Physical Applications of
Geometric Algebra

Handout 7

Geometric Calculus

Geometric algebra has provided us with a new, invertible product for vectors. We now
investigate what insights this brings to the subject of vector calculus. We are used to
the grad, div and curl operators, which are obtainable from a single, vector derivative.
This operator also turns out to lie at the heart of complex analysis, providing a means
of extending the results of complex analysis to higher dimensions. This synthesis of
vector differentiation and geometric algebra is called ‘geometric calculus’.

1 The Vector Derivative

For studying fields in geometric algebra we represent position in an n-dimensional space

by the vector x. The vector derivative, V is the derivative with respect to position z.

In terms of a fixed frame {e*}, with coordinates z* = e*-z, we can write

0
v=> k@. (1.1)
k

The essential new feature is that the {e*} vectors belong to a geometric algebra, so
inherit a full geometric product.

If we dot V with the vector ¢ we obtain the directional derivative in the a direction

a-VF(x)=1lim Fatca) = F(x)

e—0 €

(1.2)

This can be used as an alternative starting point to determine the properties of V.
The argument F(x) here can be any multivector-valued function of position, or more
generally a position-dependent linear function.

1.1 Grad, Div and Curl

Acting on a scalar field ¢(x), the vector derivative returns the gradient V. This is a
vector whose components in the {e*} frame are the partial derivatives with respect to
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the 2* coordinates. In Euclidean spaces V¢ points in the direction of steepest increase
of ¢. In mixed signature spaces, such as Minkowski spacetime, the picture is not always
so obvious.

The next thing we can do with the vector derivative is to dot it with a vector field

J(x). This gives

0 a.J*
Vi=—c"J="—=09J" 1.3
Dk € Ox* . (13)
which is the divergence of J(x). Here we have employed the useful abbreviation
0
0 = —. 1.4
py (1.4)

This is only the scalar part of the full geometric product of two vectors. What is the
other term? We form

VA = N0T) =€ Ne 0i];. (1.5)

The components are the antisymmetrised terms in d;.J;. In 3-d these are the compon-
ents of the curl, so

VAJ =1VxJ (1.6)

Of course, VAJ is a bivector, rather than an (axial) vector. We now have a successful
generalisation of the curl to arbitrary dimensions.

1.2 Multivector Fields

The preceding definitions extend simply to the case of the vector derivative acting on
a multivector field. We have

VA=A, (1.7)
and for an r-grade multivector field A, we write
V-A, =(VA),—1, VAA =(VA) 1. (1.8)

These are usually referred to as the divergence and curl respectively. A useful result
for the curl is that the curl of a curl vanishes,

VAVAA) = e ADi(e! NO;A) = e Ne? AN(9;0;A) = 0, (1.9)

which holds because e'Ae’ is antisymmetric and partial derivatives commute. Similarly,
the divergence of a divergence vanishes,

V-(V-A) =0, (1.10)
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which is proved in the same way, or by using duality. (By convention, the inner product
of a vector and a scalar is zero.)

Because V is a vector, it does not necessarily commute with other multivectors. We
therefore need to be careful in describing the scope of the operator. We use the following
conventions:

1. In the absence of brackets, V acts on the object to its immediate right.

2. When the V is followed by brackets, the derivative acts on all of the terms in the
brackets.

3. When the V acts on a multivector to which it is not adjacent, we use overdots
to describe the scope.

The overdots work as follows:
VAB = A9, B (1.11)

which encodes the fact that the A is not differentiated. With this notation we can
write

V(AB)=VAB+VAB (1.12)
This is a form of Leibniz’ rule. We also employ this notation for linear functions
Vi(a) = Vf(a) — ¢ (Ora) (1.13)

so that Vf(a) only differentiates the position-dependence in the linear function, and
not in its argument.

1.3 Linear Algebra

A number of derivations in linear algebra can be cleaned up by replacing frame con-
tractions by vector derivatives. For example, we have the basic relation

Viz-a) = eiai(:z:jej)-a = ¢! ej-a 5{ —eéera=a (1.14)

So differentiating a function which depends linearly on z is equivalent to forming con-
tractions over frame indices. To exploit this, we often introduce a new vector variable,
usually @, and denote the derivative with respect to @ by d,. We can then write the
formulae from Handout 5, Section 2.9 in the form

d,a-A, = rA,
aaq/\Ar = (n—r)A, (1.15)
0, Ara = (—=1)"(n —2r)A,.
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We can also write the trace of a linear function as
Tr(f) = 0,-f(a). (1.16)

This is a useful notational device. It enables us to write terms which do not depend on
a frame in a way that reflects this independence. This helps to bring out the intrinsic,
geometric content of an equation.

