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PHYSICAL APPLICATIONS OF
GEOMETRIC ALGEBRA

LECTURE 14

SUMMARY

The key to deriving the field equations in a gauge theory is the
covariant field strength tensor. In tis lecture we study the

properties of these for the two gravitational gauge fields.

e Commutators of covariant derivatives and the field

strength.
The gravitational field strength and non-linearity.
The Riemann tensor, and some simple examples.

The Planck scale and the magnitude of the field strength

of the displacement field.
Further properties of the Riemann tensor.

The second field equation.




‘ THE FIELD STRENGTH I

Form commutator of covariant derivatives. First take
electromagnetism, 1) — @ R. With a and b constant vectors,

get

[Da, Dyt = 59[a-VQ(b) — b-VQ(a) — Qa) xQ(b)]

All derivatives of 1) have canceled.
Restricting to 2(a) = —2a- A Io 3, get term in
b-V(a-Alos) —a-V(b-Alos) —2a-Ab-Alosx o
= (aADb)-(VANA)Io3 = (aNb)-F los
Maps bivector a A b linearly onto a pure phase term. In

electromagnetism lose mapping and extract /' = VA A. This

is physical field. Vanishes if A is pure gauge.

‘ ROTATION GAUGE '

For rotations, rotors multiply 7 from left, so

[Da, DyJt> = LR(anb)y

where
R(anb) = a-VQ(b) —b-VQ(a) + Qa) xQ(b)

Right-hand side is antisymmetric on a, b, so a linear funntion




of the bivector a Ab. Extend to general bivectors
R(aAb+ cAd) = R(anb) + R(eAd).
Can write the field strength as,
R(B) = R(B; z)

e A position dependent, linear function of the bivector 5.
Returns a general bivector, so 6 X 6 = 36 Degrees of

freedom.

e Termin 2(a)x Q(b) is non-linear. Cannot superpose two
solutions to get a third. Much more difficult than

electromagnetism.

Transformation properties easy to establish

D!, D}, Jy" = LR'(anb) Ry
= R[Dg,, Dy]Yp = 1 RR(aAb)i

so read off that

~

R'(aAb) = RR(aAD)R.

Field strength now transforms under gauge transformations.

If 2(a) pure gauge, then can find gauge where D, = a-V.

R(a/\b) vanishes in this gauge, so vanishes in all gauges.




‘ DISPLACEMENT GAUGE I

h(a) couples to derivatives differently. Form commutator, now

get

[a-h(V),b-h(V)]e = (bAa)-[h(V)Ah(V)].

Now do get a differential operator. driven by h(V)Ah(V)

term. Acting on scalar ¢

h(V)AR(Ve) = +h(VAV)

A\
A\

where over-dot again denotes scope of derivative. Now

h(V¢) is covariant. So generalise to

S(a) = h(V)Ahh™(a)
where a is a constant vector, and have used
. 1

VA[RRY(a)] = VARR Y (a) + VARh  (a) = VAa = 0.

S(a) is covariant under displacements. What about pure

gauge? In this case

so that h(V) = f71(V) = V. is vector derivative in some




other gauge. For this case

But f(a) is the derivative of a displacement,

f(CL) — CLVf(CC),

fa) = 9p(f(b)a) = 0p(b-V f(x)a) = V(a-f(2)).

Henced VAf(a) = VAV (a-f(z)) = 0. S(a) has the

desired properties.

‘ COVARIANT FIELD STRENGTHS I

Need covariant forms of field strength. Start with rotation
gauge. Q(a) removes terms in a-V RR. Under

displacements must have
Qa;z) — Q' (a; )
Field strength has term in £2(a) x £2(b). Must transform to
R(aAD) — R'(anb) = R[f(a)Af(b)] = R[f(aAb); 2]

Picks up a term in f(B). Remove this with suitable version of
h(a). Has




so adjoint transforms as
h(a) — h'(a) = f*h(a).
Insert this into R(B). Define covariant field strength
R(B) = Rh(B)]

Factor of h(B) alters rotation gauge properties.

h(a) = h'(a) = Rh(a)R.
so adjoint goes as
h(a) — h'(a) = dy(aRh(b)R) = h(RaR).
Summarised transformation properties of R(B) by:

Displacements: R'(B,x) = R(B,z)
Rotations:  R'(B) = RR(RBR)R.

Just what we want for a covariant tensor. Call R(B) the

Riemann tensor. Understand rotation transformation from
R(B) = aB

This is ‘dilate all fields by factor «’. Transformed field is

R'(B) = RR(RBR)R = R(aRBR)R = aB

Same physical information.




‘ EXAMPLES I

|. The Schwarzschild Solution

Spherically symmetric source, mass M at rest in 7y frame,

M

where 7 = | Ao, . = T Ay /7. M /277 controls the

tidal force. In empty space these are measurable.
ll. The Kerr Solution

Outside a rotating black hole get

T
2(r + IL cosf)3

R(B) = — B +30,.Bo,).

Get Schwarzschild by » — r + I L cosf. Explains complex

structure in Kerr solution!
lll. Cosmic Strings

Infinite, pressure-free string along -3, density p has
R(B) = 8mp(Blos)los

Get tidal forces in /o3 plane only. Magnitude determined by

density.




V. Cosmology

|sotropic, homogeneous cosmology has
R(B) =4x(p+ P)B-eye; — 5(8mp + A)B.

P and p are pressure and density, A is the cosmological
constant, and e; is ‘rest-frame’ of the universe (defined by the

cosmic microwave background radiation. No other direction

‘ DISPLACEMENT GAUGE AGAIN '

Key quantity is

present.

But ﬁ(a) picks up additional rotors under rotation gauge.

Replace the directional derivatives by covariant derivatives:

S(a) = h(8) A (b.vﬁﬁ—1<a> + Q<b>.a) .

Guarantees required transformation laws

Displacements: S'(a,x) = S(a,z")

Rotations: S'(a) = RS(RaR)R.




