Physical Applications of
Geometric Algebra

Handout 14
The Gravitational Field Equations

The key to deriving the field equations in any gauge theory is the covariant field strength
tensor. This encodes the content of the gauge fields which is not generated by gauge
transformations alone. There are two of these in gravity, but it turns out that one is
extremely weak and only enters at the quantum level. In the approximation that this
term is zero, we recover a theory which is equivalent to GR. The second gauge field
gives rise a field strength which has units of energy density. A version of this is equated
with the matter stress-energy tensor to yield the full set of field equations.

Some of the more technical derivations in this handout have been relegated to an
appendix. You are not expected to remember or be able to reproduce these derivations.
They are included only for general interest and to give a feel for how geometric calculus
is applied in gravitation and gauge theories in general.

1 The Field Strength

The field strength tensor is found in general by commuting covariant derivatives. Sup-
pose, first, that we are dealing with electromagnetism again, so v transforms to ¥R
under rotor transformations. In this case, if @ and b are constant vectors, we have

[Da, DyJtp = Dy (b-Vo) + $0Q(b)) — Dy (a-Vib + 50Q(a))
= Lp[a- V) — b-VQ(a) — Qa) < Q(b)]. (1.1)

— 2
Despite the fact that we formed commutators of derivatives on 1, all of the derivatives
of ¥ have canceled.

Specialising to the case of electromagnetism, where Q(a) = —2a- A Ios, we find that
the term multiplying ¢ is
= (anb)-(VANA)los = (aNb)-F los.

This is a function which maps the bivector a Ab linearly onto a pure phase term. In
electromagnetism we lose the mapping nature of the field strength and instead work
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directly with the bivector VAA. For more complicated systems this is not appropriate.
In forming our commutator we have extracted the correct field strength, I’ = VAA. This
encodes the physically measurable content of the electromagnetic field, and vanishes if

Ais a pure gauge field, A = V.

1.1 The Rotation Gauge Field Strength

In analysing rotations the only difference to the above is that the rotors multiply
from the left. In this case we form

[Da, Do]tb = 2R(a b)Y (1.3)

where
R(anb) = a-VQb) —b-VQ(a)+ Qa) x QD). (1.4)

Since the right-hand side is antisymmetric on a and b, the field strength can depend
only on the bivector ¢ Ab. This linear action on bivector blades is extended to general
bivectors by defining

R(anb + eAd) = R(aAb) + R(cAd). (1.5)
This means that we can write the field strength as,
R(B) = R(B; z) (1.6)
which is a position dependent, linear function of the bivector B.

There are two main differences from the electromagnetic case. The first is that the com-
mutator term Q(a) x Q(b) has not cancelled out. This has an important consequence
for the field equations — they are no longer linear. If one adds together two config-
urations of (a), the field strength of the resultant (a) is not the same as that from
the superposition of the original field strengths. This makes the equations much more
difficult to solve than those of electromagnetism. The second main difference is that
the field strength is now a general bivector, rather than being constrained to the /o
plane. That is, R(B) is a bivector-valued function of the bivector argument B. This
means that R(aAb) has 36 degrees of freedom, instead of the more manageable 6 of
electromagnetism.

The definition of R(B) in terms of commutators makes it easy to establish its trans-
formation properties under rotation gauge transformations. We see that

(DL, Dy 10! = LR (aAb) R = R[D,, Dyli> = LRR(a b)Y, (L.7)

— 2 -2
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from which we can read off that

R'(aAb) = RR(aAb)R. (1.8)

Unlike electromagnetism, the field strength now transforms under gauge transforma-
tions, albeit in a straightforward way. This affords a quick proof that the field strength
vanishes if (a) is derived from a pure gauge transformation. In this case a gauge
exists in which D, is just a-V. Since partial derivatives commute, R(a Ab) vanishes in
this gauge, and Eq. (1.8) ensures that R(aAb) also vanishes in all other gauges.

