Physical Applications of
Geometric Algebra

Handout 15
Motion of Point Particles

The gauging arguments we have applied to spinor fields also apply to particle tra-
jectories, and enable us to write down a covariant equation for a point particle in a
gravitational background. This equation reveals how the equivalence principle enters
gauge theory gravity, and also exposes the link between the gauge theory approach and
General Relativity (GR). For our first major application of gauge theory gravity we
study the vacuum fields outside a spherically symmetric source. A simple argument
from Newtonian physics provides a candidate for the h-field, which turns out to give a
correct solution.

1 Trajectories and Tangents

Suppose a particle follows the trajectory x(A) in the STA. We know from our con-
siderations about fields that the actual STA path taken has no relevance. All that is
important is the value of the fields encountered at different points on the path. But
what then are we supposed to do about the velocity? If the path is irrelevant, what
relevance can be attached to the tangent vector? To resolve this we first apply a
displacement to generate the new path

#'(A) = f(z(A)). (1.1)

The new tangent vector is

O0F(2(N) = ()Y () = F() (12)
where @ = d\x(A). What we see is that tangent vectors to curves pick up a factor
of f(a) under displacements. But we now know what to with these factors — we

simply introduce a suitable form of the displacement gauge field h(a) in order to form
a covariant vector. In this case we define

v=h""(&), (1.3)

as the covariant tangent vector. This can then be equated with other covariant vectors,
or acted on by covariant derivatives.
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1.1 Point Particle Equations of Motion

Given that it is v that is the covariant vector, we expect that this will satisfy a covariant
version of the equations of motion encountered in relativistic physics. The first thing
we see is that v transforms under rotation gauge changes as

v i v = RuR. (1.4)

This transformation law does not affect the underlying STA trajectory. The law is
driven entirely by the transformation law of the h-field. The rotation gauge therefore
gives us complete freedom to choose the direction of the vector v, without altering a
single physical effect. A truly radical idea!

2 is invariant. It is

There is one restriction on v’, however, which is that the norm v
therefore this norm which determines whether a trajectory is spacelike, timelike or null.
It is the presence of the h-field in v = h=!(#) which means, for example, that photon
trajectories (v? = 0) are no longer constrained to the light cone of the background
STA. Since it is v? that is invariant under displacements, the proper distance along a

trajectory is now

A2
s = Vv dA. (1.5)
A1

It is this that gives the proper time elapsed between (A1) and x()2) along a timelike
trajectory. The proper time 7 is therefore the parameter along the trajectory with the
property that

v? =1

, where v=nh""(2)=h""(0,). (1.6)

In the absence of any fields, the velocity v satisfies © = 0. This is the equation that
we make covariant. Since we know that d, = @-V, we see that the covariant extension
must be

0-v 4 Q(i)-v=0. (1.7)
We can write this more abstractly as v-Dwv = 0, where
U-Dv:v-ﬁ(aa)Dav::i;-aaDavzaTv—l—Q(:i;)-v:(). (1.8)

Writing the equation as v-Dv = 0 is neat notationally, though it does not add much
new information. It is immediately clear that the Q(i) term is entering as a form of
acceleration bivector. But one has to be careful here, because we cannot just assert
that Q(&) is the acceleration due to gravity. The reason is that this is not a gauge
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invariant statement. If we apply a rotation gauge transformation, so that v’ = RvR,
we have

v + Q' (&)v' = 90" + [RU(&)R]-v' — 2(RR)-v' = Rv-Dv R = 0. (1.9)

One can therefore add terms in 2R R to the Q(a) field without altering the physics in any
way. The term RR is also an ‘acceleration’ term, so what we have is the identification

gravity + acceleration = gravity’ (1.10)

This is a form of the equivalence principle, which Einstein arrived at from thought
experiments comparing an accelerating lift with one at rest in a gravitational field.
The principle is neatly encoded in the gauge transformation properties of the Q(a)
field. The weak equivalence principle says that the motion of a test particle in a
gravitational field is independent of its mass. Equation (1.7) clearly embodies this by
making no reference to a mass. This principle ensures that we can equate gravitational
and inertial masses, the equality of which was unexplained prior to the arrival of GR.

1.2 The Metric and GR

The key to understanding the link between gauge theory gravity and GR is the in-
troduction of a coordinate frame. We take the set (x*) to be a set of scalar functions
parameterising spacetime position as @ = x(x*). From these we define the two frames

e, = 0,, et = VxH. (1.11)

These two frames are reciprocal to one another. If we now expand out the trajectory
x(A)in this frame we form

dx* dx*

a/\l’ = a/\l’(XM) = Kaul’ = Keﬂ.

