Physical Applications of
Geometric Algebra

Handout 6

Balanced Algebras and Projective Geometry

We have seen how to represent both rotation groups and unitary groups in terms of
rotors. We will now see how all matrix groups can be represented by rotors, and
hence that all possible Lie algebras can be realised as bivector algebras. This is the
ultimate motivation for the treatment given in this course. Incorporating general linear
functions as rotors is achieved by working in the balanced algebra, which is generated
by equal numbers of vectors with positive and negative square. Some of the algebraic
considerations for these types of spaces will be useful when we turn to Minkowski
spacetime.

As a separate application of geometric algebra we look at the treatment of projective
geometry. This will give us a different view on the role of bivectors, and will take us
up to some areas of active research.

1 The Balanced Algebra G, ,

The key to representing general linear transformations (the group Gl(n)) in terms of
rotors is the introduction of a second space of opposite signature. Suppose that we
start with an n-dimensional orthonormal basis {ey}, e;-¢; = 6;;. We introduce a second
frame { fz} with the property that

fzf] == _52']'7 ei'f]‘ =0. (11)

The introduction of vectors whose square is negative does not alter any of the axioms
of geometric algebra. The full algebra is generated by equal numbers (‘balanced’) of
vectors with positive and negative square. This algebra is labeled G, ,,.

1.1 Null Spaces

We next introduce the balanced analog of the complex ‘doubling’ bivector by defining
[(:eifi:61/\f1—|—€2/\f2‘|‘""|’€n/\fn- (12)
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This has the properties that
e K = f; fir K = fi-(e;Nfj) = —fi-fie; = e (1.3)
It follows that
(a-K)-K=K-(K-a)=a VYa. (1.4)

There is a crucial sign difference compared with the doubling bivector J, which means
that K does not generate a complex structure. Instead it generates a null structure.
To see this, take any vector a in G, ,, and define

n=a+ta K. (1.5)
We see that

n®=a’+ 2a-(a-K) + (a-K)2 —a? — (a-K Ka)
=a*—[(a-K)-K]-a=a*—a*> = 0. (1.6)

Vectors whose square is zero are called null vectors. They are important in relativity
for describing the paths of photons.

The bivector K splits the vectors in G, into two separate null vectors
a=a; +a_ (1.7)
where
ay = %(a—l—a-[&”), a_ = %(a—a-[&”). (1.8)

In this manner the space of vectors g;n decomposes into a direct sum of two null spaces.
We denote the space of vectors of form ay by V,. Vectors in V,, are characterised by

Cl_|_'[( = a4 \V/Cl_|_ € Vn (19)

From this we can see that all vectors in V), square to zero. Such a space defines
a Grassmann algebra. These are important in fermionic quantum field theory and
supersymmetry.

1.2 Statement of Theorem

Fvery linear function acting on an n-dimensional vector space, a — f(a), can be rep-
resented in V, by a transformation of the form

ay = MayM™, (1.10)
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where M is a geometric product of an even number of unit vectors.

The idea is that vectors a in G,, are mapped to null vectors a4 in G, ,,. These are acted
on by the multivector M in such a way that

f(a)—l—f(a)-K:M(a—l—a-K)M_l. (1.11)

This defines a map between linear functions f(«) and multivectors M € G,, ,. The map
is not quite an isomorphism because both M and —M generate the same function —
the multivectors M form a ‘double-cover’ representation. In order for the map to work,
the action of M must not take us outside the space V,. This implies that

(Ma_|_M_1)-K = Ma_|_M_1, (1.12)
so we must have

ay =M™ (MayM™')-K M

=M "I (Mayz MK — KMay MM = ay-(M~'KM). (1.13)
It follows that we require M~*K'M = K, or
MK = KM. (1.14)

Since M is a product of an even number of unit vectors we must have MM = =£1.
The subgroup with MM = 1 are rotors in Gy and their generators (the Lie algebra
elements) are bivectors. The condition RKR = K is then the direct analog of the
condition that defined the unitary group in terms of rotors.