1.2 The Displacement Gauge Field Strength

The displacement gauge field h(a) couples to derivatives in a different manner, but it
is still possible to define a sensible field strength. If we consider the commutator we
form

[a-h(V),b-h(V)]¢ = b:[a-h(V)h(V)]¢> — a-[b-h(V)h(V)]

= b-Ta-h Y —a-
= (bAa)-[A(V)Ah(V)]e. (1.9)

The result now is a differential operator, which is driven by the term h(V)Ah(V).
Whenever this acts on a scalar ¢ we pick up a term in

h(V)AR(V) = h(V)AR(V$) + h(VAVS) = h(V)Ah(V ) (1.10)

where the over-dot on h denotes that only the position dependence in the h-field is
differentiated, and not the position dependence of its argument. To generalise this
we first write V as h™'h(V). Since it is h(V) that is covariant, we replace this by a
constant vector and define

S(a) = h(V)Ahh~'(a) = —h[V AR (a)], (1.11)
where we have employed the result that
__ . . _ . _—1
VA[hh™ (a)] = VAhh™'(a) + VAhh (@) = VAa = 0. (1.12)

Our function S(a) is a bivector-valued function of the vector argument a. It is covariant
under displacements, which follows from its derivation, so is a candidate for the field
strength.

The second property that S(a) must satisfy is that it vanishes if h(a) is pure gauge.
For h(a) to be a pure gauge field we must have

h(a) =f""(a), (1.13)
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so that h(V) = f~}(V) = V, is a pure vector derivative in some other gauge. In this
case we have

S(a) = —f7'[VAf(a)]. (1.14)

But if f(«) is the derivative of a displacement we have
fla) = a-Vf(zx), (1.15)
f(a) = AW (B)a) = Bb{b- ¥ F(x)a) = ¥ (a-F()) (1.16)

It follows that VAf(a) = VAV(a-f(z)) = 0, so S(a) does indeed vanish if the h-field

is generated by a gauge transformation.

2 The Covariant Field Strengths

We have determined the field strengths of our two gravitational fields. The next step
is to ensure that both of these are correctly expressed covariantly. We start with the
rotation gauge field, Q(a).

2.1 The Riemann Tensor

We have already determined the transformation law for R(B) under rotation gauge
changes. Under displacements we first note that 2(a) is the gauge field introduced to
remove terms of the type a-V RR. It follows that under displacements we have

Qa;z) = Q(a;2) = Qf(a); 2] (2.1)
As a result, the transformed field strength is

R'(aAb) =a-V'(b) —b-VQ(a) + Q' (a) xQ'(b)
=f(a)-VQ[f(b); 2] — £(b)- Vo Q[f (a); 2] + Q' (a) x Q'(b)
+ Qla-VE(b) — b-Vi(a); 2]
=R[f(aAb); 2'] + Q[a-VF(b) — b-Vi(a); 2] (2.2)

But we know that

a-VE(b) — b-Vf(a) = a-V(b-Va') = b-V(a-Va') = 0, (2.3)
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so the field strength has the simple displacement transformation law
R(B) — R'(B) = R[f(B);2]. (2.4)

We see that R'(B) picks up an unwanted term in f( ), but this is easily removed. Since
h(a) has the transformation property

h(a) — h'(a) = hf~'(a) (2.5)
we see that the adjoint function transforms as
h(a) — h'(a) = f~'h(a). (2.6)
We therefore insert a term in h(a) into R(B) and define the covariant field strength
R(B) = R[h(B)]. (2.7)

The extra factor of h(B) alters the transformation properties under rotations now. We
established in Handout 13 that h(a) transforms under rotations as

h(a) — h'(a) = Rh(a)E. (2.8)
It follows that the adjoint transforms to
h(a) — h'(a) = dy{aRh(b)R) = h(RaR). (2.9)
The transformation properties of R(B) are therefore summarised by:

Displacements:  R/(B,z) = R(B, 2')

Rotations:  R/(B) = RR(]%BR)E‘ (2.10)

These are precisely the properties we want. The displacement law means that we can
move the field strength around in the STA, in the same manner as our other covariant
fields. The rotation law might look more complicated, but it is quite natural as well.
Suppose, for example, that R(B) simply amounted to the instruction ‘dilate all fields
by the factor o’. This is a physical statement, so ought to be true in all gauges. This
is what we find. The original statement corresponds to

R(B) = aB. (2.11)
The transformed field is then
R'(B) = RR(RBR)R = R(aRBR)R = aB (2.12)

so does correspond to the same physical information. Any linear function with the
transformation properties of Eq. (2.10) is called a covariant tensor. As R(B) plays
the same role in the gauge theory approach as the curvature tensor in GR, we refer to
R(B) as the Riemann tensor. We employ this notational device of writing covariant
tensors in calligraphic symbols to help keep track of which objects are gauge invariant.
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2.2 Examples

A few examples should give a flavour of how the STA simplifies the study of the
Riemann tensor. All of the expressions below are considerably simpler than their
tensor calculus counterparts.

