Physical Applications of
Geometric Algebra

Handout 2
Geometric Algebra of 3-d Space

The geometric algebra (GA) of 3-d space is a remarkably powerful tool for solving
problems in geometry and classical mechanics. It describes vectors, planes and volumes
in a single algebra, which contains all of the familiar vector operations for 3-d space.
These include the vector cross product, which is revealed as a disguised form of bivector.
The algebra provides a very clear and compact method for encoding rotations, which
is considerably more powerful than working with matrices. An example of the power
of the GA approach is provided by rigid body mechanics, where it provides a simplified
treatment of a spinning top.

The webpage for this course is www.mrao.cam.ac.uk/~clifford/ptIIIlcourse/.

1 Geometric Algebra in 3-d

In Lecture 1 we constructed the geometric algebra of a 2-d plane. We now add a third
vector ez to our 2-d set {e1,ey}. All three vectors are assumed to be orthonormal,
so they all anticommute. From these 3 basis vectors, we can generate 3 independent
bivectors: ejeq, eaez and ezeq. This is the expected number of independent planes in
3-d space.

Our expanded algebra gives us a number of new products to consider. The first is the
product of a bivector and an orthogonal vector,

(61/\62)63 — €1€3¢€3. (11)

This corresponds to sweeping the bivector e; Aey along the vector es. the result is a
3-dimensional volume element and is called a trivector. This has grade-3, where the
word ‘grade’ refers to the number of independent vectors forming the object. The term
‘grade’ is preferred to ‘dimension’ as the latter is reserved for the size of a linear space.

We continue to use the wedge symbol for the operation of sweeping one element along
another. Given three vectors, a, b and ¢, the trivector aAbAc is formed by sweeping
aNb along ¢ (see Fig. 1). The same result is obtained by sweeping b A ¢ along a. The
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Figure 1: The Trivector. The result of sweeping a Ab along ¢ is a directed volume, or
trivector. The same trivector is obtained by sweeping bAc¢ along a.

mathematical expression of this is that the outer product is associative:
(aAb)ANec = aNn(bAe) = aNbAc. (1.2)

The other main property of the outer product is that it is antisymmetric on every pair
of vectors,

aNbAc = —bNaNe = chalb, etc. (1.3)

This is because swapping any two vectors reverses the orientation of the product.

One can keep forming exterior products of independent vectors to form a wealth of
higher-grade objects. In 3-d, however, there are no further directions to use and
trivectors are unique up to scale (or volume) and handedness. Our 3-d algebra is
therefore spanned by

1 {e:} {eiNe;} e1NegNes
1 scalar 3 vectors 3 bivectors 1 trivector

(1.4)

These define a linear space of dimension 8 = 2. We call this algebra G3. Notice that
the dimesnions of each subspace are given by the binomial coefficients.

1.1 Vectors and Bivectors

Each of the basis bivectors shares the properties of the 2-d bivector studied in Lecture 1.
In particular,

(e169)? = (eae3)* = (eze1)* = —1 (1.5)

and each bivector generates 90° rotations in its own plane. So, for example, we recall
that

61(61/\62) == 61(6162) = €9, (16)
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which returns a vector. The geometric product for vectors extends to all objects in the
algebra, so we can form expressions such as aB, where B is a bivector. But we have
also just seen that ej(ez/Aes) is a trivector, so the result of the product aB can clearly
contain both vector and trivector terms.

To understand the properties of the product aB we first decompose @ into terms in
and out of the plane:

@]

a:a”—l—aL

a

We can now write aB = (a + a1 )B. Suppose that we also write
B = a||/\b (1.7)
where b is orthogonal to a) in the B plane. We see that
aHB = aH(aH/\b) = a”(a”b) = a”zb (18)
which is a vector, whereas
a1 B = ay(aAb) = ag NayAb (1.9)
which is a trivector. We therefore write
aB=aB+anB (1.10)

where the dot is generalised to mean the lowest grade part of the result, while the
wedge means the highest grade part of the result.

