Physical Applications of
Geometric Algebra

Handout 3
The Foundations of Geometric Algebra

So far we have introduced geometric algebra in an ad hoc manner, with the geomet-
ric product defined in terms of the dot and wedge products. We must now start to
place this on a firmer, axiomatic footing, with which we can uncover the properties of
geometric algebras in spaces of arbitrary dimensions. In so doing we will reverse the
order of presentation and define the algebra in terms of the geometric product alone.
The dot and wedge products then drop out as separate terms in the full geometric
product. This development will also highlight some of the new algebraic techniques
we now have at our disposal. A theme running throughout this course is that access
to the geometric product simplifies derivations, even if the initial and final expressions
contain only dot and wedge products. As an application we look in more detail at the
treatment of reflections and rotations with geometric algebra.

1 Axiomatic Development

We now have an intuitive feel for the elements of a geometric algebra — the multivectors
— and some of their multiplicative properties. The next step is to define a set of axioms
and conventions which enable us to efficiently manipulate them. We first discuss the
structure of the linear space, and then the properties of the geometric product.

1.1 The Linear Space ¢, and its Grading

We use the symbol G, to denote the geometric algebra of n-dimensional (Euclidean)
space. Elements of this algebra are called multivectors, and are usually written in upper
case Roman, A. Lower case is reserved for vectors. This space is linear over the real
numbers so, if A and p are scalars and A and B are multivectors (A, B € G,,), then

M+ pB€EG,, Vi (1.1)

We only consider the algebra over the reals as most occurrences of complex numbers
in physics turn out to have a geometric origin. This geometric meaning is lost if we
admit a scalar unit imaginary.
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The linear space G,, is graded, and every multivector can be written as a sum of pure
grade terms

A= (Ao + (A) £+ = Y (A).. (1.2)

r

Each graded subspace of G, is closed under addition and forms a linear subspace. The
operator ( ), projects onto the grade-r terms in the argument, so (A), returns the
grade-r components in A. Multivectors containing terms of only one grade are called
homogeneous. They are often written as A,, so

(A, = A (13)

Take care not to confuse the grading subscript in A, with frame indices in expressions
like {ex}. The context should always make clear which is intended.

The grade-0 terms in G, are real scalars. These commute with all other elements. We
employ the useful abbreviation

(Ao = (4) (1.4)

for the common operation of taking the scalar part. The grade-1 objects (A); are
vectors. These can be viewed as generating the algebra through the geometric product.

1.2 The Geometric Product

The three main axioms governing the geometric product of multivectors are were in-
troduced in Handout 1. They are that the product is associative, A(BC') = (AB)C =
ABC, distributive over addition, A(B + C') = AB + AC, and that the square of any
vector is a scalar. We do not force this scalar to be positive, so we can incorporate
Minkowski spacetime without modification of our axioms. Nothing is assumed about
the commutation properties of the geometric product — matrix multiplication is one
picture to keep in mind.

We also saw in Handout 1 that the symmetrised product of two vectors can be written
ab+ ba = (a + b)* —a® — b7, (1.5)

and so must also be a scalar. With this we can define the inner product for vectors by
a-b= %(ab—l—ba). (1.6)

The remaining, antisymmetric contribution is the bivector part, so we can define the
exterior product from the geometric product as well,

anb = 3(ab— ba). (1.7)

1
2
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These definitions combine to give the by now familiar result

ab=a-b+ anb. (1.8)

We can extend this idea to build up a host of useful results. For example, consider the
product of a vector and a bivector

a(bAc) = za

(a-b)c — (a-c)b— L(bac — cab)

(a-b)c—2(a-c)b+ (bc —cb)a

= 2(a-b)e—2(a-¢)b+ (bAc)a. (1.9)
We therefore extend the definition of the inner product to

a-(bAe) = [a(bAe) — (bAc)a] = (a-b)e — (a-c)b. (1.10)

1
2
The remaining, symmetrised part of the product is

aN(bAc) = La(bAc) + (bAc)a] = aNbAc (1.11)

which is a trivector (grade-3), as seen in Handout 2. The trivector part is totally
antisymmetric on a, b, ¢ (exercise). We now have

a(bAe) = a-(bAc)+ an(bAc), (1.12)
which was derived by an alternative argument in Handout 2.

One can already see that expressions in geometric algebra can pick up large numbers of
brackets. This is the point of the operator ordering convention introduced in Handout 2:
in the absence of brackets, inner and outer products take precedence over geometric
products. This means we can write

(a-b)c=a-be (1.13)

and the right-hand side cannot be confused with a-(bc). We try to emphasise this
typographically by writing a-be¢ instead of a - be. This is not easy with some word-
processing packages!

