Physical Applications of
Geometric Algebra

Handout 8
Spacetime Algebra

The geometric algebra of spacetime is called the spacetime algebra or STA. This forms
the basis for most of the remainder of this course, where we will deal mainly with
applications of geometric algebra to relativistic physics and gravitation. The algebra is
constructed from four basis vectors, three spatial and one timelike. The spacelike and
timelike vectors have opposite signs for their squares. Rotors in this algebra provide
the simplest means of performing Lorentz transformations and help us to understand
the structure of the Lorentz group in more detail.

1 An Algebra for Spacetime

Special relativity is often introduced with the postulate that the speed of light is
constant for all observers. From this one deduces the Lorentz transformation law before,
finally, the concept of unifying space and time into a single spacetime is introduced.
This partly mirrors the historical development of relativity. We will not follow this
order. Instead, we jump straight to spacetime as the appropriate arena for relativistic
physics. Our aim then is to construct the geometric algebra of spacetime. We start by
recalling that the invariant interval of special relativity is

2

s? =22 — P

—y? =22 (1.1)

This is the ‘particle physics’ choice of signature. General relativists often flip all the
signs. We work throughout in units where ¢=1. It is clear that we must build our
algebra from four vectors {eg, ¢;},7 = 1...3 with the following properties:

2
€y = 1, €or€; = 0, €;-€; = _52']'- (12)
These are summarised as

eue, =diag(+ — — =), p,v=0...3. (1.3)



Handout 8 Spacetime Algebra 2

1.1 The Bivector Algebra

There are 4 - 3/2 = 6 bivectors in our algebra. These fall into two classes; those that
contain a timelike component (e.g. e;Aep), and those that do not (e.g. e;Ae;). For any
pair of vectors a and b with a-b = 0 we have

(a/\b)2 = abab = —abba = —a*b>. (1.4)

The two types of bivectors therefore have different signs of their squares. First, we
have

(62'/\6]‘)2 == —62'26]‘2 == —1, (15)

which is the familiar result for Fuclidean bivectors. Fach of these generate rotations
in a plane. For bivectors containing a timelike component, however, we have

(e;Neo)? = —e’ep® = +1. (1.6)

Bivectors with positive square have a number of new properties. One immediate result
we notice, for example, is that
2 43
e = 14 aejep + o1 + 3y 10 +
= ch(a) + sh(a)e;eq. (1.7)

This shows us that we are dealing with hyperbolic geometry. This will prove crucial
to our treatment of Lorentz transformations. We have started to employ the useful
abbreviations

ch(a) = cosh «, sh(a) = sinh a, th(a) = tanh . (1.8)

1.2 The Pseudoscalar

We define the pseudoscalar [ by
I = €p€1€3€3. (19)

This is still taken to be right-handed. Projecting down the e3 axis, for example, the set
{€o, €1, €2} form a right-handed triple (see Fig. 1). We have to be careful in applying
these definitions, because we traditionally draw our spacetime diagrams with the time
axis vertical. For these planes the ‘right-handed” volume element is, for example, e;eq.
The reasons for our convention for I will emerge soon.

Since [ is grade 4, it has
j = €3€3€1€g = 1. (110)
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Figure 1: Orientation of I. The combination epejeqes is defined to be right-handed.
Projecting down different axes gives the frames pictured. Care is required because
spacetime diagrams traditionally have the t-axis vertical.

This makes it easy to compute the square of [ :

[2 = [j = (60616263)(63626160) = —1. (111)

Multiplication of a bivector by [ results in a multivector of grade 4 — 2 = 2, so re-
turns another bivector. This provides a map between the positive and negative square
bivectors, e.g.

[6160 = 6160[ = €1€g€p€t1€2€3 = —E€2€3. (112)
If we define B; = e;eq then the bivector algebra can be written
BZ'XB]‘ = €k [Bk
([BZ)X([B]) = —€k [Bk (113)
([BZ) ><B]‘ = _Q’jkBk-

As well as the four vectors, we also have four trivectors in our algebra. These are
interchanged by a duality transformation,

€1€9€3 = €p€p€t1€r€3 = 60[ = —160. (114)

Note that [ anticommutes with vectors and trivectors, as we are in a space of even
dimensions. As always, I commutes with all even-grade multivectors.