From Eq. (1.8) we see that the a-B = |- B term projects onto the component of a in
the plane, and then rotates this through 90° and dilates by the magnitude of B. We
also see that

a-B= a”zb = —(aqyb)a) = —B-a, (1.11)

so the dot product between a vector and a bivector is antisymmetric. Similarly, from
Eq. (1.9), the aA B term projects onto the component perpendicular to the plane, and
returns a trivector. This term is symmetric

aNB = aiNayAb = ayAbAar = BAa. (1.12)
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The separate vector and trivector terms are wrapped up in the single geometric product
aB. Again, the advantage of this is that the product is invertible. As with vectors, we
can now write the separate dot and wedge products in terms of the geometric product

a-B =
aNB =

(aB — Ba)
(aB + Ba). (1.13)

B[ RO | =

1.2 The Bivector Algebra

Our three independent bivectors also give us a further new product to consider. When
multiplying two bivectors we find, for example, that

(61/\62)(62/\63) = €1€2€2€3 = €1€3, (114)
resulting in a third bivector. We also find that
(62/\63)(61/\62) = €3€3€3€1 — €3€] — —€1€3, (115)

so the product is antisymmetric. The symmetric contribution vanishes because the two
planes are perpendicular. If we introduce the following labelling for the basis bivectors:

Bl = €3€3, B2 = €3€q, B3 — €1€3 (116)
we find that the commutator satisfies
BZ'B]‘ — B]BZ == —262']‘kBk. (117)

Not surprisingly, this algebra is closely linked to 3-d rotations, and will be familiar from
the quantum theory of angular momentum. The commutator of 2 bivectors always
results in a third bivector (or zero). We will learn more about this in later lectures.
We also now have B;* = By? = Bs* = —1, and BB, = —B,B; ete. This recovers the

quaternion algebra 2* = 3% = k* = —1, i = —ji. Quaterions were bivectors all along!

1.3 Properties of The Trivector

The trivector represents the unique volume element in 3-d. It is the highest grade
element in the algebra and again is called the pseudoscalar, or directed volume element.
The latter name is more accurate, but the former is seen more often. (Though be
careful of this usage — pseudoscalar can mean different things in different contexts).
To simplify, we introduce the symbol I,

I = €1€9€3. (118)
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As in 2-d, the pseudoscalar is defined by convention to be right-handed. This means
that in the expression I = e; AeyAes, the {e;,eq,e3} frame is right-handed. If a
left-handed set of orthonormal vectors is multiplied together the result is —1.

Now consider the product of a vector and the pseudoscalar,

€3

61[ = 61(616263) = €3€3 62/\63

€1

This returns a bivector — the plane perpendicular to the original vector. The product
of a grade-1 vector with the grade-3 pseudoscalar is therefore a grade-2 bivector. Mul-
tiplying from the left we find that

]61 — €1€2€3€1 — —€1€9€1€3 = €3€3. (119)

The result is therefore independent of order — the pseudoscalar commutes with all
vectors in 3-d, Ta = al. It follows that I commutes with all elements in the algebra.
This is always the case for the pseudoscalar in spaces of odd dimension. In even
dimensions, the pseudoscalar anticommutes with all vectors, as we have already seen

in 2-d.

We can now express each of our basis bivectors as the product of the pseudoscalar and
a dual vector,

€16y = [63, €o€3 — [61, €361 = ]62. (120)

This operation of multiplying by the pseudoscalar is called a duality transformation.
Again, we can write

al =a-T (1.21)

with the dot used to denote the lowest grade term in the product. The result of this
can be understood as a projection — projecting onto the component of [ perpendicular
to a.

We next form the square of the pseudoscalar

[2 = €1€9€3€1€2€3 = €1€2€1€9 = —1. (122)
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So the pseudoscalar commutes with all elements and squares to —1. It is therefore a
further candidate for a unit imaginary. In some physical applications this is the correct
one to use, whereas for others it is one of the bivectors. These different possibilities
give us a much richer language and provide a number of geometric insights.