1.3 Blades and Bases

Suppose we have an arbitrary set of vectors a;,7 = 1...7. The totally antisymmetrised
sum of all products of these returns the outer product:

aiANagN\---Na, = Z Voag ak, - ag, (1.14)
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where the sum runs over every permutation of the indices ky ... k., and ¢ is +1 or —1
if k1 ...k, 1s an even or odd permutation of 1...n respectively. So, for example,

1
aiy /\CLQ == 5(@1@2 — agal) (115)

as required. Any multivector which can be written purely as the outer product of a set
of vectors is called a blade. The outer product of r vectors therefore returns a grade-r

blade.

Fortunately we rarely need the full antisymmetrised expression when studying blades.
Instead we can employ the result that every blade can be written as a geometric product
of orthogonal, anticommuting vectors. The anticommutation of orthogonal vectors then
takes care of the antisymmetry of the product. The proof is a form of Gram-Schmidt
process. We start with the result that, with &' = b — Aa,

a/b

a/\(b—)\a) i B b
= aAl :

We can understand this result by recalling that a bivector encodes an oriented plane
with magnitude determined by the area. Interchanging b and &' changes neither the
orientation nor the magnitude, so returns the same bivector. We now form

a-t! =a-(b—Xa) = a-b— \a*. (1.16)
So if we set A = a-b/a* we have a-b' = 0 and can write
ahb=anb = ab. (1.17)

The full proof for arbitrary grade blades continues by induction. (Some care is needed
if any of the vectors are null, i.e. a* = 0, but the result still holds.) An alternative
form for &' is also revealing,
bV =b—atlab=>b— %a_l(ab—l— ba)
= 1(b—a""ba) = a7 'L(ab— ba) = a”'aAb. (1.18)
This makes it clear why ab’ = aAb, and also gives a formula which extends to higher
grades.

A natural way to view G, is in terms of orthonormal basis vectors {e;},i =1...n. In
terms of these we build up a basis for the entire algebra as

1, €, €;€; (Z < ]), €;€;€L (Z <j < k) etc. (119)
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We denote each grade-r subspace of G,, by G/. A natural question to ask is what is
the dimension of each of these graded subspaces? To answer this we imagine choosing
r distinct vectors from our basis set. These have to be different because of the total
antisymmetry of the exterior product. The order is irrelevant, again because of the
total antisymmetry, so we just need the number of distinct combinations of r objects
from a set of n. This is

Dim[G7] = ( ; ) . (1.20)
That is, the dimensions are determined by the binomial coefficients. These contain a
surprising wealth of geometric information! It follows that the total dimension is

n

Dim[G.] =Y ( . > =(141)" =2 (1.21)

r=0

An important feature to understand is that not all homogeneous multivectors are pure
blades. This is confusing at first, because we have to go to four dimensions before we
reach our first counter-example. Suppose that {e;...es} form an orthonormal basis
for G4. There are six independent basis bivectors in this algebra, and from these we
can construct terms like

B =aejNey + Beshey, o, €R. (1.22)

B is a pure bivector, so is homogeneous, but it cannot be reduced to a blade. That is,
we cannot find two vectors ¢ and b such that B = aAb. The reason is that e; Ae; and
es/Aey do not share a common line. This is not possible in 3-d, because any two planes
with a common point share a common line. A 4-d bivector like (1.22) is therefore hard
for us to visualise. There is a way to visualise B in 3-d, however, and it is provided by
projective geometry. This is described in a later handout.

1.4 Further Properties of the Geometric Product

The manipulation of the geometric product of a vector and a bivector extends simply
to that of a vector ¢ and a grade-r multivector A,. Suppose that we decompose A,
into blades, and one of these is written aqas, - - - a,. We have

adas -Gy = 2a-0103- - Ay — G100 - - - Gy

= 2a-a1a9 @, —2a-a3 @103 &, + A1A2003 "+ Ay

= 22(—1)k+1a-ak ayay g ap + (=1 arag - aqa,  (1.23)
k=1
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where the check on @ denotes that this term is missing from the series. Each term in
the sum has grade r — 1, so we define

a-A, = (aA)—1 = %(aA,, — (=1)"Aa). (1.24)

The remaining term in the product aA, is easily shown to be totally antisymmetric,
so we also have

aNA, = (aA)rp1 = %(aA,, + (—=1)"Aa). (1.25)
We can therefore write
aA, =a A, +alA,. (1.26)
Multiplication by a vector raises and lowers the grade of a multivector by 1.

