Physical Applications of
Geometric Algebra

Handout 12
The Dirac Equation

The relativistic wave equation for a spin-1/2 particle is the Dirac equation. This is a
first order wave equation, which is necessary to achieve an equation which is Lorentz
invariant and which has a future-pointing conserved current. The theory of the Dirac
equation is a large subject and we will only touch briefly on a few of its properties,
paying particular attention to the areas where the STA version offers significant ad-
vantages. We start by looking again at a relativistic model for a particle with g = 2.

1 The Gyromagnetic Ratio

In Handout 11 we saw that the spin vector observable formed from a relativistic spinor
is s = pR’ygE). This is the justification behind the model for a point particle with
spin described in Handout 9. The dynamics of the particle is described by the rotor
equation
. €
R=—FR, (1.1)

2m

and the particle has velocity v = R’yo]%. It was shown in Handout 9 that this model
reproduces the spin-precession equations for a particle with ¢ = 2. We can see this a
different way by making contact directly with a Pauli rotor equation. We first decom-
pose R as

R=LU (1.2)

where L is a pure boost and U a pure rotation in the v, frame (see Handout 9, Sec-
tion 1.4). With this decomposition the rotor equation becomes
RR=LL+LUUL =-—F, (1.3)
2m

hence

LL+00=-""1LFL. (1.4)
2m
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This shows that U responds to the de-boosted field LF'L.

The non-relativistic limit is taken by setting
L~1+v/2, lv| < 1, (1.5)

and working to O(v?). Suppose then that F = IB is a pure magnetic field in the
laboratory (o) frame. In this case

LFL=1B—wv-(IB)+ 0(v?) (1.6)

so the only relative bivector present in the non-relativistic limit is just /.B. The relative
bivector component of LL is also O(v?) so in this approximation we are left with

.~ e . €
=—1IB = —IBU. L.
U0=5-IB, = U= -IBU (1.7)

In the non-relativistic limit we can also replace the proper-time derivative by the de-
rivative with respect to coordinate time ¢t. In this case U satisfies precisely the non-
relativistic rotor equation identified in Handout 11. Comparing directly with Eq. 2.11
of Handout 11, we see that

€ €

—g— = — 1.8
V=95 = (1.8)

hence g = 2 again drops out naturally in this model.

2 The Dirac Equation

While much of the preceding is both suggestive about the role of spinors in quantum
theory, and algebraically very useful, one has to remember that quantum mechanics
deals with wave equations. We therefore need to construct a relativistic wave equation
for our Dirac spinor ), where ) is an element of the 8-dimensional even subalgebra
of the STA. Like Pauli spinors, ? also has a single-sided rotor transformation law,
Y — R, where R is a Lorentz rotor. To write down a covariant equation, we can
therefore only place other covariant objects on the left of ). The available objects are
any scalar or pseudoscalar, the vector derivative V, and any gauge fields describing
interactions. On the right of ¢» we can place combinations of 7y, 75 and le5. The first
equation we could write down is simply

Vb = 0. (2.1)

This is the generalisation to the STA of the Cauchy-Riemann equations. Remarkably,
this equation does describe the behaviour of fermions — it is the wave equation for a
neutrino. Any solution to this decomposes into two separate solutions by writing

=13l +0s) +i5(l —0s) =+, (2.2)
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The separate solutions ;. and ¥ _ are the right-handed and left-handed helicity eigen-
states. For neutrinos, nature only appears to make use of the left-handed solutions. A
more complete treatment of this subject involves the electroweak theory.

2.1 The Massive Dirac Equation

The formal operator identification of 19, with p, tells us that any wavefunction for a
free massive particle should satisfy V%) = —m?y. We therefore need to add a term
to the right-hand side of Eq. (2.1) which is linear in the particle mass m and which
generates —m?y on squaring the operator. If we think about plane-wave states with
momentum p, we arrive at an equation of the form

pib = mibag (2.3)

where ag is some multivector to be determined. It is immediately clear that ag must
have odd grade, and must square to +1. The obvious candidate is g, so that ¥ contains
a rotor to transform vy to the velocity p/m. We are therefore led to the equation

Violos = mipy (2.4)
or, post-multiplying by /o3,
Vi = —map 3. (2.5)

This is the Dirac equation in its STA form. The more common matrix/spinor form is
recovered by converting ¥ back to a column spinor, and writing

Vi < 40,00) (2.6)

for the vector derivative.

