Physical Applications of
Geometric Algebra

Handout 9

Spacetime Dynamics

Lorentz transformations which preserve parity and causal structure can be described
with rotors, and these provide the simplest way to gain insight into the structure of
the Lorentz group. They quickly show, for example, that all transformations have two
points on the celestial sphere which remain fixed. Dynamics in spacetime is tradition-
ally viewed as a hard subject. This need not be the case, however. By parameterising
the motion in terms of rotors many equations are considerably simplified, and can be
solved in new ways. This provides a simple understanding of the Thomas precession, as
well as a new formulation of the Lorentz force law for a particle in an electromagnetic

field.

1 Spacetime Rotors

We saw in Handout 8 that a restricted Lorentz transformation is generated by a rotor
R, RR =1, in the usual way as a — RaR. Every rotor in spacetime can be written in
terms of a bivector as

R=%eP/%, (1.1)

(The minus sign is rarely required, and does not affect the vector transformation law.)
We can understand many of the features of spacetime transformations and rotors
through the properties of the bivector B.

1.1 Invariant Decomposition

The rotor R can be decomposed in a Lorentz invariant way by first writing
B = (BYo + (B, = pel?, (12)

and we will assume that p # 0. (The case of a null bivector is treated slightly differ-
ently.) We now define

B=p'? 19/ p (1.3)
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so that
B=pte 9B =1, (1.4)
With this we can now write
B=p"?el%?2 p = oB + BIB, (1.5)
which decomposes B into a pair of bivector blades aB and ﬁ[B Since
B(IB)=(IB)B = I, (1.6)

the separate bivector blades commute, which is possible now that we are in 4 dimen-
sions. The rotor R now decomposes into

R— «2B/2 BIB/2 _ BIB/2 aB/? (1.7)

A

exhibiting an invariant split into a boost and a rotation. The boost is generated by B
and the rotation by I B.

1.2 Fixed Points

For every timelike bivector E, B? = 1, we can construct a pair of null vectors n4
satisfying (exercise)

Bong = +ny. (1.8)
These are necessarily null, since
(B-ng)ng =0=+n2. (1.9)
The two null vectors can also be chosen so that

nyAn_ = 2B, (1.10)

A

so that they form a null basis for the timelike plane defined by B (see Fig. 1).

The null vectors n4 anticommute with B and therefore commute with IB. The effect
of the Lorentz transformation on n4 is therefore

RnyR = eO‘B/Q Ny e_O‘B/Q = eO‘B N4
= ch(a)ng + sh(a)B-ni — T, (1.11)

The two null directions are therefore just scaled — their direction is unchanged. This
is another example of rotors being used to describe dilations. It follows that every
Lorentz transformation has two invariant null directions. The case where the bivector
generator itself is null, B?* = 0, corresponds to the special situation where these two
null directions coincide.
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Figure 1: A timelike plane. Any timelike plane E, B? = 1 contains two null vectors

n4 and n_. These can be normalised so that ny An_ =

1.3 The Celestial Sphere

One way to visualise the effect of Lorentz transformations is through their effect on
the past light cone (see Fig. 2). Each null vector on the past light cone maps to a
point on the sphere S~ — the celestial sphere for the observer. Suppose then that light
is received along the null vector n, with the observer’s velocity chosen to be ~y. The
relative vector in the vy frame is nA~y. This has magnitude

(nA%0)” = (n70)" = n*y5 = (n-%)". (1.12)
We therefore define the unit relative vector n by the familiar projective formula

n/\’)/o

n")/o '

(1.13)

n —=

Different observers passing through the same point see different celestial spheres. If
a second observer has velocity v = R~y R, the unit relative vectors in this observer’s
frame are formed from nAv/n-v. These can be brought to the v frame for comparison

by forming
~ A "A
n' =R Rp= 000 (1.14)
n-v n' o
where n' = RnR. The effects of Lorentz transformations can be visualised simply

by moving around points on the celestial sphere with the map n — RnR. We know
immediately, then, that two points remain invariant so are the same for both observers.
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Figure 2: The Celestial Sphere. Each observer sees events in their past light cone,
which can be viewed as defining a sphere.

