January 26, 1999

PHYSICAL APPLICATIONS OF
GEOMETRIC ALGEBRA

LECTURE 4

SUMMARY

In this lecture we will build on the idea of rotations represented
by rotors, and use this to explore topics in the theory of Lie

groups and Lie algebras.
. Reflections, Rotations and the rotor description.
. Rotor groups, multivector transformations and ‘spin-1/2’

. Lie Groups, continuous groups and the manifold structure

of rotors in 3-d.
. Bivector generators and Lie algebras.
. Complex structures and doubling bivectors.
. Unitary groups expressed in real geometric algebra.
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‘ PSEUDOSCALARS AND DUALITY I

Exterior product of n vectors in G,, gives a multiple of the
pseudoscalar, 1. Two key properties:

1. Normalisation

I?] = 1.

Sign of I? depends on dimension (and signature).

2. Right-Handed.

€1

€1 A\ es is right handed, by definition. e; Aeg Aes is if looking
down e3 gives right-handed plane. Continue inductively.

Product of the grade-n pseudoscalar [ with grade-r

multivector A, is a grade n — r multivector
IA, = <1Ar>n—r

Called a duality transformation. If A,. is a blade, get the
orthogonal complement of A,. — the blade formed from the
space of vectors not contained in A,..




Summarise the commutative properties of I by

IA, = (=) VAT
I always commutes with even grade. For odd grade depends
on dimension of space.

Important use for /: interchanging dot and wedge products.
Take A, and B,,r + s < n,

Ar<BsI> — <A?“BSI>|?“—(TL—S)| — <ArBsI>n—(r—i—s)
— (A,By)yssl = AL AB, T

Have already used this in 3-d.

‘ REFLECTIONS I

a=al +aq

CL/:CLJ_—CLH

Reflect the vector a in the (hyper)plane orthogonal to unit

vector m.




Component of a parallel to m changes sign, perpendicular
component is unchanged. Parallel component is the projection
onto m:

CLH =a-mm
The perpendicular component is the remainder
a; =a—amm=(am—am)m=aAmm
Shows how the wedge product projects out component
perpendicular to a vector.
The reflection gives

a’ —a-mm +aAmm

—(m-a+mAa)m = —mam
A remarkably neat formula!

Simple to check the desired properties. For a vector parallel to
m

—m(Am)m = —Ammm = —Am

transformed to minus itself. For vector perpendicular to m
—m(n)m = —mnm=nmm=n  (n-m =0)

so unchanged. Also give a simple proof that lengths and
angles unchanged

a't’ = (—mam)(—mbm) = mabm




Scalar part gives @’ -0’ = ma-bm = a-b, as expected.
Bivector part gives

a A = manbm

A crucial sign change cf vectors. Origin of distinction between

polar and axial vectors.

‘ ROTATIONS I

CLH

Theorem: Successive reflections generated by two vectors
and 71 gives a rotation in the plane.

a’ is the result of reflecting a in the plane perpendicular to m

a' is the result of reflecting @’ in the plane perpendicular to 7.

Component of a outside the plane is untouched.

Simple trigonometry: angle between a and @’ is twice angle




between m and n, so rotate through 26 in the m An plane,
where m-n = cos(#).

How does this look in GA?

a = —mam

a'" = —na'n = —n(—mam)n = nmamn

This is beginning to look very simple! We define

R =nm, R =mn

Note the geometric product. We can now write a rotation as

a+— RaR

Incredibly, works for any grade of multivector, in any
dimension, of any signature! As seen already, R is a rotor.
Now make contact with bivector approach.

R is the geometric product of two unit vectors n and m,
R=nm=n-m+nAm = cos(f) + nAm
What is the magnitude of the bivector n Am?
(nAm)-(nAm) = (nAmnAm) = (nmnAm)
= (nm(n-m —mn)) = cos?(8) — 1 = —sin*(9)

Define a unit bivector in the m An plane by

B =mAn/sin(d), B?=-1




NB Using the correct right-handed orientation for B, as 6
defined as angle between m and n in positive sense from m

to . Now have

R = cos(#) — Bsin(h)

Familiar? it is the polar decomposition of a complex number
back again. Unit imaginary replaced by the unit bivector B.
Write

R = exp{—B6}

(Exponential defined by power series — this always converges

for multivectors).

