Physical Applications of
Geometric Algebra

Handout 5
Linear Algebra

Geometric algebra simplifies and improves our understanding of the important subject
of linear algebra. This might appear a bit dry and formal at first, but it is is important
for a number of the advanced applications treated throughout the course. In particular,
it is central to the development of the gauge theory of gravitation. The geometric
algebra treatment is index free, making it very tidy and compact. This enormously
simplifies derivations of otherwise difficult results. This is, in fact, quite an easy topic,
but it is one that traditionally causes some difficulties because it is rarely presented
in a simple, coherent manner. The main application studied here is to Hamiltonian
mechanics and the theory of canonical transformations.

1 Linear Functions

Geometric algebra allows for index-free manipulations, in contrast to tensors which
deal with objects like a; or T};. The index-free approach is closer to how humans
understand geometric objects, whereas matrices and tensors are more closely related
to the sort of manipulations performed by computers. There is a small cost in moving
to an index-free notation, however. One has to construct an unambiguous notation
for linear functions which maintains a clear distinction between functions and vectors.
In tensor notation this is easy - we just add an extra index to the our symbols for
vectors. This possibility is not available to us, however, so instead we will denote
linear functions mapping vectors to vectors with expressions of the form f(a). Here a
is the vector argument, and f is the linear function.

A linear function is defined to have the property
f(Aa + pb) = M(a) + pf(b) (1.1)

for all scalars A, p and vectors @ and b. The composition of two linear functions f and
g (applied first) results in a third (just like matrix multiplication). We can write

h(a) = flg(a)] = fg(a) (1.2)
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The final form is consistent with our general notational principle of suppressing unne-
cessary brackets. The expression is unambiguous because combining linear functions
1s an associative operation.

1.1 The Extension to Multivectors

Linear functions are extended to define an action on arbitrary multivectors through
their action on blades. We define

flanbA---Ne) = f(a) A f(D)A---Af(e). (1.3)

The right-hand side is also a blade and so must have the same grade as the original
argument (unless it is zero). Extended linear functions are therefore grade preserving,

f(A,) = (f(A)).. (1.4)
They are also multilinear
FINA + uB) = M(A) + uf(B), (1.5)
which holds for any scalars A and 2 and any multivectors A and B.

A good example of this extended action is provided by rotations. Given a rotation
determined by a rotor R we can write

R(a) = RaR. (1.6)

We saw in Handout 4 that the action of this rotation on a multivector, when all its
component vectors are rotated, is given by the same law. The extended action is
therefore simply

R(A) = RAR. (1.7)

1.2 Extended Compound Functions

A key result for linear functions concerns the extension to the entire algebra of the
product of two linear functions. Suppose that h(a) = f g(a). We see that

h(anbA---Ac) = fgla)Afg(b)A---Afg(c)
= flg(a)Ag(b)A---Ag(c)] (1.8)

= flg(aNbA---A¢)].
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Figure 1: The Determinant. The unit cube is transformed to a parallelepiped with
sides f(e1), f(ez) and f(es). The determinant is the volume scale factor, so is given by
the volume of the parallelepiped, f(e;)Af(ex)Af(es) = f(1).

This simple manipulation shows that the extended action of the product of two linear
functions on a multivector is also obtained by letting the first function act on the mul-
tivector, and following this by the action of the second. In dealing with combinations
of linear functions we can therefore still write

h(A) = fg(A), (1.9)

and the meaning of the right-hand side remains unambiguous.

1.3 The Determinant

Now that we know how to extend linear functions into a grade-preserving action over
the entire multivector algebra, we can proceed immediately to a definition of the de-
terminant. The highest-grade multivector I (the pseudoscalar or directed volume ele-
ment) for any space is unique up to scaling. We therefore define

f(I) = det(f) I. (1.10)

This fully embodies the notion of the determinant as a volume scale factor. The
definition tells us how n-dimensional volume elements transform as each of their basis
elements are transformed. This definition agrees with the tensor one, but is rather
more intuitive (see Fig. 1).
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One very useful feature of our definition is the ease with which we can now one of the
key results for determinants. Consider the product function h = fg. For this

f(g(1)) = f(det(g)]) = det(g)f(I) = det(f) det(g)I (1.11)

where we have just used the results for multilinearity and the extension of the product
of two functions. We have therefore now proved

det(fg) = det(f) det(g) (1.12)

That is, the determinant of the product of two linear functions is the product of their
determinants. You are unlikely to find a quicker proof of this fundamental result using
any other technique!