Our simple reasoning has led us to a first-order wave equation for the spinor wavefunc-
tion ¢. The observables for the wavefunction are as listed in Table 1 of Handout 11.
Most important amongst these is the current J = 1»vy1. This satisfies

VJ = (Vi) + (01 V)
= (Vi708) + (4(Vir0)™)
= —m(¢los) + ¢(dlos)™) =0 (2.7)
and so is conserved. This is important. It means that single fermions cannot be created
or destroyed. Of course, fermion pairs such as an electron and a positron can annihilate

one another, but that is a many-body problem and is described by quantum field theory.
The timelike component of J in the 7y frame, say, is

Jo = Y0-J = (yod0w) = (¥T¥) > 0 (2.8)
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which is positive definite. This is interpreted as a probability density, and localised
wave functions are usually normalised such that

/d3:1; Jo=1 (2.9)

Arriving at a relativistic theory with a consistent probabilistic interpretation was
Dirac’s original goal.

2.2 Plane-Wave States

A positive energy plane-wave state is defined by
= tpge 17 (2.10)

where 1 is a constant spinor. The Dirac equation (2.4) tells us that ¢y satisfies

ptbo = mipoo, (2.11)
and post-multiplying by o we see that
potho = m.. (2.12)

Recalling from Handout 11 that we can write Vi = peiﬁ , and noting that both p and
J are vectors, we see that we must have exp(i3) = £1. For positive energy states the
timelike component of p is positive, as is the timelike component of .J, so we take the
positive solution § = 0. It follows that g is then simply a rotor with a normalisation
constant. The proper boost L taking m~, onto the momentum has

p=mLylL =mL*y, (2.13)
which we know from Eq. (1.18) of Handout 9 is solved by

m + pYyo E4+m+p
I = = 2.14
Bm(m 4 pa) P @m(E +m) (2.14)

where we have employed the spacetime split pyg = E 4 p. The full spinor g is LU,
where U is a spatial rotor in the 7y frame, so is a Pauli spinor.

Negative energy solutions have a phase factor of etosp T with F = Yo-p > 0. For
these we have —piby) = mJ so it is clear that we now need = 7. Positive and negative
energy plane wave states can therefore be summarised by

positive energy ;/;("')(;1;) = L(p)Ue_I‘TBP'l‘

2.15
negative energy ;/;(—)(;1;) = L(p)UI elosp-x ( )

with L(p) given by Eq. (2.14). These are fundamental components in scattering theory.
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2.3 Hamiltonian Form and Angular Operators

A useful notational device in the STA formalism is to borrow the ‘2’ symbol from

standard quantum theory as an abbreviation for right-sided multiplication by les. If
we now pre-multiply our Dirac equation (2.4) by v we arrive at

i0pp = —=Viplas + myghy = —i Vi + ma. (2.16)

where 1 = v910v0. The right-hand side of this equation defines the Hamiltonian, which
we denote with the symbol H,

Hep = —iV) + 1. (2.17)

The use of vy in defining H shows that the Hamiltonian is an observer dependent
concept in relativistic physics.

Quantum states are usually classified in terms of eigenstates of operators which com-
mute with the Hamiltonian H, because the accompanying quantum numbers are con-

N

served in time. Of particular importance are the angular momentum operators L;,

defined by
[A/Z' == —Z'Q]‘kl']‘ak. (218)

These are the components of the bivector operator 1 A V. We therefore define the
equivalent STA operators

Ly =iB-(xAV), (2.19)

where B is a relative bivector. Writing B = [eo; recovers the component form. The
Lp operators satisfy the commutation relations (exercise)

[LB17LB2] — _iLleBQ' (220)

The angular momentum commutation relations directly encode the bivector commut-
ation relations, and so relate back to the rotation (Lie) group. This is sensible, as
rotations form a symmetry group of the system.

If we now form the commutator of Lp with the Hamiltonian H we find something
slightly surprising. The scalar operator Lp commutes with the bar operator ¥ — 1,
but for the momentum term we get

[Lp,H] = [B-(xAV),V] = -VB-(&AV)= BxV. (2.21)

The commutator does not vanish, so orbital angular momentum does not yield a con-
served quantum number in relativistic physics. But, since BxV = %(BV — VB), we
can write Eq. (2.21) as

[B-(zAV) — 1B, H] =0. (2.22)
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We therefore recover a conserved angular momentum operator by defining

Js = Ly — LiB. (2.23)
In conventional notation this is

Ji=Li + 1% (2.24)
where 3); = (1/2)€i;17;76- The extra term of %B is conventionally viewed as defin-

ing “spin-1/27. If we look for eigenstates of the J3 operator, we see that the spin
contribution to this is

In the non-relativistic Pauli theory the eigenstates of this operator are simply 1 and
—lo,y, with eigenvalues :I:%. In the relativistic theory the separate spin and orbital
operators are not conserved, and it is only the combined Jg operators that commute
with the Hamiltonian.

The geometric algebra derivation employed here highlights some interesting features.
Stripping away all of the extraneous terms, the result rests solely on the commutation
properties of the B- (@ AV) and V operators. The factor of 1/2 would therefore be
present in any dimension, and so has no special relation to the 3-d rotation group.
Furthermore, in writing Jg = Lp — %iB we are forming an explicit sum of a scalar and
a bivector. The standard notation of Eq. (2.24) encourages us to view these as the sum
of two vector operators!

