Physical Applications of Geometric Algebra

Examples 1 — Answers

1. Expand out the products and collect the terms.

2. The equation for U is
d? E
aU_ —U = —w?l,

ds®  2m

since I/ < 0 for a bound orbit. General solution is
U= A e[ws + By e—[ws ‘

Four real constants, as expected. At s = 0 want U? real and positive, so must have

Ay + Bg real. Also have
. dU lws —lws lws —lws
r:z;zZEUq:Zw[(Aoe — Bge ><Aoe + Bye >€1
— 90 <A(2) e?[ws N Bg e—2[w5> €

soat t =0, r& = —2w(A3 — Bi)es. So must also have Ag — By real. Hence both A
and By are real, with By > Ag. @ in —e; direction when s = 7 /(4w). At this point
height from e, axis is B — A2. Orbit is as follows:

Has semi-major axis a = 1[(By + Ag)* + (Bo — Ao)*] = B 4+ A and eccentricity

VIBG £ A5)" = (BS = A3)*] _ 240 Bo
B§ + Aj o

Invert to get

By + Ao = a(l +¢), By — Ao = va(l —¢).



Now get answer by re-expressing exponentials in terms of sin and cos.

3. Expand out to get

aaNb= L(aab— aba) = $(ba — ab)a = —aNba
Any vector perpendicular to plane anticommutes with a and b, so commutes past aAb.
4. (anb)-(aAb) = a-(a-bb—b*a) = (a-b)* — a®b* = —a® b? sin* ().
5. First establish that e;e; = les, ete. so that

eiNe; = leg€ijp, ek = —1e;NejNey,
Now kth component of axb is
abjeije = —I(a;e;)N(bjej)Nex = —T aNbNep = — (1 aNb)-ey.
Hence result. Move [ around using duality relations. Have
ax(bxc) = —a-(Ibxc) = —a-(bAc)

and

a-(bxc) =a-(—Ibne) = aNbAe T

6. Expanding gives
an(bAe) = i(abc — acb + bea — cba)
Antisymmetric on a and b because
abe — cba = (a-b+ aAb)c — c(b-a+ bAa) = anbe — cbNha
For a AbAc¢ want trivector part of abe. This is part equal to minus its reverse, so

aNbAe = 2[abe — (abe)™] = 2(abe — cba).

1 1
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Now have
8aAbAc = (ab— ba)c — 2acb + 2bca — ¢(ba — ab).
So, subtracting these,
6aNbAc = abe — bac — acb + bea — cba + cab + (—acb — abe + bea + cba)

and final term in brackets is zero.

7. Particle has # = v, with v? constant. Differentiate to get

d
—v? =200 =0

dt
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Figure 1: A cylinder, height %, radius a. Origin o at centre of mass. Radial distance

from centre axis r, 0 < r < a. Height from origin z, —h/2 < z < h/2

So

._1. _1. _ 1.
v—ﬁvvv—ﬁv/\vv— ﬁv/\v Y

which gives ) as term in brackets. Can add any multiple of [v. In 4-d, can have

1
Q=—ovAv+ B

2
where B is any bivector with B-v = 0 (a 3-space of possible bivectors).

8. Cylinder, uniform density p, dimensions and coordinates as in Fig 1. If {e.} are
principal axis, have

I([ek) = Zklek
ik = (—Tler)I(lex) = /d?’:sz(—[ek)-[x/\(x-(]ek))]

[ oltenen

With e3 the symmetry axis, have
. ‘o a

i3 =2mhp | r’dr=—M
0 2

Similarly, in perpendicular direction get, with ¢ angle in ejey plane,

Ma? N Mh?
4 12

=19 = /d3:1; p(r?sin®g + 2%) =

3



Now have

Mh? Ma?
12 (B—B/\€3€3)+ a

I(B)—11B+( 3—11)3/\6363 (B—|—B/\€3€3)

9. Have velocity v = Rz-Qp R + vo. Kinetic energy is
T = /d3:1; %,ov2 = %/d?’:z;p <vg + ZUO-(R:I;-QBE’) + (x-QB)2> )

First term is muv2/2 and second term vanishes because origin at centre of mass. For
final term use

(l"QB)Q = <$QB J}QB> == —<QB$$'QB> == —QB'[J}/\(J}'QB)]
Now have

T = imuvl — —/d P [z A(z-Qp)] = smug — 205 -I(Qp).

