Physical Applications of
Geometric Algebra

Handout 13

Gauge Theories

The fundamental forces of nature can all be described in terms of gauge theories. In
the early part of this century physicists noticed that electromagnetic interactions arise
from demanding invariance of quantum wave equations under local changes of phase.
There the position remained until the fifties, when Yang and Mills showed how to
construct theories based on more complicated, non-commuting groups. This is the
basis for the standard model of the electroweak and strong interactions. In the years
since, many physicists and mathematicians have attempted to establish that general
relativity (GR) is also a gauge theory. These attempts have met with mixed success.
By the sixties it was established that GR could be formulated as a gauge theory, but the
equations obtained always ended up looking extremely complicated. Certainly more
so than those from the traditional view of gravity arising from spacetime curvature.

Geometric algebra provides a solution to this problem. Utilising the full structure of
the spacetime algebra (STA), it is possible to construct gravity as a gauge theory in a
formalism that is actually easier to understand and work with than the curved-space
viewpoint. This is the subject of the final four lectures.

1 Electromagnetism as a Gauge Theory

The simplest example of a gauge theory is electromagnetism, so we start by analysing
this in its STA form. Consider the free-particle Dirac equation,

Since lo; commutes with 7o, a global symmetry of this equation is the transformation

)y = pelsl (1.2)

where 6 is a constant. This is a symmetry because if Eq. (1.1) holds for ¢, it is also
holds for v¥'. The symmetry is ‘global’ because § has the same value everywhere in
space and time. The quantity exp(le38) is the STA version of a a phase factor. It can
also be viewed as a rotor, corresponding to rotations in the 4,79 plane through angle
20. We write this rotor as R.
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Now what if # is not a constant, but depends on spacetime position =, § = 0(x)? In
this case 1" will no longer be a solution of the equation if ¢ is, since

V' = (V¢)R+ (VO Rlos (1.3)

and so V' # mi'~y. Hence Eq. (1.2) is not a local symmetry of equation (1.1) as 6
cannot be varied arbitrarily from point to point. So why do we want Eq. (1.2) to work
as a local symmetry? The answer lies in the structure of the of physical statement that
can be extracted from the Dirac theory. There are two main types:

1. The values of observables, formed from inner products between spinors,
($9) = ($8)y = () — (Volos)los. (1.4)
2. Statements about the equality of two spinor expressions, for example

=1+ . (1.5)

This might decompose ¢ into two orthogonal eigenstates of some operator.

In both cases, if all spinors pick up the same locally-varying phase factor (rotor) then
the physical predictions are unchanged.

1.1 Covariant Derivatives

Now that we have understood the motivation, we must find how to modify Eq. (1.1)
in order that phase changes become a local symmetry. We first rewrite V as

V = d,a-V, (1.6)

so as to clearly separate out its vector and derivative characteristics. (If you find the
0, a-V construction a bit too abstract, just think of it as ¥#d,.) The equation for ¢’
now includes the term

V' =0, (a- VYR + a-VR). (1.7)

We clearly need to modify the V operator to be able to cancel out the term in the de-
rivative of R. We therefore define a new, ‘covariant’ derivative operator D by including
an extra piece in V,

Dy =0, (a- Vi + 2092 a)) (1.8)

(the factor 1/2 is inserted for later convenience). Here Q(a) is a multivector field of
some kind, whose nature and transformation properties we have to determine.
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The behaviour we require is that under a local rotation, D should transform in such a
way that ¢ R is still a solution of the modified equation. So, with D transforming to
D', we require that

D' (v k) = (DY) R (1.9)

for any R. We expect that D’ should have the same functional form as D, so we also
have

D'y =0, (a-Vi + 2Q'(a)). (1.10)
Eq. (1.9) therefore gives
D' ($R) = 8, (a-VYR+ pa-VR+ 2RV (a)) = 8, (a-Vib + 10Q(a)) R (1.11)
From this we can read off that

a-VER+ %RQ’(@) = lﬂ(a)R, (1.12)

2

hence

Q'(a) = R a)R — 2Ra-VR. (1.13)

Now R is a rotor so satisfies RR = 1, so Ra-VR is equal to minus its own reverse and
is therefore a bivector. That is, Q(a) is a bivector-valued field, which is linear function
of a, and a general function of position. We sometimes write this

Qa) = Qa; x) (1.14)

if we want to make the position-dependence manifest. Usually we can drop the x label
and just carry round the a, which records that fact that Q(a) is linear on a. The
bivector field Q(a) is what we must introduce in order to make rotation by R a local
symmetry of the Dirac equation.

