February 11, 1999

PHYSICAL APPLICATIONS OF
GEOMETRIC ALGEBRA

LECTURE 9

SUMMARY

In this lecture we will concentrate on the rotor representation
of Lorentz transformations. An analogy with rigid-body
mechanics leads to a new rotor-based technique for analysing

the relativistic equations of motion of a point particle.
Fixed points and the celestial sphere.
Pure boosts and acceleration as a bivector.

Relativistic equations of motion for a point particle

described by rotors.

Thomas precession.

The Lorentz force law and the Faraday bivector.
Point particle in a constant field.

A classical model of g = 2.




‘ INVARIANT DECOMPOSITION I

Restricted Lorentz transformation a — RaR. Every

spacetime rotor can be written as
R=+eB/?2

The minus sign rarely needed. Can find Lorentz invariant
decomposition. Write

B? = (B?)y + (B?), = pel?

(assume p # 0). Define

So that

Now have

B:pl/zewﬂé:aé—l—ﬂ]é

Since
BIB=IBB=1
Have commuting blades aB, ﬁIB. Write

R — oaB/2 JBIB/2 _ BIB/2 ,aB/?

Invariant split into a boost and a rotation.




‘ FIXED POINTS I

Timelike bivector B, B? = 1, has two null vectors 7.

t

Satisfy (exercise)

A

B°n:|: = :|:7”L:|:

Necessarily null, since

A

(Bniy)ng =0=4n3

N+ chosen so that

nyAn_ = 2B

Form a null basis for B plane. n4 anticommute with B,

commute with I B. Lorentz transformation gives:

— eO‘B n4

Null directions are scaled. Rotors for dilations again.




‘ THE CELESTIAL SPHERE I

Yo

—

=

::::>S\t:O

1

Visualise Lorentz transformations through effect on the past

light sphere — the celestial sphere S .

Observer 7yg receives light along null vector n. Form relative

vector n A7g, with

2

(nAy0)* = (n-70)* = v = (n-70)°




Form projective unit vector 1

n = nAvo/n%

Maps all past events onto a sphere. Second observer v forms
vectors nAv /n-v. Transform back to o frame for

comparison:

- NAV n' A
n'=R—R=_"0
n-v n' Yo

n' = RnR. See effect by moving points on sphere with
n — RnR. Two fixed points.

‘ PURE BOOSTS AND OBSERVER SPLITS I

Velocity © boosted v. Need rotor with no additional rotation

component:

v = Lul

LaLE = a | for a | outside u/Av. Bivector generator is

multiple of u Av. Anticommutes with © and v, so
v=Lul = L*u = L? = vu

Solution is (check!)

7 14+ vu o a VAU
— = &X —
20+ w2 P\ 2und]

where ch(a) = u-v.




Now take arbitrary rotor 2. Decompose in 7, frame,

v = R%R. Pure boost is

I 1+ vy o <g v/\%)
20+ o) 2~ P\ 2 Al

v-7yo = ch(«). Define rotor U,

~

U=LR, UU=1

Satisfies
U %ﬁ = Lol = Yo

Ib/2

soUvy =yU,and U = e — a pure rotation in g

frame.

R=LU

Frame dependent decomposition. Do not commute.

‘ SPACETIME ROTOR EQUATIONS I

Trajectory (), future-pointing velocity v = d,x, v = 1. Cf

rigid-body dynamics. Write
v = R%fi

Put dynamics in rotor /! Compute acceleration

0 =0;(RywR) = RypR+ RyR




RR IS a bivector. Have have

. ~

o = RRv —vRR = 2(RR)-v

Consistent with v-v = 0. Now have
vv = 2(RR)-vv

But rotor R can carry extra rotation. Want rotor to be pure
boost at each instant

To first order
v(T + 1) =v(1)+ 07D

Proper rotor between v(7) and v(7 + d7) is

B L+ v(r 4+ 07)v(T) B Ls i
L= 2(1 4+ v(7 4+ d7)-v(T))]1/2 L4359

But since

~ ~

v(1T 4+ 07) = R(T + 67)v0R(T + 67) = LR(T)vR(7)L




must set

R(t+67) = R(7) + 61 R = LR(7)

Correct expression is
RR = %i)v

VU is acceleration bivector — v in instantaneous rest frame.