2.4 Central Potentials

Coupling to a central potential V(r) is easily achieved by adding the term eV (r) to
the Hamiltonian. The full justification for this term comes from gauge invariance,
which is discussed in the following handout. The Jg operators still commute with the
Hamiltonian, as « AVV(r) = 0. The key to solving the Dirac equation in a central
potential is provided by analytic functions in 3-d. These are Pauli spinors satisfying

VU = 0. (2.26)

Since these functions immediately satisfy VW = 0, their components are spherical
harmonics. The radial dependence of these goes as !, where [ is an integer for physical
solutions. We therefore separate out the radial and angular dependence and write,

U =7 (0, p) (2.27)
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where (7,6, ¢) are 3-d spherical polar coordinates. We now see that
0=2VU¥ =r0,V+2AVU, (2.28)
so the angular term v satisfies the eigenvalue equation
—x ANV = [ (2.29)

Adapting the argument showing that Jg commutes with Vit is not hard to show that
Jp also commutes with & AV. The functions (8, ¢) can therefore be simultaneous
eigenstates of both £ AV and one of the Jg. The latter is conventionally chosen to be
Js, and we write these eigenstates as ]*. They satisfy

T AV = [ >0

2.30
Jp = (m+ Ly —l—l<m<l. (2:30)

Eigenstates with negative values of [ are constructed by first defining o, = @ /r and
noting that

1
xANVo, =aA\V(x/r)= -2 Ve =20,. (2.31)
T
It follows that
—x AV (oW"os) = 20,03+ o, x AV o5 = —(I + 2)o " 05. (2.32)

We can therefore construct eigenstates with [ running downwards from —2. It is con-
venient to introduce the label k = [ + 1, so that x is a non-zero integer, and the
degeneracy for each value of & is |2k|.

We can use the angular eigenstates to construct eigenfunctions of the Dirac Hamiltonian
Ep =Hyp = =Viplos + eV (r)p + mygthyo. (2.33)

It is clear that an energy eigenstate will need terms in both " and o,.¢". We write,
for positive [

bl k) = 6 u(r) + o, o(r) o (2.34)

where v and v(r) are complex superpositions of 1, Ios. On substituting this into the
Hamiltonian, we find that the radial equations reduce to

u '\ (k—=1)/r —(E —€eV(r)+m) u (2.35)

o' )\ E—¢eV(r)—m (—k—=1)/r v ) '
The same equations hold for negative k as well, using a similar solution to the one above.
This successfully separates the Dirac equation in any radially-symmetric potential.
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2.5 The Hydrogen Atom

The radial equations describing the relativistic quantum theory of the Hydrogen atom
are obtained simply by setting eV = —Za/r, where a = €* /4 is the fine structure con-
stant and Z is the atomic charge. The solutions to these equations are hypergeometric
functions, which generalise the Laguerre polynomials of the non-relativistic theory.
The key conclusion of this analysis is that the energy spectrum is obtained from the
equation

(Zo)?

E?=m?|1— 2.36
" n’2—|—2n’1/—|—(l—|—1)2 ( )

where n’ is a non-negative integer, m is the electron mass, and
v=[(+1)*—(Za)*V2 (2.37)

One can recover the non-relativistic formula for the energy levels by recalling that
a &~ 1/137 is small. We can therefore approximate to

val+1 (2.38)

and
(Za)? 1
2 42wl + D)+ (1 +1)2]

Erm|l- (2.39)

Subtracting off the rest-mass energy we are left with the non-relativistic expression

(Za)? 1 B mZ%e* 1
2

= — 2.40
2 (' +1+1) 32m2e3h* n (2.40)

ENR = —m

where n = n’ + [+ 1 and the dimensional constants have been put back in. We have
recovered the familiar Bohr formula for the energy levels. Note in particular that the
relativistic quantum number n’ differs from the Bohr quantum number n.

Expanding to next order we find that

(Za)? (Za)? n 3
ENR:—m o2 —m ond l—|—1_1 . (241)

The first relativistic correction shows that the binding energy is increased slightly
from the non-relativistic value, and also introduces some dependence on the angular
quantum number [. This lifts some degeneracies present in the non-relativistic solution.
The various corrections contributing to the energy levels are shown in Fig. 1. A more
complete analysis also requires replacing the electron mass m by the reduced mass of
the two-body system. This introduces corrections of the same order of the relativistic
corrections, but only affects the overall scale.
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Figure 1: Hydrogen atom energy levels. The diagram illustrates how various degen-
eracies are broken by relativistic and spin effects. The Dirac equation accounts for
the fine structure. The hyperfine structure is due to interaction with the magnetic
moment of the nucleus. The Lamb shift is explained by quantum field theory. It lifts
the degeneracy between S/, and P/, states.