1.3 The Spacetime algebra

In many applications we are interested in physics in a single preferred orthonormal
frame. We denote this frame by {v,}. Putting the preceding together, we arrive at an
algebra with 16 terms:

1 vt A {1y} I (1.15)

1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar
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This is the spacetime algebra or STA. We also introduce the following notation for the
bivectors:

oO; = Y:%. (116)

In the literature the symbol ¢ is often used for the pseudoscalar. We have departed from
this practice to avoid confusion with the 7 of quantum theory. Using the latter symbol
presents a potential problem because of the fact that the pseudoscalar anticommutes
with vectors.

1.4 The Dirac Matrix Algebra

The vector generators of the STA satisfy

VYo VoV = 277;;1/ (117)

These are the defining relations of the Dirac matrix algebra, though without an identity
matrix on the right-hand side. It follows that the Dirac matrices define a representation
of the STA. This also explains our notation of writing {v,} for an orthonormal frame.
But it must be remembered that the {~,} are basis vectors, not a set of matrices in
‘isospace’.

2 Frames and Trajectories

Suppose that (A) describes a curve in spacetime. The tangent vector to the curve is

,_ 9z(})
T oA

(2.1)

X

There are two important cases to consider:

Timelike, 2/ > 0

For these we introduce the preferred parameter along the curve, 7, defined so that
v=0x =1, v? = 1. (2.2)

The parameter 7 is the proper time for the curve, and an observer moving along the
curve measures this time. The unit timelike vector v then defines the instantaneous
rest frame.
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Null, 2”* =0

This defines a null trajectory, which are the paths taken by photons and other massless
particles. There is no preferred parameter along these curves, and the proper distance
(or time) measured along them is 0. Photons do still carry an intrinsic clock (their
frequency), but this can tick at an arbitrary rate.

2.1 Relative Vectors

Now suppose that we are an observer on a timelike path with instantaneous velocity
v. What sort of things do we measure? First we construct a frame of rest vectors {e;}
perpendicular to v. We also take the point on the worldline as our origin. In this frame
a general event x will have time coordinate

t=xwv (2.3)
and spatial coordinates
't =x-e (2.4)

Suppose now that the event is a point on the worldline of an object at rest in our
frame. The 3-d vector to this object is

e =x-ete, —x-eeg=x—1VvV=2TAVV. (2.5)

Wedging with v projects onto the components of the vector = in the rest frame of v.
The key quantity is the spacetime bivector  Av. We call this the relative vector and
write

x = zAv. (2.6)
With these definitions we have
o=z v+zAv=1t+x. (2.7)
The invariant distance now decomposes as

2? = zvvzr = (z-v 4+ 2 Av)(z-v+ vAT)

—(tte)(l—)=1 2 (28)

recovering the usual result. This is built into the definition of the STA.
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2.2 The Even Subalgebra

Each observer sees a set of relative vectors, which we model as spacetime bivectors.
What algebraic properties do these have? To simplify things, we take the timelike
velocity vector to be 79 so that the relative vectors are given by o; = ~;v. These
satisfy

o:0; = (V077 + Vivvive) = (=YY — Vi) = 6y (2.9)

These act as vector generators for a 3-d algebra. This is the geometric algebra of the
3-d relative space in the rest frame defined by ~y. Furthermore, the volume element of
this algebra is

010303 = (117)(127%)(137%0) = —71707273 = 1, (2.10)
so this subalgebra shares the same pseudoscalar as spacetime. Of course, we still have
yoio; —0joi) = cjloy, (2.11)

so that both relative vectors and relative bivectors are spacetime bivectors. We have
projected everything onto the even subalgebra of the STA.

1 {oi} {lo;} 1 3—d

The 6 spacetime bivectors get split into relative vectors and relative bivectors. This
split is observer dependent.

