advantages and disadvantages. In this course we will
study the most powerful available mathematical system developed to date — Clifford’s
geometric algebra. This will be presented as a new tool to add to your existing base as
either a theoretician or experimentalist. The aim will be to introduce new techniques
via their applications, rather than as purely formal mathematics. These applications
will be diverse, emphasising the generality and portability of geometric algebra. This
will help to promote a more inter-disciplinary understanding of science.

1 A Quick Tour

This course is divided into 3 sections, looking at the applications of geometric algebra
(GA) to classical physics, relativistic physics and gravitation respectively. During this
course we will

e Discover a new, powerful technique for handling rotations in arbitrary dimensions,
and analyse the insights this brings to the mathematics of special and general
relativity.

e Uncover the links between rotations, bivectors and the structure of the Lie groups
which underpin much of modern physics.

e Learn how to extend the concept of a complex analytic function in 2-d (i.e. a
function satisfying the Cauchy-Riemann equations) to arbitrary dimensions, and
how this is applied in quantum theory and electromagnetism.

e Unite all four Maxwell equations into a single equation (VF = .J), and develop
new techniques for solving it.

e Combine many of the preceding ideas to construct a gauge theory of gravitation
in (flat) Minkowski spacetime, which is still consistent with General Relativity.
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o Use our new understanding of gravitation to quickly reach advanced applications
such as black holes and cosmic strings.

Throughout, the emphasis will be placed on the unity of the mathematics underpinning
each of these topics.

2 Some History

A central problem being tackled in the first part of the 19th Century was how best
to represent 3-d rotations. Hamilton pondered this for many years, and eventually
produced the quaternions, which generalize complex numbers and phase rotations to
3-d. Despite their obvious uses, confusion persisted for many years over the role of the
quaternions. The algebra contains 4 elements {1,¢,7,k}, but only three of these are
interpreted as specifying a vector. This confusion was only resolved after Hamilton’s

death.

In a separate development, Grassmann pioneered the introduction of the exterior
product. This defined what we now call a bivector a \b from two vectors. The crucial
features of this product are associativity

an(bAe) = (aNb)Nc (2.1)

Figure 1: William Rowan Hamilton 1805-1865. Inventor of quaternions, and one of
the key scientific figures of the 19th century.
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Figure 2: Hermann Gunther Grassmann (1809-1877). German mathematician and
schoolteacher, famous for inventing the algebra which now bears his name.

and anticommutativity

aAb = —bAa. (2.2)

Grassmann was a German schoolteacher and was largely ignored during his lifetime.
His work was certainly hindered by his impenetrable prose style, and often poor choice
of notation. Since his death, however, his work has given rise to the influential and
fashionable areas of differential forms and Grassmann (anticommuting) variables. The
latter are fundamental to the foundation of much of modern supersymmetry and su-
perstring theory.

The crucial step was made in 1878 by Clifford, who appears to have been one of the
select group of mathematicians who had read and understood Grassmann’s work. Clif-
ford introduced his geometric algebra by uniting the dot product and exterior product
into a single geometric product. This was associative, like Grassmann’s product, but
had the crucial extra feature of being invertible, like Hamilton’s. Indeed, Clifford’s
original motivation was to unite Grassmann’s and Hamilton’s algebras into a single
structure. In Clifford’s geometric algebra an equation of the type ab = ' had the
solution b = a™'C. Neither the dot or exterior products are capable of this inversion
on their own.

Clifford’s system combined all of the advantages of quaternions with those of vector
geometry, so geometric algebra should have then gone forward as the main system
for mathematical physics. However, two events conspired against this. The first was
Clifford’s untimely death at the age of just 34 and at the height of his powers. The
second was (ibbs” introduction of his vector calculus. This was well suited to the theory
of electromagnetism as it stood at the end of the 19th century, and Gibbs’ considerable
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Figure 3: William Kingdon Clifford 1845-1879. Mathematician and philosopher. He
died tragically young at the age of only 34, though he did have enough time to grow
his prodigious beard.

reputation meant that his system eclipsed Clifford and Grassmann’s work. By the time
special relativity arrived, and physicists realised that they needed a system capable of
handling 4-d space, the crucial insights of Grassmann and Clifford had been lost to a
generation.

In the 1920’s Clifford algebra resurfaced as the algebra underlying quantum spin. In
particular the algebra of the Pauli and Dirac spin matrices became indispensable in
quantum theory. However, these were treated just as algebras — the geometrical
meaning was lost. For this reason we still employ the term ‘Clifford algebras’ when the
algebra is used solely for its formal algebraic properties. When applied in its proper,
geometric setting however, we prefer to use Clifford’s own name of geometric algebra.
This neatly avoids the minor historical point that Grassmann was actually the first to
write down a geometric (Clifford) product!