1.4 Pure Boosts and Observer Splits

Suppose we are travelling with velocity v and want to boost to velocity v. We seek the
rotor for this which contains no additional rotational factors. We have

v = Lul (1.15)

with La, L = a, for any vector outside the uAv plane. It is clear that the appropriate
bivector for the rotor is uAwv, and as this anticommutes with v and v we have

v = Lul = L*u — [? = u (1.16)
The solution to this is
1 +vu a vAu
I = _ i 1.17
201+ w0z~ P (2 |v/\u|> (117)

where the angle « is defined by cosh(a) = u-v.
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Now suppose that we start in the 7y frame and some arbitrary rotor R takes this to
v = RyoR. We know that the pure boost for this transformation is

1+ v (a v Ao )
L= =exp| — , 1.18
20017~ P\ 2Tons, )

where v-yy = ch(a). Now define the further rotor U by

U=LR, UU=LRRL=1. (1.19)

This satisfies
Uyl = Lo L = 7, (1.20)
so U~yo = vU. We must therefore have U = er/Q, where [b is a relative bivector,

and U generates a pure rotation in the 7o frame. We now have
R=LU (1.21)

which decomposes R into a relative rotation and boost. Unlike earlier, this decompos-
ition is frame dependent, and in general L. and U do not commute.

2 Spacetime Rotor Equations

A spacetime trajectory x(7) has a future-pointing velocity vector & = v. This is
normalised to v? = 1 by parameterising the curve in terms of the proper time. This
suggests an analogy with rigid body dynamics. We write

v=RyR, (2.1)

which keeps v future-pointing and normalised. This moves all of the dynamics into the
rotor R = R(7), and this is the key idea which simplifies much of relativistic dynamics.

2.1 The Proper Acceleration
The first quantity we need to find is the acceleration

0= &(R’yo];’) = R’yofx’ + R’yo];i’. (2.2)
But we know that RR = —RE’ is a bivector, so we have

0= RRRyR + RyoRRR = RRv — vRR = 2(RR)-v. (2.3)
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Figure 3: The Proper Boost. The change in velocity from 7 to 7447 should be described
by a rotor solely in the v Av plane.

This equation is consistent with the fact that v-v = 0, which follows from v? = 1.

We now have
v = Z(fo’)v v. (2.4)

But the rotor R can always carry an extra rotation with it. We need to ensure that
the rotor we work with correctly describes pure boosts from one instance to the next
(see Fig. 3). To first order we have

(T +07) =v(T)+ 07 0. (2.5)
The proper rotor between v(7) and v(r + d7) is

B L+o(r+dr)v(r) B L5 0w
L= [2(1 4 v(T + 57’)-1}(7’))]1/2 =1+ 25 ' (2.6)

But since
(T +87) = R(r + 67)10R(r + 67) = LR(r )y k(7)L (2.7)
we see that we must set
R(r + &7) = R(7) + 67 R = LR(r). (2.8)
It follows that the correct expression is
RR = Lov, (2.9)

which is sensible. The bivector describing the change in the rotor is simply the accel-
eration seen in the rest frame. We call this object 0Av the acceleration bivector.



Handout 9 Spacetime Dynamics 7

Yo
Y2

7

/V 72\

Figure 4: Thomas Precession. The particle follows a helical worldline, rotating at a

constant rate in the vy frame.

