Physical Applications of Geometric Algebra

Examples 3 — Answers
1.
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v=RyR+ RywR=—(Fv4+vF)=—F-v.
2m m
Integrates immediately for constant field to give R = exp(qF'7/2m) Ry, since
0. exp(qgF7/2m)Ry = 9 p exp(qF7/2m)Ry = 9 pp.
2m 2m

If 2 =0 as well, have
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2m

so
2
v=(1+ T%F)Uo(l — T%F) = vy + T%F'Uo — TszFUOF.

Integrate again, get
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With vy = v and F = oy + [0, get
2

q q
(l’ — l’o)/\’)/o = 72%0'1 + TSwo'g.
Trajectory is a plot of z = ax®/2.

2. Write
YWVEF=(0:+V)(E+IB)=yJ=p—J
Get, in 3-d algebra,

scalar V-E=p
vector VxB=J+0F
bivector VxFE =—-0,B
pseudoscalar V-B=10(

3. v(7) is velocity of charge on trajectory xo(7). X is retarded null vector from z to
point on trajectory xo(7). For charge at rest in vy frame, put at origin, so

To = TY0, X=z—2o=({t—7)y+re



where re, = x Ay and ¢, is unit radial vector. Equation X? = 0 sets
r? = (t— 7')2
and X-v= X-y9=1t— 7 =7, hence result.
4. Use d, a-B = 2B (in handout), so
0,Ba=0,(Ba—aB)+ d,aB =—-20,a-B+4B = —-4B + 4B = 0.
For electromagnetic stress-energy tensor get
9.T(a) = =19, FaF =0,
from above. Hence symmetric and traceless. (Origin of P = %,0 for isotropic radiation.)
5. &1 done in Handout 11. For & get
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1 < 2
V) = ( T e > & d +dlos+d’loy+ dloy = oo,

—a® +1a
o3 simple to verify — just swaps signs of lory; and oy components.
6. Pauli inner product has
Wley o (01e) — (Wieles) s,
Under rotations ¢ + Ry and ¢ — R, so ¢ — YvTRTR$ = ¢T¢p and both parts

invariant under rotations. (NB Dagger and reverse mean same thing in 3-d algebra.)
Under phase changes ¢ — R and ¢ — ¢R. First term unchanged. Second picks up
RlosR' = Ios, since rotation entirely in /o3 plane, so also unchanged. Same goes
through for Dirac, with

W) <+ (Yo) — (bolas)los.

7,
[Ls,,Ls,] = —[Bl-(a:/\V),Bz-(a:/\V)]
= (By-2)-Vi&-(By V) — (By-2)-Va-(B-V)
=[(Bi®) By — (Byx) - Bi]-V
[(leBz) 4
= (Byx By)-(&AV)
= —i1Lp,«B,
8.

[B-(zAV),V] = —VB-(¢\V)
= B-V =BV -VB)

and rearrange to get result.



9. Get 9,AR(aAb) = 0 from symmetry and 9,-R(aAb) = R(b) = 0 from condition that
have a vacuum solution. Work through b = ~o, 71, v2, 73 get four equations. Eg b = v,
gives

YR(0m1) + 7V R(12m1) + 7 R(33m) = 0
X by ’yl = —, get

o1 R(a1) + 1172 R(y2m1) + 11713R(ysM)
= 0'17?,(0'1) — ]O'QR([O'Q) — ]UgR([O'g) =0

Repeat for other three to get full set. Sum of final three gives
O'kR(O'k) — QIO'kR([O'k) =0.

But first equation is o R(o;) = 0 so get [opR([o)) = 0 as well. Substitute in final
3 equations to get

R(loy) = IR(oy).
Can expand any bivector B in {o, [o}} basis to get required result.
10. Observer 1 has & = te; and
v = ih_l(et) = i(et + V(2GM/r)e,)

and second observer has vs = ¢;. So

U1-V2 t

v AUy t'\/(ZGM/r)O',, <2GM>1/2
= . = o,

7

just as in Newtonian physics.

11. Infalling photon has k = w(e; —€,). Get

ok _ wi(l4V(2GM/r)) _ 14+/(Q2GM/r) _ <1+¢(2GM/T)>1/2‘

vy k w (1 —2GM /)12 1 —(2GM/r)

Stationary observer sees greater frequency. Difference attributed to relativistic Doppler

effect, velocity /(2GM/r).