2

The minus sign arises because bivectors have negative square.

10. The equations of motion for a torque-free rigid body are
I(Op) = Qs xI(QB)
Introduce body angular momentum
I =Z(0p), Op =Z7'(I)

and write equations as

Get

and

d
dt

In second have used fact that Z(B) is time-independent and symmetric. But for bi-

—[II-Z74I0)] = 2I1-Z~Y(IT) = 2[Z~Y(IT) x I1)- Z~4(I1).

vectors A and B have
A-(AxB) = %<AQB — ABA)=0

since no grade-0 term present. Follows that both terms are conserved. First is mag-
nitude of the angular momentum bivector L = RIIR. Second, II-Z~*(II), is twice the
rotational energy (cf. p?/(2m)). Writing IT = II;7¢; get that
| | A V B
Hf + H% + H?,) = constant, — + — + — = constant.
Zl ZQ 13



First defines a sphere in II space. Second an ellipsoid. Paths in Il-space are orbits
formed from intersection of sphere and ellipsoid.

11. If aAb + eAd is a blade eA f, then
(aNb+ end)N(anb+ cAd) = 2aNbAeAd = (eNf)N(enf) = 0.
Conversely, if aAbAcAd = 0, then d must be linearly dependent on a, b and c. Write
d=aa+pb+ve
Get
aNb+ cNd = aNb+ cA(aa + pb) = (af/p + c)N(aa + pb)
which is a blade. If i = 0, result is aA (b — ac).

12. From basic axioms

Ar/\(BS/\Ct) — Ar/\<BsCt>s—|—t
= <Ar<BsCt>s—|—t>r—|—s—|—t
= <A7’Bsct>r—|—s—|—t
Now get associativity of exterior product from properties of geometric product.
13. One proof given in Handout 3. Second is to build up using
a-(ay ANM,)
= l[ (alM + (1) Myar) — (=1 a1 M, + (—=1)" M, a,)a]
=a-a3 M [al(aM + (=)' M,a) — (=1)" (aM, + (—=1)"" M, a)a,]
(a-M,).

Result then builds up inductively.

=a-a; M, —al/\

14. Can prove result geometrically. Another way is to look at image of m, which is
nmmmn = nmn. Angle with m is

m-(nmn) = (mnmn) = 2(m-n)* — (nmmn) = 2cos’d — 1 = cos(20)
so m is rotated by 26. To rotate a onto b, rotor is
R = 6_36/2 . ab=cos, B= a/Nb/ sinf.
Expanding out, get

aNb  2cos*(0/2) —aNb
sinf 2cos(0/2)

R = cos(0/2) —sin(0/2)

But

2COS2((9/2) =14cosd=1+a-d
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SO

Rzl—l—a-b—l—b/\a 1+ ba

21+ a-b)]'72 ~ 201+ a-b)]/?

15. Write B = éa and A = bé. Then
BA = ¢abe = (—aé)(—cb) = ab.
But @-b = cos(v), and aAb has orientation of /é. Hence
BA = cos(y) + sin(y)1¢ = eIt = el
Similarly, if || is length of arc between & and b, then
ib = cos |C| +sin |C]C' = ©
(Check orientation!) Now have
eC e B = abbeea

cca = 1

AAAAAA

Final gives

cos(y) = (e71%) = (e’ )

= — cos(a) cos() + sin(a) sin(ﬁ)@&}
= — cos(a) cos(f) + sin(a) sin(3) cos |C'].