But our formula was for a rotation through 26. For rotation

through 6, need the half angle formula
R = exp{—DB6/2}

which gives

0 o—B0/2 B/

for a positive rotation through 6 in the B plane. In GA think of

rotations taking place in a plane not around an axis.




‘ THE ROTOR GROUP I

Form composite of two rotations

a +— R2<R1QR1>R2 = R2R1QR1R2

Define
R =RsRy

still have a — RaR. Risa geometric products of an even

number of unit vectors,
R=FEkl---mn

This defines a rotor. The reversed rotor is

~

R=nm---lk
so still have normalisation condition
RR=1Fkl---mnnm---lk=1=RR

In non-Euclidean spaces require this.

Now decompose general multivector into sum of blades. Write

each as product of orthogonal vectors. Take

A, =ajas - a,




Rotate each vector to @/, = Ra; R. Get

coeal, = RaiRRasR -+ Ra, R

= Raias---a,R = RA,.R

Recover the same law as for vectors! All multivectors

transform same way when component vectors are rotated.
Spin-1/2
Have rotors R and Ry = exp(—B6/2). Product rotor is

R = RyR= e P/2R

Now increase € from O through to 27. 8 = 27 is identity

operation. But R transforms to

R R = e B™R = (cosm — Bsinm)R = —R.

Rotors change sign under 360° rotations. Just like fermions in
guantum theory! But no quantum mechanics here. Can see

effect with coupled rotations.

‘ LIE GROUPS I

Rotors form an infinite-dimensional continuous group — a Lie

group. Not a vector space, actually a manifold. See this in 3-d.
Write
R=x0+x1le; +x9les + x31€3




RRZCI?02+51312—|—51322—|—3332 =1
Defines a unit vector in 4-d. Group manifold is a 3-sphere. Not

same as rotation group.

Rotations are formed by a — RaR,so Rand —R give same
rotation. Rotation group manifold is 3-sphere with opposite

points identified.

Attitude of a rigid body described by a rotor, so configuration
space for rigid body dynamics is a 3-sphere. Important for

1. Finding best fit rotation.

. Extrapolating between two rotations.
3. Lagrangian treatment and conjugate momenta.
4. Quantum rigid rotor.

Abstract idea. Lie group = Manifold + product z = (b(a:, y)

‘ BIVECTOR GENERATORS I

Question: can any rotor be written as the exponential of a

bivector? Define a one-parameter ‘Abelian subgroup’ R(\)
R(A + p) = R(N)R(p)

Must have R(0) = 1. Look at vector

a(\) = RaoR




Differentiate with respect to A to get
a'(\) = RlagR+ RayR' = R'Ra — aR'R

Have used familiar result

(RR))=0=R'R+ RR

R'R could have grades 2, 6, 10 etc. But commutator product

with any vector is a vector, so R’ R is a bivector only,

But have

R'(A+ p)

So B is constant along this curve. Integrate to get
R(\) = e *B/2
Any rotor on this curve is exponential of a bivector. Manifold
idea = true for all near identity.
Euclidean space: All rotors = bivector exponential
Mixed Signature: R(\) = + e~ AB/2
Converse result: exponential of a bivector = rotor. Form

a(A) = e B/2 g M B/2




Differentiate to get Taylor series:
a’ e_AB/ZCL'Be)\B/Z

a = e M/2(q-B).Be /2 e

NB a- B always a vector, so preserves grade. Get

1
e—B/ZaeB/Z :aj—l—a'B—l—g(CL'B)'B‘F’”

‘ LIE ALGEBRAS AND BIVECTORS I

Bivectors are generators of the Lie group, by exponentiation.

