Physical Applications of
Geometric Algebra

Handout 10

Electromagnetism

The spacetime vector derivative and the geometric product enable us to unite all four of
Maxwell’s equations into a single equation. This is one of the most impressive results
in geometric algebra. Unlike the separate gradient and curl operators, the vector
derivative is invertible and this leads to a number of simplifications. Plane waves are
easily handled, as are their polarisation states. We also derive expressions for the field
energy and the Poynting vector, and introduce the important idea of the field stress-
energy tensor. As a final application, we look at the derivation of the fields due to a
point source.

1 Maxwell’s Equations

The first object we need to consider is the spacetime vector derivative

0
Y _ v
V =~"0,, 0, = p (1.1)
Here 2 = 4%-2 = ¢ is the time coordinate in the vy frame, and 2’ = z-4* are the three
spatial coordinates. Note that v* = vy and 4* = —~;. If we now form the spacetime
split of the vector derivative, we find that
Vo = (7°0; + ’yiai)’yo =0, —0;0;,=0,—V. (1.2)

The minus sign here is in contrast to 279 = ¢ + @ and is due to the Lorentzian metric.
One has to take care to remember this. It becomes obvious when forming

Vi=4=~Vay =1Vt +x) (1.3)
which tells us that we must have vV = 0; + V. Hence Vo = (70V)~ = 0; — V.

Now consider the four Maxwell equations
VxE=-0B VxB=J+0F

where as usual we employ the symbol x for the vector cross product. We seek a
covariant form of these equations, as we know that they are Lorentz invariant. This

(1.4)

must involve uniting the separate time and space derivatives into the single V operator.
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1.1 The Source Equations

We start with the two source equations, and introduce the spacetime vector J with
p=J v, J = JA. (1.5)
We next form
Jvw=p+J=V-E—-—0F+ VxB. (1.6)
Now consider the following manipulation, with b = bA~y,
YoA(a-b) = voAa-(bAY)] = YoA(—a-7b) = a9 bAyo = a-vo b. (1.7)
We can therefore write
—OE = —~-VE = —yA(V-E). (1.8)
The full E-field term is now
V-E—0FE = (wwAV)-E—v%ANV-E)=(V-E)v+ (V-E)A\yvo=V-E~. (1.9)
For the B term we need the result (exercise)
axb = (aAy)x(bAv) = —aNbAyo Y0, (1.10)
so that we can write

VxB =—IVxB=I(VAy)x(B)

Our 2 Maxwell equations therefore combine to give
Jvo = V-(E+ IB). (1.12)

Recalling the derivation of the relativistic form of the Lorentz force law from Handout 9,
we define

F=F+1IB, (1.13)
which enables us to write down the covariant equation
V-F=. (1.14)

This successfully combines two equations into one.
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1.2 The Electromagnetic Field Strength

The spacetime bivector F' = E + [ B is the electromagnetic field strength, also called
the Faraday bivector. It is a covariant spacetime bivector. Its components in the {~v#}
frame give rise to the tensor

F¥ = 47-(39-F) = (" Ay")-F. (1.15)

These are the components of a rank-2 antisymmetric tensor which, written out as a
matrix, has entries

0 —E, —E, —FE.
E, 0 —-B. B,
E, B. 0 -B,
E. -B, B, 0

(1.16)

This form is often presented in textbooks on relativistic electrodynamics. The big
disadvantage of this matrix form is that the the natural complex structure is hidden.

Writing F' = FE + I B decomposes F' into the sum of a relative vector E and a relative
bivector I B. The separate E and [ B fields are recovered from

E = 3(F—%F)

This shows clearly how the split into E and [ B fields depends on the observer velocity
(70 here). Observers in relative motion see different fields. For example, suppose a
second observer has velocity v = RyyR and constructs the rest frame basis vectors

v, = Ry, R. (1.18)
This observer measures components of an electric field to be
E! = (440)-F = (RoiR)-F = ;- (RFR). (1.19)

The effect of a Lorentz transformation can therefore be seen by taking F to RFR. The
fact that bivectors are subject to the same rotor transformation law as vectors make it
easy to recover the standard formulae.

