February 4, 1999

PHYSICAL APPLICATIONS OF
GEOMETRIC ALGEBRA

LECTURE 7

SUMMARY

In this lecture we will look at what GA has to tell us about the
subject of vector calculus, and how the geometric product

provides a first order, invertible vector derivative.

e The vector derivative. Combining derivatives with GA to

form a geometric calculus.

Curvilinear coordinates, coordinate frames and frame-free

linear algebra.

Geometric Calculus in the plane and the Cauchy-Riemann

equations.

The fundamental theorem of calculus. Relating surface

and volume integrals.

Analytic functions and the Cauchy integral formula




‘ THE VECTOR DERIVATIVE I

Points represented by vector x. Fixed frame {e”},

coordinates :1:’“ = e’“-az Define

0
V = k
2 Gk
k
Dot V with a, get directional derivative in a direction

0V F(z) = lim L&+ €)= F2)

e—0 €

F'(x) a multivector-valued function of position.

Scalar field ¢(x) — V¢ returns the gradient (vector pointing
in direction of steepest increase).

Vector field J(x) — Can form geometric product V.J.

e Scalar part:

aJ* .
The divergence. Have written
0
0; = —
ox?

e Bivector part:

VAT =e'N0;J]) = e' Ne? 0

Antisymmetrised terms in 0; Jj. In 3-d get components of




the curl.

VA =1VxJ

A bivector, of course!

‘ MULTIVECTOR FIELDS I

Definitions extend simply to multivector fields

VA=¢e"9,A
and define divergence and curl by
V-A, = <VAr>r—17 VAA, = <VAr>r—i—1

The curl of a curl vanishes because partial derivatives

commute

VAVAA) = e'AO;i(e! NOjA)
= ei/\ej(‘?i(‘?jA:O

Get dual result, the divergence of a divergence vanishes
V- (V-A) =0.
V does not commute with multivectors. Need conventions for
scope of operator:
1. In absence of brackets, V acts to immediate right.

2. V acts on all of the terms in adjacent bracket.




3. When V acts on non-adjacent multivector use overdots

for scope.

VAB = " A0, B
So A not differentiated. Can write Leibniz’ rule
V(AB) =VAB+ VAB

Also use for linear functions

Vi(a) = Vi(a) — e*f(da)

LINEAR ALGEBRA I

Basic relation
V(z-a) =¢€'0;(z7ej)-a=¢€"e;-ad] =e'e;-a=a

Replace frame contractions by derivatives. Vector variable a
derivative J,. Have

Oq a-A, rA,
J,aNA, = (n—1)A,

Similarly, write trace of a linear function
Tr(f) = 04-f(a)

Removes frames, emphasises geometric content.




‘ CURVILINEAR COORDINATES I

Often need non-Cartesian coordinate systems. Set of scalar
functions {z*(x)}. Express F'(z) as F'(z*). Chain rule
gives

VE =Va'0;F = e' 0;F
Defines (contravariant) frame vectors {e’}

e' = Vo'

In Euclidean spaces perpendicular to surfaces of constant z°.

Zero curl:
VAe' = VA(Vz') =0
Reciprocal frame from (covariant) coordinate vectors
€, = (9ZZC

Direction of increasing x* coordinate, others fixed. Reciprocal
because

e; el = ((%:C)-V:Cj — 9,27 = (55

Work with both. Avoid ‘weighting factors’ for orthogonal frames

—1 A

e; = h;é;, PGS

Particularly bad if signature not Euclidean.




‘ 2-D GEOMETRIC CALCULUS I

Write the vector x in right-handed orthonormal frame
| 2, _
r=x €1 +x ey =Xe| +yer
(NB different fonts.) Vector derivative is

V = 618}( + 628y = €1 <8X + 18y>

with I = ejes. Act on vector a = ue| — veés:

Va = (e10x + €20y )(uey — ves)

:(‘M_(%_I(@ 8u>

ox Oy 0x i 8_y
Cf the Cauchy-Riemann equations! Introduce the ‘complex’
field ).
v =uae; =u+ v

Analytic if satisfies
Vi =0
The key to analytic function theory. Generalises:

e 3-d, 1) even-grade multivector. Get spin harmonics —

Pauli and Dirac electron wavefunctions.

e Spacetime, have

V =¢"9, +€'0,:, 1 =1...3.




1) an even-grade multivector, V1) = 0 is neutrino wave
equation. Add a mass term, get Dirac equation.

e Restrict ¥ to pure bivector ', VF = O is all free-field

Maxwell equations

All examples of same mathematics

‘ ANALYTIC FUNCTIONS I

z=ex=x+1y

z*=x— Iy = ze; = e1(—eqxes)

Complex derivatives have properties
0.z =1 0.z =0
82*220 82*2*:1

From these we have

0. = L(0, — 19,), 0. = L(0, +10,)

An analytic function depends on z, ¥ (x + Iy) = ¥(z) —
independent of z*, so

This is what the limit argument is all about! Equivalent to




Recovering key equation. Solutions to V1) = 0 constructed

as a power series in z:

Vz=V(eix) =2e1-Vor—e Vz
= 261 — 261 =0

Drives most of analytic function theory! Eg.