1.4 Curvilinear Coordinates

For many applications we work in non-Cartesian coordinate systems. A coordinate
system is defined by a set of scalar functions {z‘(z)} defined over some region. A
function F'(z) can be re-expressed in terms of the coordinates as F'(z'). A simple
application of the chain rule gives

VF =Va' O;F = ¢ 0;F. (1.17)
This defines the (contravariant) frame vectors {e'} as
¢ = V' (1.18)

In Euclidean spaces these vectors are perpendicular to the surfaces of constant z*. The
vectors have vanishing curl, since

VAe = VA(VZ') = 0. (1.19)
The reciprocal frame vectors are the (covariant) coordinate vectors

These are formed by increasing the z* coordinate, keeping all others fixed. The two
frames are reciprocal because

e; 60 = (aix)-v:zjj = 92’ = 5f (1.21)

In practice it is useful to be able to work with both frames where necessary, with the
two related by Eq. 2.8 of Handout 5. In elementary approaches this distinction is
often obscured by restricting to orthogonal frames and introducing ‘weighting factors’
to write

€, = hzé“ ei = h;léz (122)

This is not always a good approach, however, particularly if the signature is not Euc-
lidean.
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2  Geometric Calculus in 2-d

The vector derivative combines the algebraic properties of geometric algebra with vec-
tor calculus in a simple and natural way. Many of the preceding formulae can be
constructed using other systems, such as tensors (and differential forms). What makes
geometric algebra unique is the geometric product. Does this offer any advantages
when it comes to studying the properties of the vector derivative? To answer this, we
return to 2 dimensions.

2.1 The 2-d Vector Derivative
We start by looking at the vector derivative in 2-d. We write the vector = in terms of
a right-handed orthonormal frame as

v =x'e; + 2?ey = xer + ye,. (2.1)

Note the different fonts to distinguish the scalar coordinate x from the vector . The
vector derivative is now

V = 10x + 20, = e1(0x + 10y) (2.2)

with [ = eje;. Now suppose we let this act on the vector a = ue; — ve,. We find that

0 0 0 0
Va = (€105 + €30y )(ue; — vey) = a—z — a—; —1 (a—i + 6_§> ) (2.3)

The two terms here are precisely the ones that vanish in the Cauchy-Riemann equa-
tions! There is clearly a close link between complex analysis and the 2-d vector deriv-
ative. To bring this out, we introduce the ‘complex’ field v,

Y =ae; =u—+ Iv. (2.4)

The statement that ¢ is analytic (satisfies the Cauchy-Riemann equations) now reduces
to the equation

Vb = 0. (2.5)

This is the fundamental equation which can be generalised immediately to higher di-
mensions. Applications include:

e In 3-d, with ¢ an arbitrary even-grade multivector, Eq. (2.5) defines the spin
harmonics, which are fundamental to the Pauli and Dirac theories of electron
orbitals.
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e In spacetime we have
V=60 +ed,, i=1...3 (2.6)

We will see shortly that special relativity requires the € vector to have opposite
sign magnitude to the {e¢'}. With ¢ an even-grade multivector, the equation
Vi) = 0 is then the wavefunction for a massless fermion (e.g. a neutrino).

e A mass term on the right-hand side of the neutrino equation converts it to the
equation for a massive fermion (e.g. an electron).

o Restricting ¢ to be a pure bivector in spacetime gives the equation VF = 0,
which encodes all of the Maxwell equations for free-field electromagnetism.

It is no exaggeration to say that that Eq. (2.5) is one of the most studied equations
in physics, yet few people are aware of the fact that all of the preceding examples are
special cases of the same underlying mathematics.

2.2 Analytic Functions

To complete the link with complex analysis we first recall that

z=ex=x+ 1y
2 =x— Iy =xe; = e1(—ezxey),

(2.7)

where ¢; is the real axis. The final form of z* is included to illustrate how the operation
of complex conjugation is a reflection. The complex partial derivatives are defined to
have the properties

0,z =1 0,z =0
From these we see that
0, = %(&( —10y), 0. = %(&( + 10y). (2.9)

An analytic function is one that depends on z alone. That is, we can write ¢ (x4 [y) =
¥(z). The function is therefore independent of z*, and we have

d.1p(z) = 0. (2.10)

This is what the ‘limit” argument often presented is actually all about! Comparing the
preceding forms, we see that this equation is equivalent to

M+ It = b Vi =0 (2.11)
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recovering our vector equation.