In Eq. (1.23) we assumed that the {a;} were orthogonal. We can extend this decom-
position to non-orthogonal vectors by writing

a-(ayNasA---Na,) = slal{aray---a.), — (—=1)(aray-- - a,),al

(aaray---a, — (=1) araz - - apa),— (1.27)

(ST N e

The final manipulation is possible because the geometric product aqas - - - a, only con-
tains terms of grade r, r — 2 and so on. Of these, only the r — 2 grade term could give
an extra, unwanted contribution, but

(CLAT_Q — (—1)TAT_QG) == CL'AT_Q, (128)

1
2
which is grade r — 3. We can now use Eq. (1.23) to write

r

a-(aNagA---Na,) = <Z(—1)k+1a-ak A1y Qg G )pet
k=1

-~

(—l)k"'la-akal/\ag/\---/\Elk/\---/\a,, (1.29)
k=1

This result is extremely useful in practice. The first two cases are sufficient to under-
stand how the result goes:

a-(ahaz) = a-ayay —a-azay
a-(ayNagNas) = a-ayazNas — a-azaiNas + a-asay Nas

(1.30)

Note in particularly the similarity of the first case with the double cross product of
vectors in 3-d.

The general product of two homogeneous multivectors decomposes as

ArBs = <A7’Bs>|r—s| + <A7’Bs>|r—s|—|—2 + 4+ <A7’B5>7’+5 (131)



Handout 3 Foundations of Geometric Algebra 7

which can be seen expanding each term into sums of products of vectors. We retain
the - and A symbols for the lowest and highest grade terms in this series

Ar'Bs — <A7’Bs>|r—s|

AABy, = (A B (1.32)

This definition ensures that the exterior product is associative (exercise).

1.5 Pseudoscalars and Duality

The exterior product of n vectors defines a grade-n blade. This must be a multiple of
the unique pseudoscalar for G,. This is denoted I, and has two important properties.
The first is that I is normalised to

112 = 1. (1.33)

The sign of I* depends on the size of space (and its signature). It turns out that many
of the most useful algebras happen to have I? = —1, but this is by no means general.
The second property is that [ is formed from a right-handed set. The definition of right-
handed works inductively. We agree that eje, is right-handed if e; rotates onto e; in
a positive (anti-clockwise) sense. The blade ejezes is then right-handed if projecting
down the ej direction returns a right-handed plane. This carries on for each new
orthogonal vector added to the product.

€9

€1 €1

The product of the grade-n pseudoscalar I with a grade-r multivector A, is a grade
n — r multivector. This operation is called a duality transformation. If A, is a blade,
I A, returns the orthogonal complement of A,. That is, the blade formed from the
space of vectors not contained in A,. It is clear why this has grade n — r.

In spaces of odd dimension, I commutes with all vectors, and so commutes with all
multivectors. In spaces of even dimension, I anticommutes with vectors and so anticom-
mutes with all odd-grade multivectors, and commutes with all even-grade multivectors.
We can summarise this by

IA, = (=1 YA, (1.34)
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An important use of the pseudoscalar is for interchanging dot and wedge products. For
example, we have

a-(A 1) = %[aA,,[ —(=1)"7"A,1d]
= %[aA,,] — (=) (=1)"" Aal]
= %[aA,, + (=1)"Aall =anA, I (1.35)

More generally, we can take two multivectors A, and Bs, with r 4+ s < n, and form

AT’(BS[) = <A7’B5[>|r—(n—s)|
(A Bl ae) = (A Bl = ANB, I (1.36)

This type of interchange is very common in applications. We have already made use
of it in 3-d. Note how simple this proof is made because of the application of the
geometric product in the intermediate steps.

A useful idea is that every blade can act as a pseudoscalar for the space spanned by
its generating vectors. So, even if we are working in 3-d, we can treat the bivector e;ey
as a pseudoscalar for any manipulation taking place entirely in its plane. We can then
immediately apply any of the preceding results.

1.6 Further Definitions

We end this section with a look at two further operations. The first is reversion, first
introduced in Handout 2. The reverse of a product of vectors is defined by

(ab--- )Y =c---ba. (1.37)

For a blade the reverse can be formed by a series of swaps of anticommuting vectors,
each resulting in a minus sign. The first vector has to swap pass r — 1 vectors, the
second past r — 2, and so on. It is easy to see, then, that

A, = (=124, (1.38)

The second operation is the generalised scalar product, which we write as either (AB)
or A* B (the former is more common). We have

AxB=(AB) =) (A,B,). (1.39)

By forming

(A,B,) = (A,B,)~ = (B,A,) = (—1)’"")(B,A,) = (B, A,) (1.40)
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we see that
(AB) = (BA). (1.41)
It follows that
(A---BC)={(CA-- B). (1.42)

This cyclic reordering property is very useful.