2.2 Example — Thomas Precession

As an application, consider a particle in a circular orbit (Fig. 4). The worldline is
x(7) = t(7)y0 + alcos(wt)y1 + sin(wt)ya], (2.10)
and the velocity is
v =0,z =1 (Y0 + aw[— sin(wt)y; + cos(wt)ys]) . (2.11)

(Throughout we use dots to denote differentiation with respect to proper time 7). The
relative velocity v = vA5p/v-7o has magnitude |v| = aw. We therefore introduce the
hyperbolic angle o, with

tanha = aw, t = coshe. (2.12)
The velocity is now
v = ch(a)yo + sh(a)[— sin(wt)y + cos(wt)ys] = ™25 e/ (2.13)
where
n = —sin(wt)oy + cos(wt)os. (2.14)

This form of time-dependence in the rotor is inconvenient to work with. To simplify,
we write

n=ec w4 R okt (2.15)
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where R, = exp(—wtlo3/2). We now have

cam/2 _ exp(aRwagﬁ’w/Z) =R, c002/2 R, = R,R.R, (2.16)
where R, = exp(ao,/2). The velocity is now given by
v = R,R,R., R, R R, = R,R.yR.R., (2.17)

where the final expression follows because R, commutes with 7.

We can now see that the rotor for the motion must have the form
R=R,R,Rr, (2.18)

where Ry = exp(—wrtlos/2) is some rotation in the los frame whose rate is to be
determined. To fix this we form the acceleration bivector vv. We can simplify this
derivation by writing v = R, v, R,,, where v, = R,y .. We then get

00 = Ry[2(RyR.,) 00 va] Ry = —wch(a) R, [(Io3)-v4 va] R,

= wsh(a)ch(a)R,[—ch(a)oy + sh(a)los] R, (2.19)
We also form the rotor equivalent 2R R, which is
2RR =2R,R, +2R,R.RrRr R, R,
= ch(a)R,[—wlos — wTRafagfx’a]fx’w
= ch(a)R,[—(w + wrch(a))los + wTsh(oz)O'l]fx’w. (2.20)
Equating these we find that wy = —ch(a)w, so the full rotor is

R— e—wt[og/Q eaoz/Q ech(a)wt]og/Q‘ (2.21)

The fact that wy = —ch(a)w differs from —w is due to the fact that the acceleration is
formed in the instantaneous rest frame v and not the fixed ~+y frame. This difference
introduces a precession — the Thomas precession. We can see this effect by imagining
the vector v, being transported around the circle. We define the rotated vector by

er = Ry R. (2.22)

In the low velocity limit cosh(a) — 1 the vector e; continues to point in the v, direction.
This is what we expect — there is no rotational component to the frame. At larger
velocities, however, the frame starts to precess. After time ¢ = 27 /w, for example, the
~1 vector is transformed to

61(27T/w) _ eaoz/Q e?ﬂ'ch(oz)[og - e—aoz/Q‘ (2‘23)

Dotting this with the initial vector e;(0) we see that the vector has precessed through
an angle

6 = 2m(cosha — 1). (2.24)
This shows that the effect is of order |v|?/c?.
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3 The Lorentz Force Law

We are all familiar with the non-relativistic form of the Lorentz force law,

d
d—?:q(E—l—va), (3.1)

with all relative vectors expressed in the vy frame. We seek a relativistic version of
this law. The quantity p on the left-hand side is the relative vector pA~y,. We must
therefore multiply through by v-+y to convert the derivative into one with respect to
proper time. The first term on the right-hand side then becomes

vy E =v-(EAy) — (v-E)Ay = (E-v)Av. (3.2)

Recall at this point that FE is a spacetime bivector and is built from the o = vivo.
The magnetic term is

—v-yv-(IB) = —(vAv) x (I B)
= [(IB)-v]Avo + [vo-(IB)]Av = [(1B)-v] A, (3.3)

where the Jacobi identity has been used in the intermediate step.