The key point now is that we have only used the form of the —2RaV R term in (1.13) to
say what type of object Q(a) is — we are not asserting that Q(a) is equal to —2Ra-VR.
On the contrary, as will become apparent later, if Q(a) was given by the gradient of
a rotor like this it would give rise to a vanishing field strength and therefore be of no
physical interest. This step, of taking a term arising from a derivative (like —2Ra-VR
here), and generalizing it to a field not in general derivable from a derivative, is the
essence of the gauging process.

Our new derivative D,, with
Db = a-Vip + $9Q(a), (1.15)

is called a covariant derivative, and the Q(a) term is called a connection. The fact
that the connection is a bivector field relates it directly to the underlying symmetry
group. (In general, connections take their values in the Lie algebra of the associated
symmetry group.)
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1.2 The Minimally Coupled Dirac Equation

Returning to electromagnetism, we are concerned with the restricted class of rotations
which take place wholly in the v,v; plane. In this case, writing R = exp(los0), we
have

—2Ra-VR = —2e71730 4.(V0) 13 [y = —24.(V0)I0s. (1.16)
So in generalizing to Q(a), we can see that this must take the form
Qa) = —Aa-Alos, (1.17)

where A is a general 4-d vector, and A is some coupling constant. If A was in fact the
gradient of a scalar, then we would expect the field strength to vanish. Having reached
this point we are back on familiar ground of course, since this is just the statement

that VA A vanishes if A = V.
We are now in a position to reassemble our full, covariant Dirac equation. We have
Dty = 0,(a-Vio + tha-Alos) = Vip + 1AAY o3, (1.18)

where we see that that connection reassembles with the 0, term to give a vector A
multiplying ¥ from the left. The Hamiltonian from this operator contains a new term
in AypA/2, and the scalar part of this is AV/2. It is clear that for an electron we require
A = 2e, so the ‘minimally coupled’ Dirac equation is

Viplos — eAp = miyo. (1.19)

The equation is minimally coupled because by adding an interaction term solely in A
we are making the simplest possible modification to the original equation. We could,
for example, add further terms in F', or F'* multiplying 1, and the equation would still
be gauge invariant. It appears, however, that nature does not employ this possibility.
Why this should be so is far from clear.

2 Gauge Principles for Gravitation

Having successfully derived electromagnetism, we now turn our attention to gravity.
We first need to be clear about our aim. This is to model gravitational interactions
in terms of (gauge) fields defined in the STA. Already, this is a radical departure from
GR. The STA is the geometric algebra of flat spacetime, and the introduction of fields
cannot alter this basic property. What then are we to make of the standard arguments
that spacetime is curved? The answer is that all of these arguments involve light
paths, or measuring rods, or such like, and all of these processes are also modeled by
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fields defined in the STA. Since all physical quantities correspond to fields, the absolute
position and orientation of particles or fields in the STA is not measurable. The only
predictions that can be extracted are relative relations between fields. Ensuring that
this property is true locally means there is no conflict with any of the principles by
which one is traditionally led to GR.

The preceding considerations become clearer if we consider relations between quantum
fields. Suppose that ¢ () and 1z(x) are spinor fields. A physical statement could be
a simple relation of equality,

1 () = o). (2.1)

But all this statement says is that at a point where one field has a particular value,
then the second field has the same value. This statement is completely independent
of where we choose to place the fields in the STA. And, more importantly, it is totally
independent of where we choose to locate other values of the fields. We could equally
well introduce two new fields

vila) = (@), dy(a) = a(a’), (2.2)

where 2’ is an arbitrary function of position x. The statement ¢](x) = ¥4 (x) contains
precisely the same physical content at the original equation.