1.3 The Lie Algebra

The bivector generators are the set of bivectors that commute with K. The Jacobi
identity ensures that the commutator product of two bivectors which commute with A
results in a third which also commutes with K. We proceed as with the unitary group
and construct

[(a-K)AN(b-K)|x K =aN(b-K)+ (a-K)ANb= (anb)x K (1.15)
so that
[anb — (a-K)A(b-K)]x K = 0. (1.16)

We can again run through all combinations of {¢;, f;} to produce the following bivector
basis for the Lie algebra of the general linear group,

Ej; = eej—fifi (<j=1...n)
Fij = ef;—fie; (i<j=1...n) (1.17)
[(i = erZ
The difference in structure between the Lie algebras of the linear group and the unitary
group is solely down to the different signatures of their underlying spaces.
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1.4 Singular Value Decomposition

The next step towards proving our theorem is to find a suitable decomposition of a
linear function f(a). The key to this is the singular value decomposition (SVD) of a
function. From the non-singular function f(a) we form the symmetric function ff(a).
This has a spectrum of orthonormal eigenvectors d; and eigenvalues A;,

F£(d;) = Ad; (1.18)

with the summation convention dropped for this subsection. Each of the A; are positive,
since

d;-F6(d:) = [f(d)])? = M\i(d;)? (1.19)

and in a Euclidean space all vectors have positive square. (This limits the application
of the SVD to Euclidean spaces.) We can write

ff(a) = Y Aa-didy, (1.20)
k

which has the well-defined square root

d(a) => (M) ?a-dp dy. (1.21)

k

We now define S = fd='. This satisfies
SS=d'ffd™! =d'd*d™! =1, (1.22)

where | is the identity function. It follows that S is an orthonormal transformation.
We can therefore write

f(a) = Sd(a), (1.23)

which decomposes a general non-singular function into the product of a series of dila-
tions (a symmetric function) followed by an orthonormal transformation.

A further rotation can be used to bring the {d;} frame onto the {¢;} frame, which
is usually required when working with matrices. The conclusion then is that every
non-singular matrix can be written as a diagonal matrix of positive entries sandwiched
between two distinct orthonormal matrices (check the degrees of freedom). This is
the SVD of a matrix and is very useful in signal processing and data analysis. We
do not need this second rotation for our proof as we can continue to work in a more
frame-independent manner.
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1.5 Proof of Theorem

To prove the theorem we need to demonstrate that both orthonormal transformations
and positive dilations can be found as transformations of the type of Eq. (1.10) in G, ,.
Rotations are present as they are generated by the E;; bivectors in the Lie algebra.
These bivectors jointly rotate the {¢;} and {f;} vectors by the same amount. Next we
need reflections. Suppose the reflection in G, is generated by the unit vector n. We

define
h=nK, ht = —1. (1.24)
The multivector generator M is then nn. This satisfies
ni =2nh-K +nKn=2(n’+n7*) + Knh = Knn, (1.25)

so the multivector does commute with K. Since (nﬁ)2 = 41 this multivector is not a
rotor. Its action on vectors ay € V, results in the vector

—nnaynn = —nnann — (nhann)- K = —nan — (nan)- K, (1.26)

where we have used the result that a-n = 0. This holds because n is constructed
entirely from the {f;} frame. Eq. (1.26) is the required result for a reflection. The need
to incorporate reflections is what forces us to include multivectors with MM = —1.

The final step is to see how dilations are formulated with rotors. Suppose that we need
a positive dilation in the n direction, where n is one of the eigenvectors of d(a). We
again form the bivector nn, which we can see is constructed from the Fj; and K; Lie
algebra generators. With ny = n +n the equivalent of the vector n in V,, we find that

e—Ann/2 g eAnnf2  _ —Ann g
= [cosh(A) — nasinh(A)](n 4+ n)
= [cosh(}) +sinh(A\)](n + ) = e ny, (1.27)

which is a pure dilation. Furthermore, any vector perpendicular to n has an image in
V,, which commutes with nn and so is unaffected by the action of the rotor. These are
precisely the required properties of the positive dilation, which completes the proof.

We now have an alternative means of representing every matrix group within geometric
algebra. Since all Lie algebras can be represented by matrices, we have proved that
all Lie algebras can be realised as bivector algebras. The accompanying Lie group
elements can then all be written as even products of unit vectors. This is potentially
a very powerful idea, though it remains to be fully exploited.
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2 Projective Geometry

It is a seldom stressed fact that the relationship between mathematics and physics is far
from one-to-one. Most physical systems can be studied using different mathematics,
and the same piece of mathematics will frequently find applications across a range
of physical problems, with different interpretations placed on the same mathematical
objects. We will now explore how some of the algebraic results we have derived can be
pictured differently through projective geometry.