The situation remained largely unchanged until the 1960’s, when David Hestenes star-
ted to recover the geometrical meaning (in 3 and 4-d respectively) underlying the Pauli
and Dirac algebras. His original motivation was to gain some insight into the nature of
quantum mechanics, but he soon realised that, properly applied, Clifford’s system was
nothing less than a universal language for mathematics, physics and engineering! It has
taken Hestenes many years to convince people of this fact, but interest is now gathering
pace. Part of the original reluctance to accept geometric algebra was the prevailing
view amongst physicists that there is something intrinsically ‘quantum mechanical’
in the algebra. This is quite wrong, as witnessed by the fact that Clifford predated
quantum theory by 50 years, but it took a long before this was widely realised.

In Cambridge today, we routinely apply geometric algebra to topics as diverse as black
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Figure 4: David Orlin Hestenes. Inventor of geometric calculus and first to draw atten-
tion to the universal nature of geometric algebra. He wrote the influential Spacetime
Algebra in 1966, and followed this with a fully developed formalism in Clifford Algebra
to Geometric Caleulus (D. Hestenes & G. Sobezyk, 1984). This was followed by the

(much easier!) New Foundations for Classical Mechanics in 1986.

holes and cosmology, quantum tunnelling and quantum field theory, beam dynamics
and buckling, robotics and computer vision. Exactly the same algebraic system is used
throughout, making it possible for the same people to understand and contribute to

all of these different fields.

3 Multiplying Vectors

In your mathematical training so far, you will have met two products for vectors:

1. The Inner Product

The inner, or dot product, is usually written in the form a-b. (Note that we do not use
bold for vectors any more.) In Euclidean space the inner product is positive definite,

a*=a-a>0 Ya # 0. (3.1)

From this we recover the Schwarz inequality

(a + )\b)2 > 0 YA
— a4+ 2 a-b+ X\b* > 0 YA (3.2)
— (a-b)? < a*b*
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We use this to define the cosine of the angle between ¢ and b via
a-b=|al|b| cos(h). (3.3)

In non-Euclidean spaces, such as Minkowski spacetime, we cannot do this. But we can
still introduce an orthogonal frame and compute the dot product as a,b* or n,,a"b",
where 7, is the metric tensor.

2. The Cross Product

This only exists in 3-d space and is defined such that a x b is perpendicular to the
plane defined by a and b, with magnitude |a||b|sin(f) and such that «, b and @ x b
form a right-handed set. This is sufficient to define the cross product uniquely. On
introducing a right-handed orthonormal frame {¢;} we can recover the usual definition
in terms of components. We have

€1 X €y = €3 etc. (3.4)
Or, in more general index notation
€; X € = €;;3Ck- (3.5)
If we now expand the vectors in terms of components, a = a;e; and b = b;e;, we find

axb = (aje;)x(bje;)
= aib]‘(eixej) (36)

= (eijkaibj)ek.

So the geometric definition recovers the algebraic one. One aim of GA is to extend this
idea and avoid introducing frames as much as possible.

4 The Outer Product

The cross product has one major failing - it only exists in 3 dimensions. In 2-d there
is nowhere else to go, whereas in 4-d the concept of a vector orthogonal to a pair of
vectors is not unique. To see this, consider 4 orthonormal vectors e ...¢e4. If we take
the pair e; and ey and attempt to find a vector perpendicular to both of these, we see
that any combination of es and ¢4 will do.

What we need is a means of encoding a plane geometrically, without relying on the
notion of a vector perpendicular to it. We define the outer or exterior product to be
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Figure 5: The Outer Product. The outer or wedge product of @ and b returns a directed

area element of area |a||b|sin(9).

the directed area swept out by @ and b. This is denoted aAb, or ‘a wedge b’. The plane
has area |a||b|sin(@), which is defined to be the magnitude of aAb.

The result of the outer product is neither a scalar nor a vector. It is a new mathematical
entity which encodes the notion of an oriented plane. We call this a biwector. It can
be visualised as the parallelogram obtained by sweeping one vector along the other
(Fig. 5). Changing the order of the vectors reverses the orientation of the plane.

Properties

1. The outer product of two vectors is antisymmetric,
aNb = —bAa. (4.1)
This follows from the geometric definition.

2. Bivectors form a linear space, the same way that vectors do. In 3-d the addition
of bivectors is easy to visualise (see Fig. 6). In higher dimensions this addition is not
always so easy to visualise, because two planes need not share a common line. This
can have some interesting consequences.