The same picture emerges if both fields are acted on by a spacetime rotor, giving rise
to new fields

Uy =Ry, Wy = R, (2.3)

Again, the statement ] = ¢} has the same physical content as the original equation.
Similar considerations apply to the observables formed from ., such as the vector
J = ;/ryo;/;. Replacing ¢ by ¢’ produces the new vector J' = RJR. Invariance of
the equations under this transformation ensures that the absolute direction of vectors
in the STA is not measurable, only the relative orientation of two physical vectors is
measurable. We now have a clear mathematical statement of the invariance properties
we want to establish. The next task is to study the form of the gauge fields needed to
enforce this invariance.

2.1 Displacements

We write @' = f(x) for an arbitrary (differentiable) map between spacetime position
vectors. The transformation we are interested in is where the field ¢ (x) is moved
around to the new field

V() = (). (2.4)
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The map f(«) should not be thought of as a map between manifolds, or as ‘moving
points around’. The function f(x) is just a rule for relating one position vector to
another within a single vector space. It is then the fields that are transformed in
this space. We need a good name for this operation of moving fields around. One
possibility is ‘translation’, but this suggests a rigid map where all fields are translated
by the same amount. Mathematicians favour the term ‘diffeomorphism’, but this is a
bit unwieldy and any has some unwanted technical connotations. We prefer to use the
term ‘displacement’, which does correctly suggest the idea of moving the field around
from one point to another.

As with electromagnetism, we now need to consider the behaviour of the derivative of

Y, Vi = 0, a-Vi. If we form the derivative of the displaced field we find that

@V (2) = a- Ve[ f(2)] = lim = (W[f(x + ea)] — [ F()])

= lim L () (@) - el (25)
where
fla) =f(a;2) = a-Vf(x) (2.6)

and we have Taylor expanded f(x + ea) to first order. The function f(«) is linear on «,
and also position dependent. We usually suppress this position dependence. We now
have

@ V'(z) = lim = (4o’ + ef(a)] — ¥(x')) (2.7)

e—0 €

But this is the vector derivative with respect to 2’ taken in f(a) direction. We therefore
have

a- V(@) = f(a)- Vb (o), (2.8)

where the subscript ' on V. records that the derivative is now with respect to the
new vector position variable z’. Since

f(a)-Vo = a-f(Vy) (2.9)
and Eq. (2.8) is true for all a and for all fields ¢, we establish the operator relation
V. = (V). (2.10)
The function f(a) is a coordinate-free way of writing the Jacobian.

Now suppose, for example, that we had a physical relation equating the gradient of a

scalar field V¢ to a vector field A(z),
Vo= A. (2.11)
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This might correspond to the statement that an A-field is pure gauge in electromagnet-
ism. If we now replace ¢(x) by ¢'(x) = ¢(a') and A(x) by A'(x) = A(a'), the left-hand

side becomes
Vi (e) = F(V.)ole!) = FIAG)] = F(A) 212)

which is no longer equal to A’. Tt is clear that we must introduce a gauge field which
assembles with the vector derivative to form an object which, under displacements,
simply re-evaluates to the derivative with respect to the new position vector. We
construct such an object by replacing V with a new derivative h(V). Here

h(a) = h(a; ) (2.13)

is an arbitrary function of position, and is a linear function of a. We again suppress this
position dependence where clarity permits. We allow h(a) to have arbitrary position
dependence so that h(a) cannot simply be gauged away.