Points in 3-d space are projected onto a 2-d plane (see Fig. 1). This is obviously an
important concept in computer vision. The key principle is that points in the plane
(a1, as) are represented by wvectors in a space of one dimension higher. This is the
essence of projective geometry. The magnitude of the vector is unimportant as both «
and Aa represent the same point. This is sometimes stated by saying that projective
geometry does not require a metric (i.e. a measure of length). This is not the same
as saying that we do not need an inner product. Now that we have placed a different
interpretation on the role of vectors, the inner product also has a different interpretation
attached. It no longer has a role in determining lengths, but it is crucial in forming
projections onto planes and lines.

2.1 The Join

Now that we have a representation for points in a plane, the next thing we want to
represent is the line joining them together. Fig. 1 shows that this line is the result
of projecting the plane defined by a; and ay onto the projective plane. We therefore
define the join of the points a and b by

join(a, b) = aAb. (2.1)

Projective Plane

Figure 1: Projective Geometry. Points in the projective plane are represented by vectors
in a space one dimension higher.
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Bivectors are therefore used to define lines in projective geometry. Similarly, we can
keep on taking exterior products to define (projectively) higher dimensional objects.
For example, the join of a point @ and a line bAc¢ is the plane defined by the trivector
aNbAc. This enables us to write down a condition for three points to be collinear. The
points cannot define a projected area, so we set

aAbAc=0, (2.2)

which implies that the points «, b, ¢ lie on a common line.

To handle complicated 3-d problems we need to work with a 4-d algebra. This algebra
contains 6 bivectors, which represent lines in 3-d. The reason that 6 bivectors are
required is because we are no longer restricting all vectors to have a common origin.
To specify a line requires 5 components, three to specify a point on the line and two
to determine the direction. The 6 possible bivector components are reduced to 5 by
requiring that the bivector is a pure blade, formed by the join of two points on the
line. The algebraic condition for this is

BAB =0, (2.3)

which removes a degree of freedom. We also have a projective interpretation for com-
muting bivectors in 4-d. These represent lines in 3-d which do not share a common
point.

2.2 Duality and the Meet

The next concept we require is that of the meet, which describes the intersection of
geometric objects. This is encoded via the duality operation introduced in Handout 3.

We denote the dual of an r-blade by
A=Al =A1=(=1)""1A (2.4)

where [ is the pseudoscalar. The result is a blade of grade n — r. In 3-d the dual of a
line (a bivector) is a conjugate point (a vector). The pseudoscalar interchanges inner
and outer products via

A -(Bsl) = A ANB [ r+s<n

ANBsI)=A,-Bs [ r<s. (2.5)

These are applicable not just when [ is the overall pseudoscalar, but also when [ is the
pseudoscalar for any subspace, provided that I contains all of the vectors in A, and

Bs.
We define the meet AV B by a ‘de Morgan rule’
(AV B)" = A"AB", (2.6)
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Figure 2: Desargues’ theorem. The lines P, (), R meet at a point if and only if the
points p, ¢, r lie on a line. The two triangles are then projectively related.

where the dual is formed with respect to the highest grade blade that can be formed
from the vectors in the blades A and B. For example, consider the meet of two lines
in a plane. The appropriate pseudoscalar has grade 3, so we can work in Gs. The
dual of the meet is given by the join of two vectors. The meet of two lines is therefore
described by the dual of a bivector, which is a vector, and so represents a point. That
is, two lines meet at a point. In this case we have

AV B = (A"AB")[™" = AxBI, (2.7)

where A and B are bivectors in Gs.

2.3 Example — Desargues’ Theorem

We can put the preceding definitions into practice with a simple proof of Desargues’
theorem for two triangles (see Fig. 2). The two sets of points a,b,c and «’, V', ¢’ define
two triangles, and we define the pseudoscalars

J =aNbAc, J =d N AC. (2.8)
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We also define the lines
A=0bAc, B=cAa, C=aNlb, (2.9)

with the same definitions holding for A’ B’,C’ in terms of a’,t',¢’. The two sets of
points determine the lines

P=aNd, Q=0>bAV, R=cAc, (2.10)
and the two sets of lines determine the points
p=AxA"I, ¢q=BxB'I, r=0CxC"lI. (2.11)
To find the condition that three lines meet at a point we use
(PVQIANR=(PxQRI)s=(PQR)I, (2.12)
so that the condition becomes
(PQR) = {(and'bAb cAC') = 0. (2.13)
Similarly, for p, g, r to fall on a line we form

pAghr = (AXA' ITBxB'TCxC'I);

— I{AxA'BxB Cx("),. (2.14)
Desargues’ theorem is then proved by the algebraic identity (exercise)
JJ' (aNa" DAY e’y = (Ax A" Bx B'C x (") (2.15)

The left-hand side vanishes if and only if the right-hand side does, proving the the-
orem. Notice how a quite complicated and involved picture can be attached to a basic
algebraic identity!