These generate a Lie algebra. Expresses fact that rotations do

not commute. Form compound rotation:
RCLR = RQ Rl <R2 Rl CLRl RQ)Rl R2 .
The resulting rotor is

P o—B/2 _  B2/2 [B1/2 ,~B2/2 ~B1/2

Expanding exponentials we find (exercise)
B =By xDBy +

The Baker-Campbell-Hausdorff formula.

Abstract idea. Lie algebra is a linear space (tangent space at
the identity element of the group manifold) with a Lie bracket.
This is Antisymmetric + Closed + Jacobi identity.




For bivectors, Lie bracket = commutator product, A x B.
Gives a third bivector. Jacobi identity is

(AxB)xC+ (CxA)xB+ (BxC)xA=0

Proof Expand out into geometric products. Nothing special
about grades. True for any 3 multivectors. One consequence:

(anb)x B = (a-B)Ab— (b-B)Aa
NB proves closure.

Another view: Basis set of bivectors { B; }. Can write

Bjx By, = C};,B;

CJZ: .. are the structure constants. Compact encoding of

properties of a Lie group. Can always construct a matrix rep’
of Lie algebra from structure constants

‘ COMPLEX STRUCTURES I

GA in 2-d gives complex numbers. What about complex

vectors? Natural idea is work in 2n-d space. Introduce basis
{eia fz}

fi-fj=eirej =10i; ei-fj =0, Vij.
Introduce complex structure through doubling bivector

J = €1f1 —|—€2f2 —|—°°°‘|‘€nfn — ei/\fi




Sum of n commuting blades, each an imaginary in own plane.

J satisfies

J-fi=(ejNfj) fi=e€;0i; =e;

J-e; =(ejNfj)e =—Ff
J maps from one half of vector space to other. Follows that
J-(Je))=—J fi=—e;, J(J-fi)=Je =—fi

Hence
J-(J-a)=(a-J)-J=—a Ya

Phase rotation becomes a rotation in .J plane. Expand

e=I9/2qe 92 = q+ ad+ L (ad) T+
—(1—-%+ - Ja+(6—Z —--JaJ
= cos¢a + sinpa-J

‘ HERMITIAN INNER PRODUCT I

Complex vectors Z and W':
Z; =x; +1y;, and W, = u; + v,
Hermitian inner product is

(WIZ) = Wi Z; = wizi + viyi + i(wiyi — viz;)




Want analog in 211-d space. Introduce vectors
xr=x;€; +y; fi, and w = uze; + v, f;.
Real part of (W |Z) is x-w. Imaginary part is
w-e;x-fi —w-fire; = (w-e;x—x-e;w)f;
= [(xAw)-¢e;]- fi = (xAw)-(e; A f;) = (zAw)-J.
NB Antisymmetric ‘bilinear form’. Can now write

(alb) = a-b—1(anb)-J

Maps from 2n-d space onto complex numbers.

‘ UNITARY GROUPS I

Unitary group is invariance group of Hermitian inner product.
Must leave inner product and skew term invariant. Build from

rotations. Require that
(@' AO")-T = (anb)-J
with a’ = RaR, b’ = RbR. Find
(' Ab)-J = (a’''J) = (RaRRbR.J)
= (abRJR) = (aAb)-(RJR)
Must hold for all @ and b, so

RJR =J




Unitary group U(n) is subgroup of rotor group which leaves .J
invariant. Get complex groups as sub-groups of real rotation

groups! Unusual approach, but has a number of advantages.

With R = exp(—B/2) must have
BxJ=0.

Get bivector form of Lie algebra of the unitary group, u(n).

Use Jacobi identity to prove

[((a-J)A(b-J)]x J —(a-J)ANb+ (b-J)Aa
—(aNAb)x J.
Follows that
l[aAb+ (a-J)A(D-J)]xJ = 0.

Work through all combinations of {e;, f; }. Write down the

following Lie algebra basis for u(n):

eiej—l—fifj <Z<]:1n>
eifj—fiej <Z<]:1n>
eifi.

Can establish closure (exercise). Algebra contains .J,

commutes with all other elements, gives global phase term.

Removing this gives special unitary group, SU(n).




