Physical Applications of Geometric Algebra

Examples 2 — Answers

1.

Bx(MN)=LBMN — MNB)
BMN — MBN + MBN — MNB)

=BxMN+ MBxN

3
3

Hence

Bx(anA,) = %Bx [aA, + (—1)"A.d]
= %[B-a A +aBxA, +(-1)BxA,a+(—1)"A, B-d
=(B-a)NA, + aN(BxA,),
since B x A, could only contain terms of grade r — 2, r and r + 2. This proves that if

BxA, has grade r, then Bx A, has grade r+ 1. But for r = 1 know that Bxa; = B-a;
is a vector, grade 1. Hence result true for all grades.

2. Expanding to second order in e, get

2
€ €
Ry =1— §B3 + §B32
2
=1- %[(31 + By — %Bz x By) + %(312 + B1B; + B; By + By?)
2
= 1= S(Bi+ Ba) + (B +2B,By + BY)

¢ 62 ¢ 62
— (1 - §B2 —|— §B22> (1 — §B1 —|— §B12> — Rle.

3. Any associative algebra satisfies the Jacobi identity,

(AXB)xC+ (CxA)xB+ (BxC)xA
:i[(AB — BA)C —C(AB—- BA)4+ (CA—- AC)B— B(CA—- AC)
+(BC —-CB)A— A(BC -CB)]=0.
4. Have B; x By, = C;kBi. For 3-d rotations take B; = [¢;. Have
B]‘ ><Bk = —ej/\ek = —[qjkei = _GijkBi

Hence C;k = —€jk-

5. Fasiest to form geometric products and pick off bivector parts. To get a non-zero
commutator between blades, they must share a common vector. Form (i,7 # 1)

Eyx By = (Bylg)e = ((ees + fufi)(ewe + fifi))e = —(eiej + fifi)e = —Eij

1



Also find that
By x Iy = —F;, Fuix by =—FE;
and

EMXJ1:—F12'7 FiixJy = By Jix‘]]:()‘

6. (Use ¢; instead of z;). Have

r=piei+qfi, = apiei + aq; f;.

Now a-Vp; = a-(Vp;) = a-e;, with similar for f;, so
, 1
fla) =a-Va' = —a-e; ¢, + aa-f; f;.
el
Hence
1
f(61 /\fl) = 561/\(0[.][‘1) = elfl, etc.

Since V has same dimensions as 1/, the equation # = VH-J tells us that z* has

dimensions of energy x time. Hence x has dimensions of kg1/2 ms~ /2%

7. Extension of reflection to grade r is
n(A,) = (—nan)A(—nazn)A---A(—na,n) = (—=1)"nAn

In even dimensions, get n(/) = nln = —1I, since all vectors anticommute with /. In

odd dimensions, get n(/) = —n/
8. det(f) = (F(I)I7Y) = (If(I71)) = det(f).

9. fi; = e;f(e;) = e;f(e;) = f};, hence components found by matrix transposition. Also

= —1, since vectors commute with [.

have

hij = ei-h(e;) = ei-[fg(e))]
= e;-flerer-gle))] = 8y e fler) = fungy,;

recovering matrix multiplication law.

10. Suppose that we write

fler) = fiier + farea,  fle2) = fioer + fazen.

£ <f11 f12>
' for fa2

The matrix is



and
flexNeg) = (frien + farea) A(fiaer + fazea) = (fiifaa — fiafar )er Aes
so determinants agree. Now have
det(f) = f(er)Af(e) A- - Af(en) I = a1 AagA- - Nap, 17,

The components of a; = f(ey) in the {e)} frame form the kth column of the matrix f;;.
Swap columns by swapping vectors, hence a minus sign by total antisymmetry. Also
have

agNag\-- - Na; N+ Nay, = agNagA---Na; + Xa;)N--Nay, (1 # J)

so can add a multiple of one column to another.
11. K generates a global dilation:

/2 ny e 0K/2 _ ok ny = ch(a)ny +sh(a)K-ny = [ch(a) —sh(a)lny = e % ny

for any vector ny = ny-K. This corresponds to a global change of scale for all vectors.
The subgroup obtained when this is factored out is the special linear group sl(R) —
the group of matrices with determinant 1.

12. Along the side xg—x; write @ = xg + M@y — x¢), so that @ — 29 = Aey. Also get
dS = dX ey, so contribution from this side is

1
/ dX 61[M0 + )\(Ml — Mo)] = %el(Ml + Mo)
0
Similar for two remaining sides. Gives

fdsmu) = Loy (M, + M) + Hea — e2)(Ma + My) — Sea(My + Mo)

= —je1(My — My) 4 Jea( My — My)
== %62/\61[61(M1 — Mo) + 62(M2 — Mo)]

No dependence on signature. Factor e;Aeq/2 has area V' equal to that of the triangle,
but reverse orientation. Eliminate this by replacing m by I=tm,

%dS IT'm(x) = =VI[e'T7Y My — My) + > I7'V (My — My)
= V[e'(M; — My) + e*(My — My)]

Which is the result that generalises. In 3-d, for example, construct a tetrahedra. Four
sides, so four terms in total surface integral. Factor of 1/3! now, because 6 tetrahedra
in a parallelepiped. Bracketed term is VM in limit.

13. Write # = 2% + 2'4,. Have
(r70270) = (270 + &' 711) (2% — 2'm)) = (%) + («1)*
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Figure 1: Normal vectors to the unit circle in 2-d spacetime. The normals all have
vanishing inner product with tangent vectors.

So surface of constant (zvov7o) is a circle in spacetime. Gradient is
V{rvor70) = V{ior0) + Vizoire) = 2V - (0z70) = 2y0e70 = 2(2°%0 — #'31).

This vector points outwards along timelike axis, but inwards along spacelike! (See
Fig. ). ‘Normal’ is tangential at intersection with null directions.

14. B is unit bivector, so
B*=(a+Ib)(a+Ib)=a>—b*+2la-b=1
So must have @ —b> =1 and a-b = 1. Write |b| = sinh(u), so |a| = cosh(u), and
B = cosh(u)a + sinh(u)Ib = (cosh(u) + sinh(u)Iba)a
using over-hats for unit vectors. Now (]l;d)z = +1, so
B= eufi)a a=Rak, R, = eufi)a/Q

But in 3-d can always rotate o3 onto a with rotation in the e3Aa plane. Call this
rotor R3. Have

B = R,Rs03R;R, = RosR, R = R.Rs
Now o3-(v0 £ v3) = £(v0 £ 73), so ne = R(y = 73)];’ are required vectors.
15. RR=—(v0 4+ —v2)(0 + 7 —72) = 1, so R is a rotor. Have
B+1 _ (ot+m)n
R—1  (vo+m)r+2

This is a null bivector, so generator is just (yo + 71)72. If repeat for —R get a factor
(7o + 71)72 in denominator of H. This has no inverse, so cannot find a bivector
generator.

H =

= (Y0 +71)722 = (o + 1)) = 3(v0 +711)72