1.3 Examples
i. Observers in Relative Motion

Suppose that in the vy frame some stationary charge configuration sets up the field
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A second observer has velocity tanh(«) in the v; direction, so
R = c"1/2, (1.21)
This observer measures the o; components of
RFR= e /2 et/2 — g 4+ B, e " g, (1.22)
which gives
L, =L, E,=ch(a)E, B,=—sh(a)E,. (1.23)

This approach is much simpler than working with tensors.

ii. Invariants

A further useful result for the [ field is to construct its Lorentz invariant terms. We
form the quantity

F2:<FF>—|—<FF>4:oz—|—M3. (1.24)
But if we also form
(RFR)(RFR) = RFFR=a + 15, (1.25)

we see that the result is invariant. So both the scalar and pseudoscalar terms are
Lorentz invariant — that is, independent of the frame in which they are measured. In
the 7o frame these are

a=((E+1IB)(E+1B)) =F*— B? (1.26)
and
f=—(I(E+IB)(FE+IB))=2FE-B. (1.27)

The former yields the Lagrangian density for the electromagnetic field. The latter is
seen less often, and at first it is quite surprising to learn that E- B is a full Lorentz
invariant, rather than just being invariant under rotations.

1.4 The Remaining Equations

The remaining two Maxwell equations are

V.-B=0, VxE=—-0,B. (1.28)
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The first of these can be written
0= (wAVIA(IB) =VA(IB)Ayo = VAF Ay, (1.29)
since E A~y = 0. This suggests forming
= <VE’)/0>2 + 8tF
=[(0:B+ VxFE)=0. (1.30)

The two equations combine to tell us that VAF ~4 vanishes, from which we can extract
the second covariant equation

VAF =0, (1.31)

We have now reduced the four Maxwell equations to two. This is as far as most
mathematical systems can go. For example, in tensor language our two equations are

O F™ = J7, 9, F,, = 0. (1.32)

Much the same is true of the popular language of differential forms. But geometric
algebra has one further simplification to offer. We can combine the vector equation
V- F = J and the trivector equation VA F = 0 by utilising the geometric product to
write

VF=J (1.33)

Now we have all of Maxwell’s equations in one! This is more than a mere cosmetic trick
— this unified equation offers a number of significant improvements. In particular, the
V operator is invertible — there is a Green’s function for it. (This was first met in
Handout 7). This simplifies diffraction theory and directly encodes Huygen’s principle
(outside this course). In addition, first order equations are numerically more robust
than second order equations, so are preferable for numerical computation.

The wave theory of electromagnetism is recovered by introducing the vector potential

A, defined so that
F = VAA. (1.34)
It then follows automatically that
VAF =VA(VAA) = 0. (1.35)

We have some gauge freedom in the choice of A, as we can always add the gradient
of a scalar field to it (exercise). The most natural way to soak up this freedom is to
impose the Lorentz condition V-A = 0, so that F' = VA. We then recover the familiar
wave equation

VA = J. (1.36)
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2 Electromagnetic Waves

The F field is equipped with a complex structure through the pseudoscalar, so we can
start to look for vacuum solutions (with VF = 0) of the form

F=Fyelke, (2.1)
The vacuum equation therefore reduces to
kEy = 0. (2.2)

Pre-multiplying by k& we immediately see that k? = 0, as expected of the wave vector.
Fy must therefore also contain a factor of k&, as nothing else totally annihilates k. We
therefore must have

Fo=kAn = kn, (2.3)

with kn = 0. We can always add a further multiple of £ to n, which is usually employed
to ensure that n has no components in the spacetime plane containing the null vector k.

2.1 Circularly Polarised Light

Consider a wave travelling in the +z direction, frequency w, with wave vector

k= (v + 7). (2.4)

The vector n can be chosen to just contain 7y and vz components. We can therefore
write

F = —(y0+73)(ay1 + frz) el =)
= (14 03)(ao, + fo2) elwlt —2) (2.5)

The multivector 1 4+ o3 has a number of interesting properties. In particular, it absorbs
factors of o5

0'3(1—|—0'3):1—|—0'3, (26)
and it squares to give a multiple of itself back again
(1+03)°=2(14+03). (2.7)

is latter property means that =(1 + o3) is a projection operator, and implies tha
This latter property that (1 is a projection operator, and implies that
1 + o3 does not have an inverse.)
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z = 0 plane Yy
FE = GIO-SWt (OéO'l + 60’2)

Wave vector out
of page

Figure 1: Circularly Polarised Light. In the z = 0 plane the E vector rotates clockwise,
so the light is left-handed. The wave vector points out of the page.

Eq. (2.6) enables us to convert phase rotations with the pseudoscalar I to rotations on
the bivector [o3, using

(1 +os)e’” = (1+ aa)[cos(¢) + I sin(¢)]
= (14 o3)[cos() + [orssin()] = (1 + o75) 757 (2.8)
We now have
F =70 =5 (1 4 og) (a0 + o) (2.9)
from which we extract

E = e]ogw(t—z) (Oé0'1—|-ﬁo'2)

B = e[ogw(t—z) (—60'14‘050'2)- (2'10)

In a plane of constant z the FE vector rotates in a clockwise direction. This is defined
as left-hand circularly polarised light (see Fig. 1). (Note that the spiral in space at
constant t is then right-handed.) Right-hand circularly polarised light is described by
reversing the sign of the exponent [w(t — z).