3. The outer product is distributive
an(b+¢) =anb+ alc. (4.2)
This helps to visualise the addition of bivectors.

Note that if ' = a + Ab, we still have @’ Ab = aAb. There is no unique dependence on
a and b. For this reason it is sometimes better to replace the directed parallelogram
with a directed circle.
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Figure 6: Bivector Addition. In 3-d bivector addition can be visualised like vector
addition. The ‘tail’ of one bivector is added to the ‘head” of the other.

In 3-d the space of bivectors is three dimensional. An arbitrary bivector can be de-
composed in terms of an orthonormal frame of bivectors

a/\b == (aiei)A(bjej)
= (a263 - bgdg)GQ/\Gg —|— (Clgbl - albg)eg/\el (43)
—|—(Cllbg — agbl)el/\eg.

The components in this frame are therefore those of the cross product. In general, the
components of aAb are a;;b;) where the [] denotes antisymmetrisation.

5 The Geometric Product

So far we have a symmetric inner product and an antisymmetric outer product. Clif-
ford’s great idea was to introduce a new product which combines the two. This is the
geometric product, written simply as ab, and satisfying

ab=a-b+ anb. (5.1)

The right-hand side is a sum of two distinct objects - a scalar and a bivector. This
looks strange, and goes against much of what you might already have been taught.
The easiest way to think of the right-hand side is like a complex number, with real and
imaginary parts. These are carried round in a single entity, which provides for many
mathematical simplifications.

From the symmetry/antisymmetry of the terms on the right-hand side of Eq. (5.1), we
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see that
ba = b-a+bAa = a-b— aAb. (5.2)
Tt follows that
a-b=1(ab+ba)  aAb=1(ab—ba). (5.3)

We can thus define the other products in terms of the geometric product. This forms the
starting point for an axiomatic development of GA, which will be covered in Lecture 3.
Here we summarise some of the main results.

Properties

1. General elements of a Geometric Algebra are called multivectors and these form a
linear space - scalars can be added to bivectors, and vectors, etc. General multivectors
are usually written in upper case, (A, B...).

2. The geometric product is associative

A(BC) = (AB)C = ABC. (5.4)

3. The geometric product is distributive
A(B+C)=AB+ AC. (5.5)

(Note that nothing is assumed about the commutation properties of the geometric
product. Matrix multiplication is a good picture to keep in mind.)

4. The square of any vector is a scalar.

The final property is sufficient to prove that the inner product of two vectors is a scalar.
Consider the expansion

(a+0)?* = (a+0b)(a+D) (5.6)
= a?+b%+ ab + ba. )
It follows that
ab 4+ ba = (a+b)2—a2 — ? (5.7)

which is therefore a scalar.
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6 Geometric Algebra in 2-d

The easiest way to understand the geometric product is by example, so consider a 2-d
space (a plane) spanned by 2 orthonormal vectors e, e5. These basis vectors satisfy

612 == 622 == 1, €1°€2 = 0. (61)

The final entity present in the 2-d algebra is the bivector e; A es. This is the highest
grade element in the algebra, which is often called the pseudoscalar, though directed
volume element is a more accurate description. The pseudoscalar is defined to be
right-handed, so that e; sweeps onto ey in a right-handed sense.

€9

N\

€1

The full algebra is spanned by

1 {61, 62} €1 A €9
1 scalar 2 vectors 1 bivector.

(6.2)

We denote this algebra by Gy. To study the properties of the bivector e; A ey we first
note that

€1€y = €1-€9 + 61/\62 == 61/\62. (63)

That is, for orthogonal vectors the geometric product is a pure bivector. Also note
that

€a€1 = 62/\61 = —61/\62 (64)

from the antisymmetry of the exterior product. Another way of saying this is that in
GA orthogonal vectors anticommute.

We can now form products when eje; multiplies vectors from the left and the right.
First from the left,

(61/\62)61 == (—6261)61 = —€3€1€1 = —€3
(61/\62)62 = (6162)62 = €1€3€9 = €.

(6.5)

We see that left multiplication by the bivector rotates vectors 90° clockwise (i.e. in a
negative sense). Similarly, acting from the right

61(6162) = €3 62(6162) = —€1. (66)
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So right multiplication rotates 90° anticlockwise — a positive sense.
The final product in the algebra to consider is the square of the bivector e;Aey = [
[2 = (61/\62)2 — €1€2€1€9 — —€1€1€2€9 — —1. (67)

From purely geometric considerations, we have discovered a quantity which squares to
—1. This fits with the fact that 2 successive left (or right) multiplications of a vector
by €€, rotates the vector through 180°, which is equivalent to multiplying by —1.