2 Non-Orthonormal Frames

This is a useful topic which is strangely neglected in undergraduate teaching. Suppose
that we have a set of n linearly independent vectors {ex}. No other restrictions are
enforced on these vectors; in particular they are not orthonormal. Any vector a can be
expressed uniquely in terms of this frame,

a=d"e, (2.1)

where we use superscripts to denote the component (a*) in the {e;} frame. But how
do we find these components? We need a second set of vectors {e*} related to our
initial set by

ei-ej = 5; (2.2)

The set {*} is called the reciprocal frame. The upper and lower indices provide a useful
device to record the relation between the two frames. Equipped with the reciprocal
vectors, we can immediately find the components of a by forming

Fa = ek-(ajej) = ek-ej a’ = aj(Sf - a”. (2.3)

2.1 Constructing the Reciprocal Frame

To construct the reciprocal frame, we note that e! must be orthogonal to each of
{e3---¢e,}. It therefore lies entirely outside the hyperplane e3 AesA---e,. The vec-
tor perpendicular to this hyperplane is found by dualisation — multiplication by the
pseudoscalar. We can therefore write

' = aeyNesA---Ney, 1, (2.4)
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where « is some constant. We fix this constant by dotting with e,

1 =e-e' = ae-(eahesh---Aey I)
= aeNeN---Nepy [ (2.5)
If we now define the volume element
E,=eNeaN---Aey, (2.6)
we see that aE,l = 1, so that « = I7'E ', We therefore have
e =eyNesA---Ae, B (2.7)

This extends to the useful formula
e = (=) e A AERA - Ne BT (2.8)

where again the check denotes that the e; term is missing from the product. Our
purely geometric reasoning has led quickly to an algebraic formula which can be directly
applied. In 3-d this immediately recovers the formula for finding the reciprocal lattice
vectors which are important in crystallography.

2.2 Some Useful Results

From the basic identity
a=d‘ep=ace,=uaeé (2.9)

we can build up a series of useful results. First consider

k _ k k
nelonl) = el o
This result extends inductively to yield
ere A, =rA, (2.11)
for an r-grade multivector A,. Next we note that
e, = ek(ej-ek ej) = ej-ekekej. (2.12)

But e;-e; is symmetric on j, k, so we can only pick up the symmetric component of
efel. This is also a scalar., so we only get a scalar contribution to the sum,

ere’ = ep-ef =n (2.13)
where n is the dimension of the space. It follows that
er€"NA, = ek(ekA,, — ak-A,,) =(n—r)A,. (2.14)
Finally, we combine the above to give

er A, et = (—1)rek(ek/\Ar — ek-A,,) =(=1)"(n—2r)A,. (2.15)
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2.3 Application — Recovering a Rotor

As an application of the preceding results, suppose that we have two sets of vectors
in 3-d (not necessarily orthonormal) {ex} and {fi} which we know are related by a
rotation. We know that

fe = ReyR (2.16)
and we seek a simple expression for the rotor R. As we are in 3-d, we can write
R=eB2 and k= eP/? =cos(|B|/2) + sin(|B|/2)B/|B|. (2.17)

We therefore find that

erkRe® = epfcos(|B|/2) + sin(|B|/2)B/|B|]e
— 3cos(|BI/2) — sin(|BI/2) B/|B]
= 4cos(|B|/2) — R. (2.18)
We now form
fre® = RexRe® = 4cos(|B|/2)R — 1. (2.19)

It follows that R is a scalar multiple of 1 + fre*. We therefore establish the simple
formula

1 k
R= +f’“ek __v (2.20)
L+ Fret] (@)
where ¢» = 1 4+ fye*. This neat formula recovers the rotor directly from the frame

vectors.

3 Adjoints and Inverses

Two important concepts in linear algebra are those of the adjoint and the inverse of a
linear function. These arise naturally in the geometric algebra setting.