Finally, we consider the product of a bivector and the pseudoscalar:
[(61/\62) == [61626363 == ][63 = —€3 (123)

So the result of the product of I with the bivector formed from e; and e, is —es, that
is, minus the vector perpendicular to the e; Aes plane. This affords a definition of the
vector cross product in 3-d as

axb=—1I(aNb) = —TaNb. (1.24)

The bold x symbol is used here as we will soon encounter a better use for the x symbol.
We have also started to employ the useful operator ordering convention that, in the
absence of brackets, dot and wedge products are performed before geometric products.
This cleans up expressions by enabling us to remove unnecessary brackets.

Equation (1.24) shows how the cross product is a bivector in disguise, the bivector
being mapped to a vector by a duality operation. It is also now clear why the product
only exists in 3-d — this is the only space for which the dual of a bivector is a vector.
We will have little further use for the cross product and will rarely employ it from now
on. This means we can also do away with the awkward distinction between axial and
polar vectors. Instead we just talk of vectors and bivectors.

1.4 Reversion

An important operation in GA is that of reversing the order of vectors in any product.
This is denoted with a tilde, A. Scalars and vectors are invariant under reversion, but
bivectors change sign,

(e1€2)™ = exe; = —eqea. (1.25)
Similarly, we see that
[ = ese9e; = €16369 = —e1e963 = —1. (1.26)
A general multivector in 3-d can be written
M=oa+a+ B+p31. (1.27)

From the above we see that

M=a+a—B-{l. (1.28)
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1.5 Aside — Quantum Spin

The full geometric product for vectors can now be written
€i€; = €;°€5 + 62'/\6]‘ == 52’]’ + [cijkek. (129)

This should be familiar — it is the Pauli algebra of quantum mechanics! This suggests
that the matrix structure of spin in quantum theory might have a more geometric
origin, and also calls into question one or two of the interpretations currently attached
to the Pauli matrix operators (though this is controversial). The relation also shows
us that the Pauli matrices form a matrix representation of G3, providing an alternative
way of performing multivector manipulations. The matrix method is usually slower,
however.

2 Rotations

Recall from Lecture 1 that in 2-d a vector can be rotated through # in the eje; plane
by any one of the expressions

s q = 6—61629 a0 — erealdl _ 6—61629/2 aeelezﬁ/Q ‘ (2‘1)

ae
We now want to find a version of this formula appropriate for 3-d. This is a problem
with which Hamilton struggled for many years. Any of the above formulae will do
for rotating a vector lying in the e;e; plane, but we also require that any component
outside the plane be unaffected. The key to finding the correct formula is to note that
ez commutes with ejez, so

o—€1€20 es = [cos(f) —sin(f)erez)es
= es(cos(f) — sin(f)erez)
= ez el (2.2)

This makes it clear that only the intermediate, double-sided formula has all of the
required properties. It rotates vectorsin the eje; plane and leaves vectors perpendicular
to the plane untouched:

61629/2 —61629/2 661629/2

6—61629/2 €5 e

= e3. (2.3)

= €3¢

We therefore arrive at the result that in 3-d a vector is rotated through an angle 8 in

the B plane (Bz =—1) by

ar d = RaR, R = B2 (2.4)
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D

a a’

Figure 2: The GA description of a rotation in 3D. The vector a is rotated to @' = RaR.
The rotor R is defined by R = exp(—B6/2) which describes the rotation directly in
terms of the plane and angle.

(see Fig. 2). We will derive this result from an alternative route in Lecture 3. The
object R is called a rotor. It satisfies the normalisation condition

RE=RR=1. (2.5)

So R is formed from the scalar + bivector algebra with one constraint, leaving 3 degrees
of freedom, as expected for a general rotation.

Now suppose that the two vectors forming the bivector B = aAb are both rotated.
What is the expression for the resulting bivector? To find this we form

B'=d AV = Ld'V —bd) = L(RaRRbR — RbRRaR)
= Y(Rabl — RbaR) = LR(ab— ba)R = RaAblt = RBR. (2.6)
Bivectors are rotated using precisely the same formula as vectors! The same turns out

to be true for all multivectors. This is one of the most attractive features of geometric
algebra.