6.1 Multiplying Multivectors

Suppose that we have two completely arbitrary elements of the Gy algebra, A and B.
We can decompose these in terms of our {e1, ez} frame as follows:

A = ao+ aren + azes + aserNey (6.8)

B = bo+ bier + byey + bsei Ne. '
The product of these two elements can be written

AB = po + pie1 + paea + paeiAea. (6.9)
We find that

po = aoby + aiby + azby — asbs

p1 = aoby + aiby + aszby — asbs (6.10)

p2 = aoby + axby + a1bs — asby '

ps = agbs + asby + a1by — azb;.

This multiplication law is easy to represent as part of a computer language (we often
use Maple). The basis vectors can also be represented with matrices, though these can
hide the geometry of the algebra. If we introduce the symbol (AB) to denote the scalar
term in the product, we see that

o = (AB) = (BA). (6.11)

In general, however, AB # BA

6.2 Complex Numbers and ¢,

It is clear that there is a close relationship between GA in 2-d, and the algebra of
complex numbers. The unit bivector squares to —1 and generates rotations through
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Figure 7: The Argand Diagram. Complex numbers can be used to represent vectors in
2-d, as well the operations of rotation and dilation applied to vectors.

90°. The combination of a scalar and a bivector, which is formed naturally via the
geometric product, can therefore be viewed as a complex number. We can write

7 =u+vees =u+ lv. (6.12)

Complex numbers serve a dual purpose in 2-d. They generate rotations and dilations
through their polar decomposition rexp(if), and they also represent vectors as points
on the argand diagram (Fig. 7). But in Gy our vectors are grade-1 objects.

T = uey + ves. (6.13)

Is there a natural map between this and the complex number Z7 The answer is simple
— pre-multiply by e,

e1x =u+tveey;=u+lv=27 (6.14)

That is all there is to it! The role of the preferred vector e; is clear — it is the real
axis. Using this product vectors can be interchanged with complex numbers in 2-d in
a natural manner.

The GA treatment shows us how complex numbers are able to play two roles, as
rotations/dilations, and as position vectors. GA separates these roles, which is crucial
to understanding how to generalise complex analysis to higher dimensions.

6.3 Rotations

Since we know how to rotate complex numbers, we can use this to find a formula for
rotating vectors in 2-d. We know that a positive rotation through an angle ¢ for a
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Figure 8: A Rotation in the Complex Plane. The overall effect is to replace § by
=0+ ¢

complex number Z is achieved by
7 el? 7, (6.15)

where we continue to use [ for the imaginary (see Fig. 8). The exponential of a
multivector is defined by power series in the normal way. We can now apply this to
the vector transformation x — 2’ as follows

r=el—a =l

=l g =197 =19, (6.16)
We therefore arrive at the formulae
e o lb o o 10)2 , J16)2 (6.17)

which are all equivalent. The final form will turn out to be the most general. Note the
importance of the fact that I anticommutes with vectors. We do not get behaviour
like this with complex numbers alone.

6.4 Application — Kepler Orbits

As an application of the preceding, we will discuss an alternative formulation for 2-d
motion. We start by writing the position vector x in terms of a complex number U by

e=Ue U =U, |a|=r=U0 (6.18)
where we have introduced the tilde symbol U to for complex conjugation. We find

j}ZQUUel

— 0l = ge,U = iley. (6.19)
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Figure 9: Solution to the Kepler problem. The particle completes 2 orbits every time

U completes one cycle.

We now introduce the new variable s defined by

d B d dt B (6.20)
ds _dt ds '
In terms of this
dU )
25 = zU¢ (6.21)
and
d? d
Qd—s[?] =rilUe + :i;d—gel = Uiz + %:1;2) (6.22)

Now suppose we have motion in a central inverse square force:

X

mi = =t (6.23)
The equation for U becomes
d*U 1 1 E
_ <1 22 _ _> _ 6.24
ds?  2m 2 r 2m ( )

We recover the equation of simple harmonic motion! This has a number of advantages.
The equation is easier to solve; it is linear, so much better for perturbation theory; there
is no singularity at » = 0, so get better numerical stability; the equation is universal —
it holds for £ > 0 and F < 0; and the method extends easily to 3-d. This method is
now frequently employed for computing complicated satallite motions. The motion is
illustrated in Fig 9. The particle follows an ellipse, whereas U follows a circle centered
on the origin. The particle completes 2 orbits for each full cycle of U.