2.3 Conventions

Spacetime bivectors which are also used as relative vectors are written in bold. This
is the only place we use bolds for vectors. (In written work we use a curly underline).
It is not strictly necessary to put the {o;} in bold, though for consistency we have.

There is a potential ambiguity here - how are we to interpret the expression a Ab?
Our convention is that if all of the terms in an expression are bold, the dot and wedge
symbols drop down to their 3-d meaning, otherwise they take their spacetime definition.
This works pretty well in practice.
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2.4 Examples
i. Velocity
Suppose that an observer with constant velocity v measures the relative velocity of a
particle with proper velocity u(7), u? = 1. We have
uv = Oy (x(7)v) = 0-(t + &), (2.12)
so that
O:t = u-v. (2.13)

The relative velocity is therefore

Jde Jdxdr ulv
Ol TH b T, (2:14)

This construction is familiar — it is precisely the one discovered in the context of

projective geometry! We have also ensured that the projective vectors have positive
square. This turns out to be very convenient for applications in computer vision, where
we now routinely perform calculations using the ‘relativistic’ STA!

ii. Momentum and Wave Vectors
Now suppose we observe a particle with energy-momentum p. The energy measured is
p-v, and the relative momentum is pAv, so
pv =p-v+pAv=F+p. (2.15)
From this we recover the invariant
m? = p* = povp = (E + p)(E — p) = £*? — p*. (2.16)
Similarly, for a photon with wave-vector k we have
kv=Fkwv+kAv=w+k, (2.17)
and for photons in empty space k* = 0 so
0 =kvvk = (w+ k)(w—k) = w? — k% (2.18)
This recovers the relation |k| = w, which holds in all frames.

This idea of projecting onto the even subalgebra to study physics in a rest frame is a
very powerful technique. Our next task is to study Lorentz transformations to see how
different observers see the same physics.
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3 Lorentz Transformations

Lorentz Transformations are usually expressed in the form of a coordinate transform-
ation, e.g.

X' =q(x=pt) ' =(t=PBx)
x=(x+ ) t=~(t + Bx) (3.1)

where v = (1 — 8%)7"/% and 3 is the scalar velocity in units of e. Our first task is
to manipulate these relations into a transformation law for vectors. The vector = has
been decomposed in two frames, {e,} and {¢}}, so that

r=a'e, = aMe). (3.2)
We then have, for example
t=¢x, t'=e" 2. (3.3)

Concentrating on the 0, 1, components we have
teg + xep = t'ey + x'él, (3.4)
and from this we derive the vector relations
co = (o + Ber), € =7(er + Peo). (3.5)

These define the new frame in terms of the old.

3.1 Rotor Form of a Lorentz Transformation

We saw earlier that bivectors with positive square lead to hyperbolic geometry. This
suggests that we introduce an ‘angle’ o with

tanha = 3, (8 <1), (3.6)
so that
y=(1- tanh2a)_1/2 = cosha. (3.7)
The vector e is now

ey, = ch(a)eg+ sh(a)e

= (Ch(Oé) —I_ Sh(Oé)eufo)eo = ea €1€0 €o,

(3.8)
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where we have expressed the scalar + bivector as an exponential. Similarly, we have
e; = ch(a)e; + sh(a)eg = e 10 ¢, (3.9)

Now recall that these are just two of four frame vectors, with the other pair untouched.
The relationship between the two frames is simply expressed by

e, = Reufx’, e = Re*R, R= e creo/2 (3.10)

The same rotor prescription works for boosts as well as rotations! Now we really are
treating spacetime as a unified entity.

3.2 Examples
i. Addition of Velocities

As a simple example, suppose that we are in a frame with basis vectors {eg, ¢;}. We
observe two objects flying apart with 4-velocities

aj1€1€0

vy = e €0, vy = e Y2610 ¢ (3.11)

What is the relative velocity they see for each other? We form

v AUy <e(0‘1 +az)eren )2 sinh(ag 4 ag)ereg

= = . 3.12
v+ Vs <e(a1 + az)ereg Yo cosh(ay + az) ( )
Both observers therefore measure a relative velocity of
tanh tanh
tanh(aq + ay) = anhay + tanhay (3.13)