This is generator for R.

‘ THOMAS PRECESSION I

Particle on circular orbit. Worldline

x(7) = t(7)y0 + al[cos(wt)yr + sin(wt)ys]

Y0
V2

~




Velocity is
v = 0,2 =t (v + aw|[— sin(wt)y1 + cos(wt)z])
Relative velocity v = v A7y /vy has |v| = aw. Define
tanha = aw, t = cosha.

Velocity now

v ch(a)vyo + sh(a)[— sin(wt)vy1 + cos(wt)s]

eom /2 —an /2

Yo €

n = —sin(wt)o; + cos(wt)os

Simplify with
n=e wos g, — R,o5R,, R, = exp(—wtlos/2)

Gives

eOn/2 — exp(oszagf%w/Q) =R, e002/2 R,

Define R, = exp(ao2/2). Now have
U = RwRaRwWORwR R, = RwRa/yORaRwa
Rotor for motion must have form

R=R,R.,RT, Ry = exp(—wrtlos/2)




Determine w7y from vv. Write

~

v= R, v, R, Vo = RaYoRa

~

R, [2(R., R, ) Vo Va] Ry
Jch(a) R, |—ch(a)o 1 + sh(a)los]| R,

wsh(a

Also need QRR goes as

~

)R, [—wlos — wrRaIos Ry R
)R, |—(w + wrch(a))los + wrsh(a)o| R,

2R, R, + 2R, R, R+R+R. R,
ch(a
ch(a

So wp = —ch(a)w. Full rotor is

R = e—wt103/2 ea02/2 ech(a)wt]ag/Z

wr # w = Thomas precession. Vector y; transported round

circle,

— R%R
After time { = 27T/w, vector transformed to
e (27T/w> _ ea02/2 eZﬂ'Ch(Oz)]O‘g " e—a02/2

Precessed through angle # = 27 (cosha — 1). Effect is

order |v|*/c?.




‘ THE LORENTZ FORCE LAW I

Familiar with non-relativistic form

dp
— =q(FE B
o ¢(FE +vxB)

All relative vectors in yg frame, /. = E;0; etc. Want

relativistic version of law. Have

P =pAvy, t=v"

X through by v-~g. Get pA~g on left. On right
vy E=v(ENy)— (v-E)Ay = (E-v)Avyg
and
—v-yv-(IB) = —(vAv0) % (IB)
= [UB)-v]Av + [v0-(IB)]Av = [(IB)-v] Ao
Used Jacobi identity at intermediate step. Now have

d :
% = pAv = q[(E + IB)-v]Avg

Define Faraday bivector F’
F=FE+1IB

The covariant electromagnetic field strength. More next




lecture!
pAYo = q(F-v) Ao
Must hold in all frames, so remove ~y. With p = muv, get

relativistic form of Lorentz force law,
mv = qF v
Manifestly Lorentz covariant. Acceleration bivector is

v =LFyy= g(F-v)/\v = EEU
m m m

where E,, is relative electric field in the v frame.

‘ ROTOR FORM OF LORENTZ FORCE LAW I

Use v = R%R,

. ~

o = 2RRv = 2(RR)-v
Equate projected terms

R=-LFR
2m

Not most general, but simplest.
Example - Constant Field

Easy now! Integrate rotor equation

R = exp(%FT)




Now do invariant decomposition of F’
F? = (F?)o 4 (F?)y = pelP

so that
F:pl/zemﬂﬁ:aﬁ—l—]ﬂﬁ

where F'2 = 1. (For null ' use different procedure). Have
R = exp(iaF’T) exp(iIﬂFT)
2m 2m
Now decompose initial velocity vy = g
Vo :szo :FF°UO—|—FF/\UO — Vg|| T VoL

vo| = F F'-vg anticommutes with F', vg1 commutes, so

T = exp(%aﬁﬂvon + eXp(%IﬁFT)UOL

Now integrate to get the particle history
ean’T/m 1. eqﬂ[ﬁ’T/m .
F'Uo +

qa/m qB/m

r — g —

F' = linear acceleration, I F' = rotation