3 Angular Momentum

Replacing axial vectors with bivectors forces us to reassess one of the fundamental
concepts of mechanics — angular momentum. The angular momentum of a particle
with momentum p and position vector & from some origin is usually defined in 3-d in
terms of the cross product

L = xxp. (3.1)
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But do we want to keep this definition? Suppose we were formulating dynamics entirely
in 2-d. Angular momentum is still a sensible notion, but it is certainly not a vector
any more, as there is nowhere for it to point. It is clear then that the correct concept
for angular momentum is a bivector, so we replace the above definition by

L = xAp. (3.2)

This replaces the clumsy notion of angular momentum as an ‘axial vector’ with an
expression that directly encodes our understanding of angular momentum in terms of
a particle sweeping out a plane.

The particle sweeps
out the plane L = zAp

4 Rigid Body Dynamics

We are now in a position to give our first major application of GA. Suppose that a
rigid body is moving through space. The vector position of points in the moving body
y(1) can be related back to the equivalent positions in a ‘reference’ body, fixed for all
time.

R(1)

zo(t)

Here x is the position in space of the centre of mass. The vectors y(¢) and x are
related by

y(t) = R R(1) + ao(1) (1.1)

This places all of the rotational motion in the time-dependent rotor R(t).
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4.1 Angular Velocity

With angular momentum described as a bivector, angular velocity must be as well.
This arises naturally in the rotor description. Suppose that the frame of vectors { f;}
is rotating in space. These can be related to a fixed orthonormal frame {e;} by

Fult) = R(t)erR(1). (4.2)

(These frames can be chosen to be the body and space principal axes of a rigid body,
though the formulae below are general.) The angular momentum vector w is tradition-
ally defined by the formula

fe=wxfi=—Twhfy = (—1w)-fi. (4.3)
We therefore introduce the (space) angular-velocity bivector
QS = Jw. (44)

The sign ensures that the angular-velocity bivector has the orientation implied by the
rotation, as is easily seen for the case of motion about the w = e3 axis.

Qs has the orientation of fl/\fl.
It must therefore have orientation
+e;Aey when w = es.

We next look at the time dependence,
fo = Replt + RenlR = REfy + fiRE. (4.5)
From the normalisation equation RR = 1 we see that
0= d(RR) = RR+ RR. (4.6)
Tt follows that
RR=—RR = —(RR)™ (4.7)

since the order of differentiation and reversion is interchangeable. The quantity RR is
equal to minus its own reverse and has even grade, so must be a pure bivector. The
equation for f; now becomes

fi = RRf, — fuRR = 2RR)- . (4.8)
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Comparing with Eq. (4.3) and Eq. (4.4) we see that 2R R must equal minus the angular
velocity bivector (g,

2RR = —Qs. (4.9)
The dynamics therefore reduces to the single rotor equation

k=-105R. (4.10)
The reversed form is also useful,

R=L1R0s. (4.11)

Equations like these are very common in physics, and are much easier to solve than
their matrix counterparts. We will see many further examples in later lectures.

The equations can be expressed in terms of either the ‘space’ (0g or ‘body’ Qg angular
velocities. The body angular velocity is the bivector Qg expressed back in the fixed
reference copy. The two are related by

Qs = ROBR. (4.12)
In terms of these we have
R=-10sR=—1R0s and R=104R. (4.13)

As an elementary example, suppose that the body is rotating on a fixed axle, so that
s is a fixed constant. The rotor equation then integrates immediately to give

R(t) = e=%1/2 R(0) (4.14)

which is the rotor for a constant frequency rotation in the positive sense in the Qg
plane.

4.2 The Inertia Tensor

Suppose now that the rigid body has density p = p(x). The position vector = is taken
relative to the centre of mass, so we have

/d3:1;,0 =m, and /d3:1; pr = 0. (4.15)
The velocity of the point y = Rz R + xq is

v(t) = R:z;]%—l—Rx]%—l—:iio
= —%RQB:I;E’—I—%RJ;QBE)—I—UO
= Rua-Qp R+ v (4.16)
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Figure 3: The Inertia Tensor. The inertia tensor Z(B) is a linear function mapping its
bivector argument B onto a bivector. It returns the total angular momentum about
the centre of mass for rotation in the B plane.

where vy is the velocity of the centre of mass. Again we have suppressed unnecessary
brackets to write Ra-Qp R in place of R(z-Qp)R.