I. The Schwarzschild Solution

The fields outside a non-rotating spherically symmetric source of mass M are described
by the Schwarzschild solution. For this case the Riemann tensor is given by

M
R(B) = —2—3(3 + 30, Bo,) (2.13)

r
where r = |2 Ao, o, = ¥ Avo/r, and the source is at rest in the o frame. The scalar
term M /2r® controls the magnitude of the tidal forces due to the source. In empty

space it is the residual effects of tidal forces that are measurable.

I1I. The Kerr Solution

The fields outside a rotating black hole are described by the Kerr solution. This is
beyond the scope of this course, but it is worth seeing the form of the Riemann tensor
for this solution. It is

M

R(B) = _2(7“ +IL cos0)3(

B +30,.Bo,). (2.14)

This only differs from the Schwarzschild case through the pre-factor, which generalises
r to the scalar+pseudoscalar combination r + L cosfl. Here L controls the angular
momentum of the source, and € has its usual meaning for a spherical polar coordinate
system. It has been known for many years that a natural complex structure underlies
the Kerr solution. The form of the Riemann tensor explains why this is so.

ITI. Cosmic Strings

The Riemann tensor inside an infinite, pressure-free string with density p is
R(B) = 8np(Blos)los; (2.15)

where the string lies along the ~3 axis and is at rest in the vy frame. Tidal forces are
only exerted in the [os plane and are controlled by the density, which is what one
would expect physically.
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IV. Cosmology

The Riemann tensor for an isotropic, homogeneous cosmology 1is
R(B)=4r(p+ P)B-ete; — %(87TIO—I—A)B. (2.16)

Here P and p are the pressure and density and are functions of cosmic time, A is the
cosmological constant, and e; is the ‘rest-frame’ of the universe (defined by the cosmic
microwave background radiation). Note that no other direction is contained in R(B),
as one expects for an isotropic solution.

2.3 The Displacement Gauge Field Strength

Next we return to the displacement gauge field strength. As we found in Section 1.2,
the key quantity is

S(a) = —h[V AR~ (a)] = h(V)Ahh~(a). (2.17)

This is already covariant under displacements, but under rotations the h(a) field picks
up some additional rotors. We must therefore replace the directional derivatives of this
with rotationally covariant derivatives, so we define

S(a) = h(d)A (b-vﬁﬁ—l(a) + Q(b)-a> . (2.18)

This guarantees that we have the required transformation law under displacements and
rotations:
Displacements:  S'(a,2) = S(a,2’)

Rotations:  &'(a) = RS(RaR)R. (2.19)

3 The Field Equations

The full, formal development of gauge theory gravity generates the field equations
from a Lagrangian. Here we adopt a more heuristic approach, based on some simple
physical arguments. We first consider the dimensions of the various constants at our
disposal. We know, from experiment, that the scale of gravitational interactions is
fixed by Newton’s constant G. Combined with Planck’s constant & and the speed of
light ¢, this fixes a natural scale for interactions as follows:

Planck length  [p = \/hG/c? = 1.6 x 107 m
Planck mass  Mp = h/Lpc = 2.2 x 10 %kg (3.1)
Planck time t¢p = Lp/c= 5.3 x 107*s,
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The natural length scale is therefore tiny — far smaller than any scale currently ac-
cessible to experiment. The same goes for the Planck time. The mass, on the other
hand, is large and far in excess of the masses of any fundamental particles observed to
date.

If we now consider the two field strengths we have defined, S(a) and R(B), we see that
these differ in dimensions by a factor of length. This is because Q(a) has dimensions
of (length)™, whereas h(a) is dimensionless. It follows that we expect the S(a) term
to be of comparable magnitude to [pR(B), and so is extremely small. If we ignore
quantum effects, we therefore expect that S(a) will vanish, and this yields the first of
our field equations,

S(a) =0, (3.2)

This is borne out by the Lagrangian analysis, which shows that S(a) is driven by
quantum spin, and so is negligible for most interactions. In setting S(a) to zero, we
are saying that the field strength of the h field vanishes. We might expect this to mean
that h(a) is a pure gauge field. But in constructing the covariant field strength S(a) we
had to couple in the Q(a) field. Remarkably, it is this coupling which generates some
dynamics. It is also Eq. (3.2) that ensures that the equations we derive are (locally)
equivalent to those of GR! The revealing feature of this approach is that GR is only
recovered in the limit where quantum interactions are ignored. This has a number of
implications for attempts to unite quantum theory and gravity.