2.2 General Polarisation States

A further manipulation we can perform is to write
(1—|—0'3)(Oé0'1—|—ﬁ0'2):(1—|—0'3)0'1(Oé—6[) (211)
A general decomposition into circularly polarised modes is then given by

F =400 [Rel“C=1 4 e lo(z-1)) (2.12)
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where the R and L are ‘complex’ (scalar + pseudoscalar) coefficients. Plane and elliptic
polarised light is built from these modes. For example, setting R = L = 1/2 produces

F=(1403)0cos(wt —wz) (2.13)

which describes light linearly polarised in the o direction.

3 Field Momentum and the Stress-Energy Tensor

The energy contained in an electromagnetic field is
& =4FE*+ B, (3.1)
and the momentum is described by the Poynting vector
P=FExB=—-FE-(IB). (3.2)
These ought to be the components of a spacetime 4-vector P, so we form

P =(£+ P)y = L(E*+ B+ {(IBE — EIB)y

= YE + IB)(E — IB)

1
2
1
2

But this quantity is still frame-dependent as it contains a factor of 79. We have in fact
constructed the stress-energy tensor of the electromagnetic field. We write this as

T(a) = —%FaF. (3.4)

The stress-energy tensor T(a) returns the flux of 4-momentum across the hypersurface
perpendicular to a. This is the relativistic extension of the stress tensor, and it is as
fundamental to fields as momentum is to point particles. It is instructive to contrast
the neat STA form of Eq. (3.4) with the tenor formula

TH, = L5LFPF, 54+ F*F,,. (3.5)

There is little doubt which form best captures the geometric content of the tensor!

3.1 General Properties

Details non-examinable.

All relativistic fields, classical or quantum, have a stress-energy tensor which contains
information about the distribution of energy in the fields (and acts as a source of
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gravity). We can illustrate some general properties of these using electromagnetism as
an example. The first property is that the stress-energy tensor is (usually) symmetric.
For example, we have

a-T(b)=—z(aFbF) = —%<Fan> = T(a)-b. (3.6)

1
2

The stress-energy tensor can have a non-symmetric contribution in the presence of
quantum spin. The second property is that the energy density v-T(v) is positive for
any timelike vector v. Matter which does not satisfy this property is said to be ‘exotic’.

The third main property of stress-energy tensors is that, in the absence of external
sources, the total flux of energy-momentum over a closed hypersurface is zero:

/ dAT(n) = 0. (3.7)

Here dA is the scalar measure over the closed 3-surface 9V, and n is the normal vector
to the surface. These combine into (Handout 7, Eq. 3.16)

ndA=dsS I (3.8)

The fundamental theorem of calculus now gives

/QVT(ndA) :/QVT(dS[‘l)Z/VT(VdXI‘l):/T(V)dv, (3.9)

v

where dV is the scalar measure. This must vanish for any hypersurface, so we must
have

T(V)=0. (3.10)
Alternatively, we can use the symmetry of T to write this as
V-T(a)=10 Y const a. (3.11)
Eq. (3.10) is easy to check for free field electromagnetism:
T(V)= —L[FVF + FVF] =0, (3.12)
since VF = F'V = 0 in the absence of sources.

Provided all fields fall off suitably at infinity, Eq. (3.10) enables us to write down a
conserved total 4-momentum,

Pyot :/|d3;1;|T(70)7 (3.13)
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where |d®z| is the scalar measure over the 3-space perpendicular to v5. Piot is a
constant vector because

O, Prot = / %] 9T (30) = / e[ T(V0). (3.14)

and the final term is a pure boundary term which must vanish if T(a) — 0 at infinity.
It is also not hard to show that Pt is independent of the chosen timelike axis. It is
a covariant (nonlocal) property of the field configuration.

In the presence of additional source fields, it is only the total field stress-energy tensor
that is conserved. The degree by which the separate tensors for each field are not con-
served contains useful information about the flow of energy-momentum. For example,
suppose that an external current is present, so that

T(V)=—L(~JF+FJ)=J-F. (3.15)
In the vy frame, J- F' decomposes into
JF={p+IwE+IB)), =—[J-FE+pE + JxB]y (3.16)

The scalar term in brackets, J-E., is the work done (rate of change of energy density),
and the relative vector term is familiar from the Lorentz force law (rate of change of
field momentum). Notice how easily one can move between covariant expressions and
relative expressions in a chosen frame.