1 — tanheo; tanhasy

Addition of velocities is achieved by adding hyperbolic angles, which recovers the fa-
miliar formula.

ii. Photons and Redshifts

Often in studying the properties of electromagnetic waves we use the geometric optics
approximation and work directly with null vectors k. This provides for simple formulae
for Doppler shifts and aberration. Suppose that two particles follow different worldlines
and that particle 1 emits a photon which is received by particle 2 (see Fig. 2). The
frequency seen by particle 1 is w; = vy-k, and by particle 2 is wy = vy-k. The ratio of
these describes the Doppler effect, often expressed as a redshift, z:

142 =w/w;. (3.14)
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U2

Figure 2: Photon Emission and Absorption. A photon is emitted by particle 1 and
received by particle 2.

This can be applied in many ways. For example, suppose that the emitter is receding
in the ¢; direction, and vy = ¢5. We have

k= wi(eg+ e1), vy = cosha ¢y — sinha ey, (3.15)
so that
T wa(cosha + sinhea) _ (3.16)
w2

This transformation of a null frame producing a dilation is an example of the type
of rotor transformation of the balanced algebra G, , considered in Handout 6. The
velocity of the emitter in the eg frame is tanhea, and it is easy to check that

1 4+ tanhao 1/2
«
= —- 1
© (1 — tanha) ’ (3.17)

recovering the standard expression for the relativistic Doppler effect. Aberration for-
mulae can be obtained in the same way.

4 The Lorentz Group

The full Lorentz group consists of the transformation group for vectors which pre-
serves lengths and angles. These include reflections and rotations. A reflection in the
hyperplane perpendicular to n is achieved by

a+— —nan_ . (4.1)

The n~! is necessary to accommodate both timelike n? > 0 and spacelike n? < 0

cases. (We cannot have null n). A timelike n generates time-reversal transformations,
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whereas spacelike reflections preserve time ordering. Pairs of either of these result in a
transformation which preserves time ordering. However, a combination of one spacelike
and one timelike reflection does not preserve the time ordering. The full Lorentz group
therefore contains 4 sectors.

Space Reflection
1 11
Proper I with space
Orthochronous reflection
111 1V
Time reversal I with time I with
reversal a— —a

4.1 STA Description

The structure of the Lorentz group is easily understood in the STA. First we combine
even numbers of reflections, producing a transformation of the form

a s papl, (4.2)
where 1 is an even multivector. This expression is currently too general, as we have

not ensured that the right-hand side is a vector. To see how to do this we decompose
¥ into invariant terms. We first note that

Vo = (i) (4.3)

so ) is even-grade and equal to its own reverse. It can therefore only contain a scalar
and a pseudoscalar,

Y = ar + Tay = pel? (4.4)
where p # 0 in order for ¥»~! to exist. We can now define a rotor R by
R = (pel? )12, (45)
so that
Ri = gi(pel? )t = 1, (16)
as required. We now have
b = ,01/2 ol8/2 R, p1 = ,0_1/2 o—108/2 R (4.7)
and our general transformation becomes
ars P2 Rae 102 = 1P Rak. (4.8)

The term RaR is necessarily a vector (equal to its own reverse), so we must restrict 3
to either 0 or 7, leaving the transformation

a— +RaR. (4.9)
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4.2 The Restricted Lorentz Group

The transformation a — RaR preserves causal ordering as well as parity. Transforma-
tions of this type are called ‘proper orthochronous’ transformations. We can prove that
rotor driven transformations are proper orthochronous by starting with the velocity 7o
and transforming it to v = Ry R. We need the 4, component of v to be positive, that
is

Yo-v = (o R k) > 0. (4.10)
Decomposing in the 7o frame we can write
R=a+a+1b+1Ij (4.11)
and we find that
(oRyR) = o+ a® +b* + 37 > 0 (4.12)

as required. Qur rotor transformation law describes the group of proper orthochronous
transformations, often called the restricted Lorentz group. These are the transforma-
tions of most physical relevance. The other sign, corresponding to § = 7 in Eq. (4.8),
gives class I'V transformations.