It is instructive to see why solutions to Vi) = 0 can be constructed as power series in
z. We first see that

Vz=V(e1x) =2¢;-Va — e, Va =2e; — 2¢; = 0. (2.12)

This little manipulation drives most of analytic function theory! It follows immediately,
for example, that

V(erx — 20)" = nV(erx — zo)(e1x — 20)" ' =0, (2.13)

so a Taylor series expansion in z about zp automatically returns an analytic func-
tion. We will delay looking at Laurent series until we have established the link with
integration.

2.3 Generalisation Higher Dimensions

There are two problems with the standard presentation of complex analytic function
theory that prevent a natural generalisation to higher dimensions:

1. Both the vector operator V and the functions it operates on are mapped into
the same algebra by picking out a preferred direction for the real axis. This only
works in 2-d.

2. The ‘complex limit” argument does not generalise to higher dimensions. Indeed,
from our point of view it is not very satisfactory in 2-d as it confuses the concepts
of directional derivatives and being independent of z*.

These are solved by keeping the derivative operator V as a vector while letting it act
on general multivectors, and replacing the ‘analytic’ requirement with the equation
Vi = 0. To see where this gets us, we must first look at directed integrals.

3 Directed Integration Theory

To date you have met four important integral theorems. The first is the divergence

/d”xV-J:%dsn-J (3.1)

theorem
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Figure 1: A 2-d simplex. The points xg, 1, x5 define a triangle. The boundary of the
triangle is defined in the usual, right-handed sense.

where n is the outward normal to the surface forming the (closed) boundary to the
region of integration. The second is Green’s theorem

//(%‘%)Z%Pdﬂwy (3.2)

with the boundary integral the line integral taken around the perimeter of the area in
the positive sense. This is a special case of Stokes’ theorem

dAn-(Vxa)= ¢ dl-a (3.3)
/ /

with the line integral taken around the perimeter of the surface. Finally, we recall the
important Cauchy integral formula

fla) = L ﬁdz. (3.4)

2m J. 2z —a

We will now demonstrate that these are all special cases of a single integral formula!

3.1 The Vector Derivative Again

We first need to establish an alternative formula for the vector derivative of a mul-
tivector. We will simplify matters by restricting to 2-d, though the argument gener-
alises easily. Consider a multivector-valued function M(x) at points xg,x1,22. The
triangle formed by these points is called a 2-d simplex (See Fig. 1). We introduce the
vectors

€1 = X1 — Zo, €2 = T2 — Ty, (35)
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so we can write the vector derivative at zg as

VM = lim el(Ml — Mo) + 62(M2 — Mo) (36)

T

where M; = M (x;). We want to relate this to a surface integral. We extrapolate the
function M linearly between its base points with the function

2
m(z) = Mo+ Y (v —o)-e' (M; — Mp) (3.7)
i=1
We can now calculate the integral around the perimeter of m(z) to obtain (exercise)
%ds m(:z;) == %el(Mo — Mg) + %GQ(MI — Mo)
== %62/\61[61(M1 — Mo) + 62(M2 — Mo)] (38)
This relates the surface integral to the vector derivative. We therefore have

VM = lim dS%ez/\e1 m. (3.9)
T
Now the bivector e Ae'/2 equals (IV)™!, where V is the scalar area of the triangle.
Also, in the limit, we can replace m by M. From this we arrive at the formula

o1 1
VM = él'_%V%dS] M. (3.10)

This holds in any dimension and can be taken as an alternative definition of the vector
derivative V. The derivative is then defined in terms of the limit a surface integral.
In general, dS is the right-handed oriented surface element and I the right-handed
pseudoscalar. The quantity dSI~! is therefore vector-valued.