(1.12)

In terms of this the proper distance along a path becomes

A2

s = V[0 dA
A1
A2 | sk dx” 1/2
= ————h! -h~Ye, dX
Al d)\ d)\ (eﬂ) (6 )

_ / W= (e,)-h= (e, ) dx” | (1.13)

T

A comparison with the equivalent formula in GR enables us to read off the metric as

g =h"Hen) 7 ey). (1.14)
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In GR the metric is the fundamental object. It is viewed as giving the distance between
points on a curved surface. In the gauge theory version, the metric is derived from
the more fundamental displacement gauge field. The crucial result which equates the
theories is that, if the h(a) and Q(a) satisfy the gauge field equations for some matter
distribution, then the resultant metric (1.14) solves the GR Einstein equations for the
same matter distribution. In addition, point particles moving so as to minimise the
proper distance (as defined by the metric), turn out to satisfy Eq. (1.7). That is,
Eq. (1.7) is the gauge theory analog of the geodesic equation.

A property of the metric that stands out is that it is independent of the rotation
gauge. Because GR defines everything directly from the metric, the rotation gauge
is never seen. This is one reason why the gauge theory nature of GR is hard to
establish. A second property of the metric, which can lead to some confusion, is that
displacements look just like changes of coordinates. This has led people to suggest that
the crucial feature of GR is that the equations are invariant under general coordinate
transformations. But this is clearly nonsense, because any sensible physical equation
will remain true in any coordinate system. What makes the metric special is the fact
that it cannot be transformed away by a change of coordinate system, not the fact that
it transforms sensibly!

1.3 Covariant Frames

From the preceding it is clear that the frame {h~'(e,)} is going to useful. We therefore
define

g, = h7e,), " = h(Vx") = h(e"). (1.15)
These are reciprocal because
Gu-g” =h7e,)-h(e") =e,-e” = ay. (1.16)

In terms of the g, vectors the metric has the simple expression

G = Gu-gu- (117)

The first of our field equations also has a simple expression. We first form

h(V)Ag" = h(V)Ah(e") + h(V Ae”) = h(V)Ah(e"). (1.18)
It follows that we can write the first field equation S(a) = 0 as

DAg* = 0. (1.19)
We can now complete the link with GR. We use the abbreviation
D, = e,V + Qe,)x = 0, + Ne,) % (1.20)
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for the covariant derivative in the e, direction. When this acts on the vector g, the
result can be expressed back in terms of the {g,} frame. We therefore write

Dugy =T}, 95 (1.21)
which defines the Christoffel connection Ffw.

Vectors formed from derivatives split into two types. Those that transform like 0,z
and pick up factors of f(a) and those that transform like V and pick an f~(a) term.
Mathematicians refer to these as vectors and 1-forms respectively, and like to view them
formally as inhabiting two separate spaces. The idea then is that the metric defines a
map between these two spaces, and in so doing imposes a distance scale. The gauge
approach is very different. We use suitable versions of the h-field to map all objects
into an intermediate state of covariant vectors, which do not pick up any factors of
f(a) under displacements. This means we are then dealing with objects which only
transform under rotations, whereas GR only ever works with rotation gauge scalars.

2 Spherically Symmetric Sources

As our first major application of gauge theory gravity we will find the fields around
a spherically symmetric source. Those of you familiar with General Relativity will
know that the equivalent problem is solved by the Schwarzschild metric. Here we will
adopt a very different solution strategy, and obtain a set of fields which at first do not
appear to resemble the Schwarzschild solution. Outside the horizon the two solutions
are equivalent, however, and a simple gauge transformation can be found between
them. Before proceeding, we first introduce some notation for spherically-symmetric
coordinates. In terms of the fixed {v,} frame we define:

t=xv cos) = x4 /r 2.1)
r=/(rA%)? tang = (z-9%)/(2-7). '
The associated coordinate frame is
€ =%
e, = xAYo Y0/ = sinf(cospy1 + singy2) + cosb v3 (2.2)
eg = 1 cosf(cospyr + singyz) — rsinf s '
e, = rsinf(—sing vy, + cosga).
The reciprocal frame vectors are denoted by {e!, ", e’ e?} and are given by
el = ¢ e’ =—e,
(2.3)

e! = —eq/1? e? = —egy/(rsind)?.
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Notice that we have started to use the components themselves as labels for vectors.
This is quite common practice. We will also make use of the unit vectors § and ¢

defined by

0 =eq/r, ¢ = e4/(rsind). (2.4)
From these we define the unit relative vectors
o, = e.¢, oy = éet, o, = qget. (2.5)
These satisfy
0,000, = eteréqg = 1. (2.6)

The dual spatial bivectors are given by

N

lo, = 06, Ios=ep, Io,=—ed. (2.7)

Throughout the following we will include factors of the gravitational constant i, but
will continue to ignore factors of c.