We can now write Eq. (3.1) in the form

d .
= A0 = ql(E + [B)-v] A (3.4)

We now define the Faraday bivector F' by
F=F+IB. (3.5)

This is the covariant form of the electromagnetic field strength. It unites the electric
and magnetic fields into a single spacetime structure. We study this in greater detail
in Handout 10. Our equation is now

pAY0 = q(F-v) Ao (3.6)

This must hold in all frames, so we can remove the factors of vy. Recalling that p = mu,
we arrive at the relativistic form of the Lorentz force law,

mov = qF-v. (3.7)

This is manifestly Lorentz covariant, because no particular frame is picked out. The
acceleration bivector is

w=Lpwr=L(Fv)rw="LE, (3.8)

m m m

where F, is the relative electric field in the v frame. A charged point particle only
responds to the instantaneous electric field in its frame.
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3.1 Rotor Form of the Lorentz Force Law

Now suppose that we parameterise the velocity with a rotor. We have
0 =2RRv =2(RR)-v=—Fv. (3.9)
We can simply equate the projected terms to get

E=-LFR (3.10)

 2m

This is not the most general possibility as we could include an extra multiple of FAv v,
but Eq. (3.10) is certainly the simplest equation to work with. How does this help us
solve the equations of motion? One immediate advantage is that the equations are now
first order:

i =v = RuR, omR = ¢FR, (3.11)

(we usually take vg = 79). These are numerically very robust.

3.2 Example — Constant Field

This is very easy now! We can immediately integrate the rotor equation to give

q

R = —F'T). 3.12
exp(5Lpr) (3.12)
To proceed and recover the trajectory we form the invariant decomposition of F'. We

first write
F? = (F%)g + (F?); = pel¥ (3.13)

so that

F:pl/zelﬁ/QF:ozF—l—[ﬁF (3.14)

where [2 = 1. (If F'is null a slightly different procedure is followed.) We now have
R = exp(iaﬁr) exp(i[ﬁpr). (3.15)
2m 2m

Next we decompose the initial velocity vy = ¢ into components in and out of the I3
plane,

A

UOZF2U0:FF'UO—I-FF/\UOZU()”—I-UOJ_. (3.16)
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Now vg = 4 F-vo anticommutes with F, and vy, commutes with F, SO
. q ; q,,:
& = exp(—al'7)vy + exp(—I18FT)voL. (3.17)
m m
This integrates immediately to give the particle history

eanT/m —1. eQﬁpr/m —1 .
e R TR AL (3.18)

The first term gives linear acceleration and the second is periodic and drives rotational
motion. This is as expected, because in the vy frame, F'is an electric field and IF is
a magnetic field.

r — Xg = qa/m

3.3 The Gyromagnetic Moment

Suppose now that as well as setting v = RyoR we carry round a frame with our charged
particle defined by

e, = Ry, R, ey = v. (3.19)

The frame vectors {e;},2 = 1...3 lie in the rest frame of v. The equations of motion
for these frame vectors are

¢y =2RR) e, = %F-eu, (3.20)

where we have used the rotor equation in its simplest form of Eq. (3.10).

We can use this idea of a frame attached to a worldline to give a classical model for a
charged particle with spin. We set e5 = s, where s is the (dimensionless) ‘spin vector’.
This satisfies

$=1(q/m)F-s. (3.21)
Now suppose that the particle is at rest in the vy frame, so v = 49. We define
sv=8Av =S\ = S. (3.22)
The equation for the relative spin vector becomes
5= L(F-5)Av0 = ~L[F-(57)] Ao (3.23)
m m
Now

F-(sv)=(E+IB)svy) = E-sv + (IB)-so, (3.24)
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so the equation for s is simply

s5=L(IB)s=LsxB. (3.25)
m m

This is the precession equation for a particle with a gyromagnetic ratio of 2! So g = 2
is the natural value for a relativistic frame in an electromagnetic field. The rotor
equation for a frame provides a better classical model for spin than a ‘current loop’,
and is valid for arbitrary motion. In situations where the full (Dirac) quantum theory
is not required, this model gives very accurate predictions for the behaviour of fermions
in electromagnetic fields.