Under displacements the gauge field h(a) must transform such that
h' (V') = W[f(A")] = h[A";2"]. (2.14)

Suppressing the position dependence, we can see that the basic requirement is that

h'(a) = hf~'(a), (2.15)

which must hold for an arbitrary vector a. We can now systematically replace every
occurrence of V with h(V), and all our equations will be invariant under arbitrary
displacements. So, for example, the Dirac equation is now

h(V)los = mi. (2.16)

The introduction of the h-field ensures that derivatives of fields can also be moved
around arbitrarily. The h-field is not a connection in the conventional Yang-Mills
sense. The coupling to derivatives is different, as is the transformation law (2.14). It is
clear however, that the h-field embodies the idea of ensuring that a symmetry is local,
so can sensibly be called a gauge field. Since h(a) is an arbitrary, position-dependent
linear function of «a, it has 4 x 4 = 16 degrees of freedom.

2.2 Rotations

The second symmetry we require is that our wave equation should be invariant under
the transformation

b = R, (2.17)
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where R is an arbitrary, position-dependent rotor in spacetime. We refer to the rotor R
as generating rotations, understanding that boosts are now a special case of a rotation.
Now we are back in the familiar territory of Section 1. We first write

h(V)y = h(d,) a- V. (2.18)

To make (2.17) a symmetry we need to modify the ¢V directional derivatives by adding
a bivector connection Q(a). We define

Dyt = a-V + %Q(a);b (2.19)
where Q(a) has the transformation law
Qa) = Q'(a) = RQ(Q)E’ — %2a-VRR. (2.20)

Since R is an arbitrary rotor there is now no constraint on the blades that Q(a) can
contain, so (a) has 6 x 4 = 24 degrees of freedom.

Our equation now reads
Diplos = h(d,) Db los = mib. (2.21)
If we now replace ¢ by ¢’ and Q(a) by ©'(a), we find that the left-hand side becomes
h(9.) D! (Ry)los = h(0,) RDy3 los (2.22)

whereas the right-hand side is simply mRi¢. In order for the equation to remain
invariant we also need to transform the h-field as

h(a) — h'(a) = Rh(a)E. (2.23)

This is sensible if we recall that the equation h(V¢) = A was invariant under displace-
ments. This will also be invariant if both vectors are rotated, and the rotation of the
h(V) term must be driven by transforming h. With these considerations, we now see
that Eq. (2.21) is invariant under both rotations and displacements. This has been
achieved at the cost of introducing two new gauge fields, the h(a) field for displace-
ments and the Q(a) field for rotations. In the next Lecture we will see what equations
these new fields satisty.

2.3 Covariant Derivatives for Observables

Having seen what the covariant derivative of a spinor looks like, it is a simple matter
to establish a formula for the derivative of the observables formed from a spinor. In
general, these observables have the form

A= yT, (2.24)
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where I' is a constant multivector formed from combinations of vy, 73 and lo3. The
observable A inherits its transformation properties from the spinor ¢, so under dis-
placements it transforms as

A(z) — Al(x) = A(a') (2.25)
and under rotations it transforms as
Ars A= RAR. (2.26)
Multivectors with these transformation properties are said to be covariant.
If we now form the directional derivative of A we get
a-VA=(a-V)Th + T (a-Vip)™. (2.27)

This immediately tells us how to construct a covariant derivative for A. We simply
replace spinor directional derivatives with their covariant version and form

(Dat)U + 9T ( D)) ) )
= (@ V)T + T Vo) + 30(a)oTh - LeTi0(a)
= a-V(I'Y) + Qa) x (). (2.28)
We therefore define the covariant derivative D, by
D,A=a- VA4 Qa)xA. (2.29)

This is the form appropriate for acting on covariant multivectors, including observables
formed from spinors. There are two important features about the bivector commutator
appearing here. This first is that it is grade preserving, so the full D, operator preserves
grade. The second is that

Qa)x(AB) = (Qa)xA)B + A(Q(a) x B). (2.30)
This ensures that D, is a derivation, that is, it satisfies Leibniz’ rule
D.(AB)=(D,A)B + A(D,B). (2.31)

Both of these are necessary for D, to be a suitable generalisation of a directional
derivative. We assemble a full, covariant version of the vector derivative by writing

D = h(d,)D,. (2.32)
This raises and lowers grade by one, so we also write

DA=D-A+DAA = h(d,)-(DaA) + h(3) A (D, A). (2.33)