3.1 Consequences of the First Field Equation

To establish some consequences of our first field equation S(a) = 0 it is first convenient
to express the equation in the form

DAh(a) = h(9y) A[b-Vh(a) + Q(b)-h(a)] = 0, (3.3)

where, as usual, « is a constant vector. Perhaps more usefully, suppose that A(z) is a
vector-valued field. In this case we have

DAR(A) = h(VAA). (3.4)

This result enables us to move easily between covariant expressions and ‘flat space’ ex-
pressions involving the vector derivative. The result also removes a potential ambiguity
for the electromagnetic field strength. The vector potential is A, and its covariant form
is A = h(A) (since A picks up a term in V¢ under local phase changes). Given this,
we might be unsure whether the covariant form of the electromagnetic field strength
should be h(VA A) or DAA. Equation (3.3) ensures that both give the same result,
which is

F =h(VAA)=DAA =h(F). (3.5)
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(When quantum effects are included this ambiguity resurfaces, and only the Lagrangian
approach can tell us which is the correct field strength.)

Equation (3.3) extends to the case of a general multivector. For example, we see that

DA(aAD) = h(D) A[D(a) AR(B) + h(a) AD.h(D)
= [DAR(@)]AB(D) — h(a)A[DAR(D)
= 0. (3.6)

Again the result for position dependent fields is also useful,

DAh(M) = h(VAM). (3.7)

Now suppose that we apply Eq. (3.3) a second time. We find that
DA[DAK(A)] = DAh(VAA) = h(VAVAA) = 0. (3.8)

This can be used to derive an algebraic identity for the Riemann tensor. The details
are not important and are contained in Appendix A, but the conclusion is simply that

0, AR(aAb) = 0. (3.9)

This expresses all of the symmetries of the Riemann tensor in one simple equation.
This equation says that the trivector d, AR(aAb) vanishes for all values of the vector
b, so amounts to a set of 16 constraints. Since the Riemann tensor originally had 36
degrees of freedom, we are left with 20 degrees of freedom. We will see later what these
correspond to.

3.2 The Second Field Equation

The Riemann tensor has dimensions of (length)~2. Given that we are ignoring quantum
effects, the only constant we can scale this with is G. If we form the quantity R(B)/G,
we see that this has dimensions of energy density. In this respect gravity is different
from other gauge theories. The energy density is linear in R(B), whereas for electro-
magnetism, for example, the energy density is quadratic in the field strength (going as

T(a) = —%FaF).

On dimensional grounds, we expect to equate the Riemann tensor with some version
of the energy density of the physical fields. But the latter is described by the stress-
energy tensor, which is a linear function mapping vectors to vectors, not bivectors to
bivectors. Since we have already established that d, AR(aAb) = 0, we next consider
the contraction of R(aAb) and define

R(b) = 8,-R(aAb). (3.10)
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This is called the Ricci tensor. It is still a covariant tensor, and divided by G it still has
dimensions of energy density. Notice that we use the same symbol R(a) and R(aAb)
for the Ricci and Riemann tensors. Which is intended is defined by the grade of the
linear argument. (This is the STA equivalent of using the number of indices on a tensor
to determine which is intended.) We can perform one further contraction to define the
Ricci scalar

R = 0, R(a). (3.11)

This is a covariant scalar field, so is invariant under rotations, and transforms cov-
ariantly under displacements. The Ricci scalar is the first scalar observable we have
constructed from the gravitational fields. It also turns out that R is the appropriate
Lagrangian density for a formal development of gauge theory gravitation.

The key to deciding which of the gravitational fields to equate with the matter stress-
energy tensor is provided by the Jacobi [dentity. There is a version of this for all gauge
theories and it arises straightforwardly from the identity

[Dav [va DCH¢ + [D07 [Dav Db]hb + [va [D07 Da]hb = 0. (312)
Evaluating the commutators we find that
D.R(bAc) + D.R(aAb) + DyR(cAa) =0 (3.13)

which is the Jacobi identity. In electromagnetism this identity amounts to the state-
ment VAF' = 0, which records the fact that IV is derived from a gauge field. The version
for the rotation gauge field is slightly more complicated, and is derived in Appendix B.
The conclusion is that

h(0.)A[DaR(B) — R(D,B)] = DAR(B) = 0. (3.14)

As is common in the STA, yet another of the useful, practical results has a very simple
simple, memorable expression. Despite their formal simplicity, equations like Eq. (3.14)
and Eq. (3.9) contain a wealth of information. They are also simple to implement on a
computer in a symbolic algebra package such as Maple or Mathematica. These days,
computer packages are an essential part of analysing the gravitational field equations,
and it certainly appears that the gauge theory approach is better suited to this than
the traditional, metric approach.