2.1 Newtonian Considerations

The equation for a particle accelerating towards a mass M in Newtonian physics is

. GM
7= o (2.8)
which integrates to give
GM
%7*2 = + constant. (2.9)

7

We expect the some form of this equation must survive in the relativistic gauge theory
treatment. In seeing how this could work, the first issue we must resolve is what type
of derivative we should use — coordinate time or proper time? The coordinate time is
a gauge-dependent concept, so it is clearly the proper time that should be used. But
we have the freedom to chose the coordinate time ¢ however we like. A natural choice,
then, is to make ¢ the proper time for freely-falling observers, since it is these that
generalise the notion of inertial observers. In order that the clocks for these observers
all coincide, we chose them all to be at rest at infinity. In this case we have

r=—V(2GM|/r), (2.10)
and the paths followed by these observers have
d
P= = — (2GM /e, (2.11)

dt
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The covariant version of this vector is v = h™!(z), with v* = 1. Again, we have some
gauge freedom in the choice of this vector, this time through the choice of rotation
gauge. Since we want the physics to look natural for these observers, a sensible choice
is to set v = ¢;. It is important to remember that this is a gauge choice — there is no
physics implied in this choice. It follows that we now have ¢, = h™'(z), so

hie:) =@ = e —/(2GM/r)e,. (2.12)

This gives us a plausible term in the h-field.

2.2 The Solution

We now make the simplest possible guess and assume that Eq. (2.12) is the only term
in the h-field which differs from the identity. We therefore have

h(a) =a—/2GM/r)a e e,, (2.13)

which has the adjoint form

h(a) = a —/(2GM/r)a-e, ¢;. (2.14)
Remarkably, this is the solution we are after! To see this we first find the {¢*} frame
vectors
t t r r t
g =€ g = —\/(2GM/r)e
&= g = et (2.15)
The first of the field equations, DAg" = 0, is solved by
GM GM
Qes) = 2O Qe,) = — 5O
Qeq) = u/r egey Qey) = u/reyey (2.16)
where
u=—/(2GM]/r). (2.17)

Notice that the Q(e;) term, which governs acceleration, has picked up a factor of
GM/r*. We next compute the terms in the Riemann tensor. This is laborious, and
best done with the aid of a symbolic algebra package, but the end result is strikingly
simple,

2r3

R(B) =

(B+30,.Bo,). (2.18)

The immediate question, then, is why is this a solution?
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2.3 The Vacuum Equations

Our second field equation is G(a) = 87GT (a), where T (a) is the matter stress-energy
tensor. In the vacuum region outside a source we must therefore have

Gla) = R(a) — %aR = 0. (2.19)
Contracting this with 9, we see that R = 0, so the vacuum equations are equivalent to
O.-R(aNb) = R(a) = 0. (2.20)

Combining this with the symmetry relation d,AR(aAb) we see that the Riemann tensor
for a vacuum solution must satisfy

8. R(aNb) = 0. (2.21)

Provided this is satisfied, we have a genuine vacuum solution. It is instructive to see
how this is satisfied by our Riemann tensor (2.18). We first recall that

0,aNb = 0,(ab—a-b) = (n—1)b=3b (2.22)
since we are working in 4-d. Next we use
Oy a-(bNc) = 0y(a-be—a-cb) = be — cb = 2bAc, (2.23)
from which we see that d,a- B = 2B for any bivector B. It follows that in 4-d
0,Ba = 0,(Ba —aB) + d,aB = —20,a-B+ 4B = —-4B+4B = 0. (2.24)

We now have assembled all of the results needed to prove that our Riemann tensor is
that of a genuine vacuum solution. We form

0.(aNb+ 30, aNbo,) =3b+ 30,0,.(ab—a-b)o,
= 3b — 3bo, 0,
=0, (2.25)

which completes the proof. This is a massive improvement over tensor calculus, where
one has no alternative but to check each component in turn.

We have found a solution for the fields outside a spherically symmetric source. It turns
out that this solution is unique (up to choice of gauge). All spherically symmetric
vacuum solutions have equivalent physical properties to the solution found here. In
the final lecture we will look at the properties of this solution.