The quantity we require is the angular momentum bivector L for the body about its
centre of mass. We therefore form

L = /dS:I;p(y—xo)/\v

= /dSJ},O(RJ}é)/\(RJ}'QB R+ Vo)

= R (/ d3x,oxA(x-QB)> R (4.17)

We now introduce the inertia tensor Z(B), defined by

I(B) = /d?’:z;p:z;/\(:zj-B). (4.18)

This is a linear function mapping bivectors to bivectors. (Linear functions will be dealt
with in more detail in lecture 5). This replaces the idea of the inertia tensor mapping
vectors to vectors. Again this accords well with our geometrical intuition of this tensor
(see Fig. (3)). If the body rotates in the B plane, with rotation rate fixed by |B|, then
the momentum denisty is pz-B. The angular momentum density bivector is therefore
zA(pz-B). Integrating this over the entire body returns the total angular momentum
bivector for rotation in the B plane. In general the result will not be the same plane
as B, but it will be if B is perpendicular to one of the principal axes.

The inertia tensor is constructed from the point of view of the fixed body. The space
angular momentum requires a further rotation,

L =RI(0s)R. (4.19)
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The equations of motion are L = T, where T is the external torque (also a bivector).
The inertia tensor is time-independent, as it only refers to the fixed ‘reference’ copy of
the the rigid body, so we find that

I = RI(Qp)R+ RI(M)E + RI(O)R
= R[Z(2p) — §0T(0p) + 3T(0p)02p] R
= R[I(QB) — QpxI(0B)]R. (4.20)
Here we have introduced the extremely useful commutator product

AxB = YAB - BA). (4.21)

1
2

There should be little potential for confusion with the cross product, axb, as we have
eliminated any need for the latter. The torque-free equation L. = 0 reduces to

T(0p) — Qs xI(Qp) = 0. (4.22)

We usually align our body frame {e;} with the principal axes of the rigid body. If the
principal moments of inertia are 15,k = 1...3, we then have

QB = Zwk[ek, QS == Zwk[fk (423)
k k

and

k

Expanding out Eq. (4.22) recovers the Euler equations in component form.

4.3 Example — The Symmetric Top

We will now work through an example to show how the GA approach can simplify
the steps to finding a solution. Suppose the body has two equal moments of inertia,
i1 = 1y # 13. We can write

T(B) = i1B + (i3 — i1)(BAes)es, (4.25)

where we have used the fact BAes is a trivector to write the final term as a geometric
product (BAes)es. It follows that

I(Op) = Qe xI(Qp) = (is — 1) x [(Qp Aes)es). (4.26)
But since 2 Aes is a trivector, we can use the result that

Bx(la)=3(Bla—1aB)= —aN(IB) (4.27)

1
2
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to arrive at
T(Qp) = —(is — i1)esA[(Qp Aes)Qp]. (4.28)
It follows that
esNI(Qp) = iswsl = —(is — 11 )esAesA[(QpAes)Qp] = 0, (4.29)

which shows that ws is a constant. This ability to deduce useful consequences without
dropping down to the individual component equations becomes ever more valuable as
the complexity of the system increases.

Next we use the result that

iIQB = I(QB) - (13 - il)(QBAeg)eg = I(QB) —|— (Zl - i3)(4)3[€3 (430)
to write
~ 1 1 — I3 ~
QS == RQBR == —L + , W3R[€33. (431)
(A (A
Our rotor equation now becomes
. 1
(3]

We therefore define two constant precession rates, €; and 2., acting to the left and
right of R:
1 11— 13
Q[ = ,—L, Qr = W3 , ]63. (433)

(3] (3]

In terms of these the rotor equation becomes
R=-10R - 1RQ,, (4.34)
which integrates immediately to give

R(t) = exp(—3Ut) R(0) exp(—3Q,t). (4.35)
This fully describes the motion of a symmetric top. It shows that there is an ‘internal’
rotation in the ejey plane (a symmetry of the body). This is responsible for the
precession of a symmetric top. The resultant body is then rotated in the plane of its
angular momentum.