3.2 The Fundamental Theorem of Calculus

Now imagine building up the preceding result over a triangulated surface (Fig. 2). The
contributions from each interior line integral cancel, and we arrive at

/VMM:%dM4 (3.11)
14 oV

where dX = [dV is the infinitesimal volume element and dS is the directed surface
element, both defined in the right-handed sense. This is the fundamental theorem of
calculus. Tt relates the integral over a volume of the derivative of a multivector to
the integral over the boundary surface of the multivector. Note that dX is now a
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Figure 2: A Triangulated Surface. Each of the internal line integral cancels in the sum,
as adjacent simplices have opposite orientations.

multivector, so we have to pay attention to the order of the terms. By ‘reversing’ the
preceding derivation we also have

/MvdX: M dS (3.12)
14 oV

Alternatively, we can introduce a multilinear function L(A), which takes a grade n — 1
multivector as its argument. The fundamental theorem then takes its simplest form as

L(VdX)= ¢ L(dS) (3.13)
J s

v
This result even holds for curved surfaces, where dX becomes a function of position!

3.3 The Divergence Theorem

As a first example, let
L(A) = (I"'JA) (3.14)
where J 1s a vector. We find that

/V<JWXJ—1> :/vv"]dvzfavwsrl‘” .

We therefore recover the divergence theorem provided the normal to the surface is
defined by
ndA=dS I (3.16)

where dA is a scalar measure. This does indeed point outwards in Euclidean spaces,
though its behaviour is more complicated in mixed signature spaces. With this defini-

/V-JdV:% n-J dA (3.17)
14 av

as expected. We can similarly go on to recover Green’s theorem.

tion we arrive at
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3.4 Cauchy’s Theorem Recovered

We now return to 2-d space and let ¢ be a ‘complex’ valued multivector (a scalar +
pseudoscalar). The fundamental theorem says

/w dxX = %dS;/;. (3.18)

Recalling that z = e;x we can write this as

%;/;dz = /elw dX. (3.19)

Now suppose that ¢» = f(z)/(z — z0) with f(z) an analytic function (Vf = 0). We
need to establish the properties of the (2 — 29)~! function (the Cauchy Kernel). We
have

1 (z — 2z0)* T — o

= = €1, (320)

z—z0 |(z—20)2 (x—x0)?

where x¢g = €1z9. But now consider the 2-d Green’s function In |z — a¢|. This has

T — Xy
Hence the Cauchy kernel satisfies
1 T —x
VZ — = V(x — :1;00)261 = V:In|z — 2ol e; = 278(z — xo)ey. (3.22)

The Cauchy kernel is simply the Green’s function for the 2-d vector derivative! Putting
this together we arrive at

(2) .. _ GI/V<L@'02€J($>> X

Z— 2 (z — o)

= 61/27T5(:1; —xo)erf(a)] |dx| = 2n1 f(z0), (3.23)

which recovers the Cauchy integral formula. We can now understand what each of the
terms is doing:

o The dz encodes the tangent vector and forms a geometric product in the integ-
rand.

e The (2 — z9)™! is the Green’s function for the vector derivative V and ensures
that the area integral only picks up a the value at z.
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e The [ (or i) comes from the directed volume element dX = [ dV.

We also see now that the residue term in the Laurent expansion of a function

fo)= e N (e - ) (3.24)

_I_
(z—z)” Z—Zo P

is simply a weighted Green’s function. The residue theorem just recovers the weight!
We have unified the theory of poles and residues, supposedly unique to complex ana-
lysis, with that of Green’s functions and d-functions.

3.5 Extension to Arbitrary Dimensions

Non-Examinable

The extension to arbitrary (Fuclidean) dimensions is now straightforward. The analog
of an analytic function is an even-grade multivector satisfying VM = 0. The Green’s
function for the vector derivative in n-d is

1 z— g

S, o — x|

Gz, 20) = (3.25)

where 5, is the surface area of the (m — 1)-dimensional unit ball. The Green’s function
satisfies

VG(x,x0) = V-G, x0) = 6(x — 20). (3.26)

A version of Cauchy’s theorem in n-d is therefore constructed from

% LT 4 M = /( >vdXM+/7VdXM (3.27)
EX% |$—$0|” $—$0| |z — 2o|"

F
where the ¥V shows that the V acts on the object to its immediate left. Since M
commutes with dX the final term vanishes, leaving

1 T — g
M = ds M. 2
() = ¢ f s (3.28)

This relates the value of an analytic function at a point to the value of a surface integral
over a region surrounding the point.

This derivation is for Euclidean spaces. In non-Euclidean spaces we cannot guarantee
that |# — x| is non-zero for # # xg. This possibility is particularly significant in
relativity, as we shall shortly see.