2.4 Homogeneous Coordinates

In many applications we are interested in the relationship between coordinates in the
image plane (for example in terms of pixels relative to some origin) and the 3-d position
vector. Suppose that the origin in the image plane is defined by the vector n, which is
perpendicular to the plane. The line on the image plane from the origin to the image
point is represented by the bivector aAn (see Fig. 3) . The vector O A belongs to a 2-d
geometric algebra. We can relate this directly to the 3-d algebra by first writing

n+ 0OA = la. (2.16)
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Image Plane

Figure 3: The Image Plane. Vectors in the image plane, O A, are described by bivectors
in Gs. The point A can be expressed in terms of homogeneous coordinates.

Dotting with n, and choosing units so that n* = 1, we find that A = (a-n)~! so

o4t _ahn, (2.17)

a-n a-n

The final factor of n can be dropped so that we directly represent the line OA in 2-d
with the bivector
aln

A=

(2.18)

a-n

We can also write
an =a-n+aAn =a-n(l+ A). (2.19)
We will meet this type of projective transformation again in the context of relativity.

The map (2.18) relates bivectors in a higher dimensional space to vectors in a space of
dimension one lower. If we introduce a coordinate frame with n = es we see that the
coordinates of the image of ¢ = a;e; are

a1

A= —ejes+ %6263 = A E + A E,. (2.20)
as as
The components A; = a;/as are called homogeneous coordinates, as they are independ-
ent of scale. It is these that are usually measured. The map between a and A is a
nonlinear map in 3-d. This can be turned into a linear map by representing points in
3-d with vectors in 4-d.

One small price to pay for these definitions is that our basis vectors {Fj, Fy} have
negative square, so span an anti-Fuclidean space. This changes very little, though
special relativity does offer an elegant alternative.
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3 Invariants

An important problem in computer vision is to recover geometric information about
the 3-d world from various 2-d image planes. Information from different views is then
often used to construct a 3-d model of the world. Some of the most important objects
to study are the projective invariants, which are quantities which are independent of
the camera position. These are useful because they can be used to check that point
identifications from different views are consistent.

Consider the situation described in Fig. 3. A set of 4 vectors a,b, ¢,d project out two
sets of points on two distinct lines. We want to find an invariant formed from ratios
of lengths. Vectors along these lines are handled projectively by bivectors. Suppose
again that n is the unit normal vector to the line, so that

aln

OA=A="" (3.1)

a-n

Choosing n to be a unit vector imposes a scale. Clearly it will only be ratios of lengths
(scale invariants) that can be genuine invariants. We now form the bivector for AB,

AB — bAn  aAn _ (a-nb—b-na)An _ [(bAa)-n]An _ bAa (3.2)

b-n a-n a-nbn a-nbn anbn

So, as expected, AB is determined by the bivector aAb. What we want to do is form
an invariant which is independent of n, and so will be the same if measured on L or L’.

Ll

A ')

@)

Figure 4: A Line Invariant. Points on the lines L and L’ represent two different
projective views of the same vectors in space.
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The expression should only contain a,b, ¢, d, and it is clear that we need to assemble
ratios of lengths to remove factors of a-n, ete. In particular we form

AC BD aNcbNd

P=BOAD ~ brcand (3.3)

which is manifestly independent of the chosen projection.

For the projection of a 3-d image onto a 2-d camera plane it is clear that the analogous
objects must be ratios of trivectors, which represent areas in the camera plane. For
example, suppose we have 6 points in space with position vectors a;---ag. These
produce the 6 projected points A; --- Ag. An invariant is formed by

asNasNas asNaghar  Asaz Aso

= 3.4

asNayNas asNasNay A513 A524 ( )
where A;j is the projected area of the triangle with vertices A;, A;, A;. This example
again demonstrates how geometric reasoning can quickly yield useful algebraic formulae
when working with geometric algebra.