2 Reflections

Suppose that we reflect the vector a in the (hyper)plane orthogonal to some unit vector
m (m? = 1).

a=ay+aq a’
a =ay—a

il

Hyperplane

The component of a parallel to m changes sign, whereas the perpendicular component
is unchanged. The parallel component is the projection onto m:

a) = a-mm. (2.1)
The perpendicular component is the remainder
a; =a—amm=(am—a-m)m=almm (2.2)

This shows how the wedge product projects onto the components perpendicular to a
vector. The result of the reflection is therefore

a’:aL—aH = —a-mm-+tamm

= —(m-a + m/\a)m = —mam. (2-3)
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This remarkably compact formula only arises in geometric algebra. We can start to
see now that geometric products arise naturally when operating on vectors.

It is simple to check that our formula has the required properties. For any vector
parallel to m we have

—m(Am)m = —Ammm = —Am (2.4)
and so Am is reflected. Similarly, for any vector n perpendicular to m we have
—m(n)m = —mnm =nmm =n (2.5)

and so n is unaffected. We can also give a simple proof that inner products are un-
changed by reflections,

a'-b' = (—mam)-(—mbm) = (mammbm)

= (mabm) = (mmab) = a-b. (2.6)

We can also construct the transformation law for the bivector aAb under reflection of

both a and b. We obtain

a' A6 = (—mam)A(—mbm) = (mammbm),
= (mabm)s = maNbm. (2.7)

We recover essentially the same law, but with a crucial sign difference. Bivectors do
not quite transform as vectors under reflections. This is the reason for the confusing
distinction between polar and axial vectors in 3-d. Axial vectors are really bivectors,
and should be treated as such.

3 Rotations

Our starting point is the result that a rotation in the plane generated by two unit vectors
m and n is achieved by successive reflections in the (hyper)planes perpendicular to m
and n. This is illustrated in Fig. 1. It is clear that any component of a outside the
plane mAn plane is untouched. It is also a simple exercise in trigonometry to confirm
that the angle between the initial vector a and the final vector «” is twice the angle
between m and n. (This is left as an exercise.) The result of the successive reflections
is therefore to rotate through 26 in the mAn plane, where m-n = cos(6).

So how does this look in GA?

a' = —mam (3.1)

a" = —na'n = —n(—mam)n = nmamn
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Figure 1: A Rotation from 2 Reflections. ' is the result of reflecting « in the plane
perpendicular to m. a” is the result of reflecting @’ in the plane perpendicular to n.

This is beginning to look very simple! We define
R=nm (3.3)
Note the geometric product here! We can now write a rotation as

a v Ral (3.4)

Incredibly, this formula works for any grade of multivector, in any dimension, of any
signature! The quantity R is called a rotor, and we have already discovered the useful-
ness of these in 2-d and 3-d from a different route. To reconcile these two approaches,
we note that R is the geometric product of two unit vectors n and m, so

R=nm=n-m+nAm = cos(f) +nAm. (3.5)

So what is the magnitude of the bivector n Am?

(nAm)-(nAm) (nAmmnAm)

= (nmnAm)

n-[m-(nAm)] (3.6)
n-(mcos(f) —n)

= cos?(f) — 1 = —sin*(0).
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We therefore define a unit bivector in the mAn plane by

A

B =mAn/sin(8), B? = 1. (3.7)

The reason for this choice of orientation (mAn rather than nAm) is that the angle 4 is
defined as the angle between m and n in the positive sense from m to n. The definition
thus ensures that B is right-handed.

In terms of the bivector B we now have
R = cos(0) — Bsin(@). (3.8)

Look familiar? This is nothing else than the polar decomposition of a complex number,
with the unit imaginary replaced by the unit bivector B. We can therefore write

R = exp{—DB#}. (3.9)

The exponential here is defined in terms of its power series in the normal way. It is
possible to show that this series is absolutely convergent for any multivector argument.
(Exponentiating a multivector is essentially the same as exponentiating a matrix).

Now recall that our formula was for a rotation through 26. If we want to rotate through
f, the appropriate rotor is

R = exp{—B0/2} (3.10)
which gives the formula
a s B2 (B2 (3.11)

for a positive rotation through 6 in the B plane. The GA description forces us to think
of rotations taking place in a plane as opposed to about an axis, which is an entirely
3-d concept.

Since the rotor R is a geometric product of two unit vectors, we see immediately that

RR =nm(nm)~ = nmmn =1= RR. (3.12)

This provides a quick proof that our formula has the correct property of preserving
lengths and angles,

a'-V = (RaR)-(RbR) = (RaRRbR) = (RabR) = a-b (3.13)

Rotors are one of the fundamental concepts in geometric algebra, and we will return
to their properties many times throughout this course.