4 Fields from a Point Charge

We now give a compact formula for the fields of a radiating charge. A charge g moves
along a world-line xo(7) (see Fig. 2). An observer at spacetime position x receives an
electromagnetic influence from the point where the charge’s worldline intersects the
observer’s past light-cone. The vector

X =2 —ao(7) (4.1)

is the separation vector down the light-cone, joining the observer to this intersection
point. This vector must be null, X? = 0. For every spacetime position x there is
a unique value of the proper time along the charge’s world-line for which the vector
connecting x to the world-line is null. We can write 7 = 7(x), and treat 7 as a scalar

field.

The Liénard-Wiechert potential for the retarded field from the charge is
qg v
 dreg X v
where v = @ is the velocity of the charge, and X is the null vector connecting xo(7)
to the past lightcone of the position . It is simple to check that the field of Eq. (4.2)
reproduces the Coulomb potential for a charge at rest (exercise).

(4.2)
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Surface of constant 7

Figure 2: Field from a moving point charge. The charge follows the trajectory o(7).
X = & — xo(7) is the null vector connecting the point x to the worldline. The time 7
can be viewed as a scalar field with each value of T extended out over the forward null
cone.

4.1 The Field Strength

We now differentiate the potential of Eq. (4.2) to find the Faraday bivector. First, we
differentiate the equation X? = 0 to obtain

VX X=ViX-Vr(da)X=X-Vr(v-X)=0. (4.3)
It follows that
X
= : 4.4
Vvt Yo (4.4)

The gradient of 7 points in the direction of constant 7! This is a peculiarity of null
surfaces and is one reason why one has to be careful when defining the normal vec-
tor to a surface in mixed signature spaces. In finding an expression for V7 we have
demonstrated how the particle proper time can be treated as a spacetime scalar field.
Feynman and Wheeler call this an adjunct field. It carries information, but does not
exist in any physical sense.

To differentiate A we need V(X -v). Using the results already established we have

V(X-0)=VX-0+VrX-(dv)=v—Vr+VrXo (4.5)
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where v = d;v. (This double use for overdots should not cause any confusion. In cases
where there is some potential for ambiguity we often replace overdots by overstars.)
We now evaluate VA as follows:

VA= 47360 ()jvv - (Xi)?v(X'U)U)
- 47:-]60 (()?(-2)2 - (Xi)? - )((;v_)SX)U>

q ((X/\q‘) X/\v—X-bX/\v) (4.6)

Xop T T (Xap

4req

The bracketed term is a pure bivector, so V-A = 0 and the A field of Eq. (4.2) is in
the Lorentz gauge.

We can gain some insight into the expression for F' by writing
X vXAo—X-0XAv=—-XA[X:(0Av)] = $X0AvX, (4.7)

which uses the fact that X? = 0. Writing Q, = vAv for the acceleration bivector of
the particle, we arrive at the compact formula

q XAv+ %XQUX

=
Areg (X-v)?

(4.8)

This displays a clean split into a velocity term proportional to 1/(distance)? and a
long-range radiation term proportional to 1/(distance). The first term is exactly the
Coulomb field in the rest frame of the charge, and the radiation term,

¢ 1xQ,X

FT’a = —77
4 ey (X v)?

(4.9)
is proportional to the rest-frame acceleration projected down the null-vector X. One
can go on now to show that, away from the worldline, F' satisfies the free-field equation
VF = 0. The details are left as a (voluntary) exercise.

4.2 Example — Circular Orbits

The result of Eq. (4.8) is simple to implement numerically. For example, consider the
circular orbit used in the description of the Thomas precession in Handout 9. We
already have simple expressions in place for v and €,. All that remains to do is to
establish the value of 7 for which each null vector X intersects the particle worldline,
which is found numerically. One can then plot field lines for various values of the
angular velocity. These are shown in Figures 3 and 4, which display many interesting
features.
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y coordinate

y coordinate

Figure 3: Field lines of a rotating charge. The top diagram has o = 0.1 and the particle
velocity tanh(a) is low. A gentle wavy pattern of field lines is produced, characteristic
of electromagnetic waves. At intermediate velocities (bottom diagram, with a = 0.4)
a complicated structure emerges as the field lines start to concentrate together.
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y coordinate

x coordinate

Figure 4: Synchrotron Radiation. By « = 1 the field lines concentrate into pure
synchrotron pulses as the radiation is focussed into the direction of motion of the
particle.