3.1 The adjoint

The adjoint, or transpose, reverses the action of a linear operator. This is particularly
clear if a linear function is viewed as a map between separate spaces. If f is a map
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from space 1 to space 2, then the adjoint is a map in the other direction. In geometric
algebra we denote the adjoint of f with a bar, f. It is defined by the condition that

a-f(b) = f(a)-b, Ya,b. (3.1)

We can derive an explicit formula by decomposing f(a) in an arbitrary frame

fla) = ?(a)-ek e a-f(eg) e* (3.2)

We next construct the extension of the adjoint

fland) = (a-f(e")e)A(b-f(el)e))

= eiheja-f(e)bf(e)

= %ei/\ej [Gf(el) bf(ej) — a'f(ej) bf(el)]

= le;Aej(and)-f(eAe). (3.3)

This shows that the extension of the adjoint is equal to the adjoint of the extended
function. We can therefore write

A,f(B,) = f(A,)-B,. (3.4)

This formula extends to encompass the situation where the two multivectors have
different grades. To see this, consider the following decomposition

a-f(bAe) = a;f(b)f(c) ia-f(c)f(b)
= [f(a)-bc—f(a)-cb]
f(

f
f[f(a)-(bAC)] (3.5)

With a simple extension of this argument, we arrive at the following formulae

S (3.6)
5 (3.7)

These are remarkably useful in practice!

3.2 The Inverse

The preceding formulae enable us to quickly derive a formula for the inverse. If we set
B = I in the Eq. (3.7), we arrive at

A, det(f)1 = f[f(A,)]] (3.8)
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which we can write as
A, = f[f(A,,)[][_l det(f)_l. (3.9)

Here the various terms acting on f(A,) return A,, so they must represent the inverse
function. We therefore have

FUA) = det(f) IF(I71A) (3.10)
FUA) = det(f)~ IF(I71A), (3.11)

which holds for any multivector A, in spaces of any signature. Again, these are very
useful formulae in practice. This is especially true in relativity, which contains a few
surprises! The expressions can also be easily coded up on a computer in a symbolic
algebra package (such as Maple).

As an example of the inverse formula, consider the rotation R(a) = RaR. The adjoint
is found from

R(a) = ex a-R(e") = ep(aRe* R) = epe®-(RaR) = RaR, (3.12)
which extends simply to arbitrary multivectors,

R(A) = RAR. (3.13)
Since det(R) = 1, the inverse is given by
R™'(A) = det(R)™ IRI"'AR = RaR. (3.14)

So, as expected, we see that the inverse is equal to the adjoint for rotations. This is
true for any orthonormal transformation.

4 Canonical Transformations

In Handout 4 we established that Hamilton’s equations could be expressed geometric-
ally in 2n-dimensional phase space as

i =VH-J (4.1)

Here x is the position vector in phase space, the Hamiltonian H is a scalar function,
and V is the gradient operator (the vector derivative). We are interested in trans-
formations of these equations which leave the Hamiltonian intact. There are two types
of transformation one can consider. The first is achieved by changing the coordinate
system in which the vector is expressed. This can give rise to very different looking sets
of scalar equations. But in one sense these transformations are rather uninteresting.
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Any genuinely geometric equation can be decomposed in different coordinate systems
to get a different set of scalar equations. But the underlying geometric equation does
not change. The transformation does not tell us anything about symmetries in the
underlying system. These are called passive transformations. Their main significance
is that the freedom to choose an arbitrary coordinate system is something we can often
exploit to our advantage to simplify the analysis of the equations.

Passive transformations do not capture the full symmetry of Hamilton’s equations. To
see what is missing, we must return to the point where we first introduced the vector
x in the form

r=pe;+qfi (4.2)

(Handout 4, Eq. 5.5). Suppose instead that we had decided to work with a different set
of coordinates and canonical momenta, F;, ();. With these we would form a different
vector

The {P;, Q;} are functions of the original {p;, ¢;}, so we can view the new vector z’ as
a function of the old vector . We write this as

v = f(z). (4.4)

This is now an active transformations. The points x are moved to some new position
in phase space a' by the displacement f(x). This transformation can be non-linear,
which is why it is written f(x) and not f(x). The only restriction that is placed on
f(z) is that it is an invertible map. We will also simplify the treatment slightly by
assuming that f(x) is time-independent.