Vieix — 2)" =nV(eix — z)(e1x — 2)" 1 =0

Taylor expansion in z about zp is analytic
Problems

1. V mapped to same algebra as ) by e;. Only works in 2-d
= Keep V and 1 distinct.

2. ‘Limit’ argument does not generalise. = Replace with

Vi = 0.

‘ DIRECTED INTEGRATION THEORY I

Familiar with divergence theorem, Green'’s theorem, Stokes’

theorem and Cauchy integral formula. All special cases of a

single integral formula!

Work in 2-d (generalises easily). Multivector-valued function

M (z) at points g, 1, T2.

€1 = X1 — Xo, €2 = T2 — Xg




iy

Vector derivative at x is

VM = lim €1<M1 - M0> + €2<M2 - M0>

T;—=XQ

where M; = M (x;). Want to relate to a surface integral.

Extrapolate M linearly between base points

m(x) = My + Z(CE — x9)-e' (M; — M)

Calculate integral of m(a:) around the perimeter (exercise)

%dSm(az) = €1<M0 - MQ) + €2<M1 - M0>

= exNeyfe! (My — My) + e*(My — M)
Now have
VM = lim dS e’ nel'm

T,

Bute?Ael = (IV)™!, where V is scalar area of triangle.




Take limit, replace m by M,

1
VM = lim —]{dsrlM
V=0

dS = RH surface element, I = RH pseudoscalar. d.S1~!
vector-valued. Holds in any dimension. An alternative
definition of V — the derivative from an integral!

‘ THE FUNDAMENTAL THEOREM OF CALCULUS I

Build up over triangulated surface.

Interior lines cancel, left with

/ vdXM:jq{ dS M
VvV oV

dX = IdV is directed volume element. d.S is directed
surface element. Order is important, as is handedness.

This is the fundamental theorem of calculus. Relates the

integral of a derivative to surface integral.




Reversed result;

/ MV dX = M dS
VvV oV

Most general from

/VLWdX) = ]év L(dS)

L(A) and multilinear function, grade . — 1 multivector as
argument. Holds in any dimension. Also holds for curved

surfaces!

As example, recover divergence theorem. Let

L(A) = (I"1JA)

where J is a vector. Find that

(JVIAXI™YHN = [ V-JdV =¢ (dSI1J)
I fom=g,

Normal to surface defined by
ndA=dSI !

d A a scalar measure. Points outwards in Euclidean spaces.

More complicated with mixed signatures. Recover

/V-JdV:]{ n-JdA
14 v

as expected. We can similarly go on to recover Green’s

theorem.




‘ CAUCHY'S THEOREM RECOVERED I

Return to 2-d v ‘complex’ valued. Fundamental theorem:

/de = %dSw

But z = ey2 so write as

]{zpdz:/elwdx

Suppose take

f(z)

(z — 2p)

b= . Vi=0

Need properties of (2 — 29) ! (The Cauchy kernel). Have

I (z—2)"  x—x0

— — e1
2 — 20 (2 — 20)|? (x — x9)?

where g = €1 zg. But 2-d Green’s function In |z — x| has

r — Xy

Vin |z —xg| = & = 10)?

Hence the Cauchy kernel satisfies

1
\% = ViIn|z — 20le; = 278(x — x0)eq
Z — 20

(2 — 29) ! is Green's function for the vector derivative!




Put together:

2) dz:q/V((x_xozelf(a:)) dX

2 — 20 T — xg)

= e /277(5(:1: —xg)er f(x)] |dx| = 271 f(2p)

Recovers the Cauchy integral formula

f(z0) = : =) g

2wl | 2z — zg

Now understand what each term is doing!

e (2 is a tangent vector. Forms a geometric product in the

integral.

e (2 — z9)~ ! is Green's function for the vector derivative

V. Generates a J-function at 2.

e [ (or1) is pseudoscalar from directed volume element

dX =1dV.

Also understand residue term in Laurent expansion

S (e )

(z—2)" 22—z =

This is simply a weighted Greens function. Residue theorem
recovers weight. Unites poles and residues with Green’s

functions and d-functions.




‘ ARBITRARY DIMENSIONS I

Extend to arbitrary (Euclidean) dimensions. M is an
even-grade multivector satisfying VA = 0. The Green’s

function for V is

1 _
G(z,z0) = .

Sh |z — xo|™

Sy, = surface area of (m — 1)-dimensional unit ball. The

Green'’s function satisfies

VG(z,z0) = G(z,20)V = 6(z — o)

A version of Cauchy’s theorem in n-d constructed from

]{ — dSM:/ < T~ %o >%dXM
ov | — xo|" v \ |z — xo|"

r — Xy

+ VdX M

v |2 — 20"

<_
where use V for V acting on object to left. Since M

commutes with d.X, final term vanishes, leaving

1 T — o
M = — dS M
(o) IS, Jav |v — xo|™