On contracting Eq. (3.14) we find that the Ricci tensor does not satisfy a covariant
conservation equation. Instead, it is the Einstein tensor which has this property. This

is defined by

G(a) = R(a) — $aR. (3.15)
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We obtain our second field equation by equating the Einstein tensor with the covariant
matter stress-energy tensor 7 (a),

G(a) = rT(a), (3.16)

where k is a constant. This constant is determined by looking at spherically symmetric
solutions and comparing with the Newtonian equations. From this analysis we conclude

that k = 87 G.

A Symmetries of R(B)

Expanding out Eq. (3.8) we find that the left-hand side becomes
DA[DAh(A)] = h(0,)AD,[h(3,) ADyh(A)]
= [DAh(3)]ADyh(A) + h(d,) Ah(0y) A[Dy Dy Al. (A.17)

The first term here vanishes, and the second contains a factor of E(aa/\ab). We can
therefore antisymmetrise the covariant derivatives to get

h(9,) Ah(D3) A [(DaDy — DyDu) Al = Lh(9,) AR(3) A(R(aNb)-A)
= 10, N0, A[R(aNb)-A] = 0. (A.18)

1
2

Here we have used the general result that, when forming a contraction between h(d,)
and a, we can replace this with a contraction between d, and h(a). The result is an
algebraic identity satisfied by the Riemann tensor. This must be true for all A, so we
can write

O NOGN[R(aNb)-c] =0 Va,b,ec. (A.19)
We next take the exterior product with d. to get

O:NONON[R(aAb)-c] = =0, NOyA[O:-N(c-R(aND))]
= —20,NOyAR(aNb) = 0. (A.20)

Now if we dot this result back with ¢ again, we get
c- [0, NOAR(aND)] = Oy AR(cAD) — O, AR(aNe) + O, ANOsA[e-R(anb)] =0 (A.21)
and using Eq. (A.19) again we arrive at the simple result
J. ANR(anb) =0, (A.22)

as used in the main text. A corollary of this result is that the Riemann tensor is
symmetric, so satisfies

Bi-R(By) = R(B1)-R(By). (A.23)

This alone reduces the degrees of freedom in the Riemann tensor from 36 to %-6-7 =21,
so is not quite as restrictive as Eq. (A.22).
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B The Bianchi Identity

We seek a covariant expression of the Jacobi identity (3.13). The identity currently
says that a bivector vanishes for all totally antisymmetrised combinations of «, b, c.
The bivector must therefore be a function of the trivector aAbAc. We construct the
adjoint version of the identity by forming

DAy AD{[a-VR(bAC) + Q(a) x R(bAc)|B) = 0, (B.24)

which says that the the trivector on the left vanishes for all values of the bivector B.
We next use the symmetry of the Riemann tensor to write

R(By)-By = RhY(By)]- By = By-h ™ [R(By)]. (B.25)
The two terms in the Jacobi identity now become
D NOND{a-VR(bAC)B) = 9, NN D(bAca-V (W [R(B)]))
= —2VA(h'[R(B)]) (B.26)
and
DN NO(Q(a) xR(bAC) BY = D, AOy AD(R(bAc) Bx Q(a))
=20, A (W' [R(QUa) x B)]) . (B.27)
We next act of the full bivector with the h-field to get
h(V)AR(B) — h(V)Ahh~Y[R(B)] — h(9,) AR[Q(a) x B] = 0. (B.28)

Finally, we use our first field equation in the form of Eq. (3.7) to write the Jacobi
identity in the form

h(9.)A[DLR(B) — R(D.B)] = 0, (B.29)

which is now valid if B is position dependent. This is often referred to as the Bianchi
identity. We adapt the over-dot notation for this form of covariant derivative, so that
the Bianchi identity finally reduces to the simple expression

DAR(B) = 0. (B.30)

One advantage of the over-dot notation of Eq (B.30) is that it commutes with contrac-
tions. We can therefore easily form the contracted Bianchi identity

D [DAR(aAb)] = R(DAD) — DAR(D) (B.31)
and contracting once more gives
—2R(D) + DR = —2G(D) = 0, (B.32)

where G(a) is the Finstein tensor. It is this tensor which is covariantly conserved, so
satisfies the same relation as the matter stress-energy tensor.