After applying the transformation to f(x), the time derivative of the transformed
variable is
d , d dx
7 Ef () = e
This is a compact way of writing the chain rule. It is easily verified by expanding out
x and V in an arbitrary 2n-dimensional coordinate frame {e;}. We write

V/(z) =iV [(z). (4.5)

x = z"e where b =k, (4.6)
and we also have
0
V= ekW = e"ep- V. (4.7)

It follows that

— == .h e V=43V, (4.8)
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Eq. (4.5) naturally forces us to look at derivatives of f(x). We accordingly define the
differential of f(x) by

f(a) = a-Vf(z). (4.9)

This is a linear function of a. There may also be some position dependence in f, which
we can make explicit by writing

fla) =f(a;x). (4.10)

This separates the linear argument « from the potentially arbitrary (nonlinear) de-
pendence on position z. Where possible, we will suppress the z-dependence. In terms
of the differential, we now have

d

Sl = BV () = 1() (4.11)

Next we need to establish the relationship between the gradient with respect to « and
2. With 2’ decomposed in the {e;} frame as

! !
' = a¥ey, ¥ =efa! (4.12)

we have

0

!k
Vi=ce EE

= efep- V. (4.13)

We now find that

g 0
V=cepV=¢ ek-v:l/’]/axj/
= eF (er-Va')-V' = e* fler) V' = (V). (4.14)

Again, we can appreciate how compact the final formula V = f(V’) is once the fully
index-free approach is adopted.
The equation of motion satisfied by 2 is

%x' = f(2) = f[VH - J] = f[fF(VH)-J] = F(VH)-£(J]). (4.15)
But the transformed Hamiltonian is defined by H'(z') = H(z), so

= (VH)=V'H(z) =V'H'" (4.16)

The equations of motion for a trajectory in phase space after the transformation are
therefore

d ! ! !
' = (V'H')(J) (4.17)
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and these will remain Hamiltonian in form if
f(J)= . (4.18)

This is the definition of a canonical transformation. In linear algebra terms, a linear
function satisfying the condition f(.J) = .J is called a symplectic transformation. These
form a group — the symplectic group. A canonical transformation is now seen geo-
metrically as a displacement whose differential is a symplectic transformation. Some
examples should provide a more concrete understanding of how these abstract ideas
are applied in practice.

4.1 Examples
Unitary Transformations

The simplest canonical transformation to consider is one where the differential f(a) is
constant. In this case the underlying displacement is easily found by integration,

flz) =f(z) +n, (4.19)

where a possible constant translation is also included. We have already encountered a
set of transformations which leave J invariant. They are the unitary transformations,
which are now seen as the subgroup of the symplectic group which also preserves
the inner product. A look at the bivector generators of Handout 4, Eq. 4.18 shows
that the Fj; bivectors couple together the position and momentum components of z.
The existence of canonical transformations forces us to view phase space as a single
geometric entity, with no natural split between position and momentum.

The 1-d Harmonic Oscillator

As a simple illustration, consider the harmonic oscillator with Hamiltonian

2
p 1.2
H=—+4:kq¢". 4.20
5 T 2k (4.20)
We can always apply a constant rescaling to our coordinates of the form P = ap,
) = q/a (exercise). This is often employed to fix up the units correctly, so that the
vector x is constructed form terms of the same dimension. For our present case we see

that o? = (mk)~"/? is the appropriate choice, leaving

H = 1o(P? + QY), (4.21)
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where w? = k/m. We now introduce the vector x = Pe; + Q f; so that

H = %wa (4.22)
and

T=wax-J. (4.23)

In this simple case J is the pseudoscalar. The motion keeps 2% constant, so describes
circles in phase space. The unitary group invariance of this system is simply con-
stant rotations in phase space. This is always a symmetry in 2-d phase space, so the
transformation

P = pcosa+ gsina, () = gcosa — psin«a (4.24)

is always canonical.

Goldstein, Ch. 9, Ex. 18

Show that the system with Hamiltonian

1/1
H==-(—=+p%" 4.25
2<q2+pq> (4.25)

can be reduced to the form of a Harmonic oscillator.

With = = pe; + ¢ f1 we need to establish that the map
1
' = f(z)=q¢’pes — ;fl (4.26)

is canonical, as this transformation brings the Hamiltonian to SHO form. We form

ox'

fler) = o i*er (4.27)
oz’ 1
f(f1) I 2pqer + ?fl (4.28)
We can now see that
1
f(J) = f(el)/\f(fl) = (61261)/\(2}%]61 + ?ﬁ) = e A fy, (4.29)

so the map is indeed canonical.



