PHYSICAL APPLICATIONS OF
GEOMETRIC ALGEBRA

Anthony Lasenby and Chris Doran

COURSE AIMS

e To introduce Geometric Algebra as a new mathematical
technique to add to your existing base as a theoretician or

experimentalist.

e To develop applications of this new technique in the fields
of classical mechanics, engineering, relativistic physics
and gravitation.

Our aim is to introduce these new techniques through their
applications, rather than as purely formal mathematics. These
applications will be diverse, emphasising the generality and
portability of geometric algebra. This will help to promote a

more inter-disciplinary view of science.

A full handout will accompany each lecture, and 3 question
sheets will accompany the course. All material related to this

course is available from
http://www.mrao.cam.ac.uk/~clifford/ptllicourse

or follow the link Cavendish — Research — Geometric
Algebra — Lectures




‘ A QuUICK TOUR I

In the following weeks we will

Discover a new, powerful technique for handling rotations
in arbitrary dimensions, and analyse the insights this
brings to the mathematics of Lorentz transformations.

Uncover the links between rotations, bivectors and the
structure of the Lie groups which underpin much of

modern physics.

Learn how to extend the concept of a complex analytic
function in 2-d (i.e. a function satisfying the
Cauchy-Riemann equations) to arbitrary dimensions, and
how this is applied in quantum theory and

electromagnetism.

Unite all four Maxwell equations into a single equation

(VF' = J), and develop new techniques for solving it.

Combine many of the preceeding ideas to construct a
gauge theory of gravitation in (flat) Minkowski spacetime,

which is still consistent with General Relativity.

Use our new understanding of gravitation to quickly reach
advanced applications such as black holes and cosmic

strings.




‘ SOME HISTORY I

A central problem being tackled in the first part of the 19th
Century was how best to represent 3-d rotations.

1844

Hamilton introduces his quaternions, which generalize
complex numbers. But confusion persists over the status of
vectors in his algebra — do (%, j, k) constitute the

components of a vector?
1844

In a separate development, Grassmann.
introductes of the exterior product. (See
later this lecture.) Largely ignored in
his lifetime, his work later gave rise to
differential forms and Grassmann (an-
ticommuting) variables (used in super-

symmetry and superstring theory)
1878

Clifford invents Geometric Algebra by uniting the dot product
and exterior products into a single geometric product. This is
invertible, so an equation such as ab = C' has the solution

b =a"'C. This is not possible with the separate dot or

exterior products.




Clifford could relate his product to the quaternions, and his
system should have gone on to dominate mathematical

physics. But ...

e Clifford died young, at the age of
just 34

e Gibbs introduced his vector cal-
culus, which rapidly became very
popular, and eclipsed Clifford and

Grassmann’s work.

1920’s

Clifford algebra resurfaces in the theory of quantum spin. In
particular the algebra of the Pauli and Dirac matrices became

indispensable in quantum theory. But these were treated just

as algebras — the geometrical meaning was lost.
1966

David Hestenes recovers the geomet-
rical meaning (in 3-d and 4-d respect-
ively) underlying the Pauli and Dirac al-
gebras. Publishes his results in the
book Spacetime Algebra. Hestenes
goes on to produce a fully developed

geometric calculus.




In 1984, Hestenes and Sobczyk publish
Clifford Algebra to Geometric Calculus

This book describes a unified language for much for
mathematics, physics and engineering. This was followed in
1986 by the (much easier!)

New Foundations for Classical Mechanics

1990’s

Hestenes’ ideas have been slow to catch on, but in Cambridge
we now routinely apply geometric algebra to topics as diverse

as
e black holes and cosmology (Astrophysics, Cavendish)

e quantum tunnelling and quantum field theory

(Astrophysics, Cavendish)

e beam dynamics and buckling (Structures Group, CUED)

e computer vision (Signal Processing Group, CUED)

Exactly the same algebraic system is used throughout.




‘PART 1'

GEOMETRIC ALGEBRA AND
CLASSICAL MECHANICS

LECTURE 1

In this lecture we will introduce the basic ideas behind the
mathematics of geometric algebra (abbreviated to GA). We
will then focus on simple applications in 2-d. A full formal

introduction will be delayed until Lecture 3
e Multiplying Vectors - The inner and cross products

e The Exterior Product - Encoding the geometry of planes

and higher dimensional objects
The Geometric Product - Axioms and properties
The Geometric Algebra of 2-dimensional space

Complex numbers rediscovered. The algebra of rotations
has a particularly simple expression in 2-d, and leads to

the identification of complex numbers with GA.

Regularising Keplerian orbits. The GA treatment of
rotations provides an alternative set of variables for
describing elliptical orbits, which turn out to have many

advantages.




‘ MULTIPLYING VECTORS I

In your mathematical training so far, you will have met two

products for vectors:
1. The Inner Product

The inner, or dot product, is usually written in the form a-b.
(Note that we do not use bold for vectors any more.) In

Euclidean space the inner product is positive definite,
a*=aa>0 VYa#0

From this we recover Schwarz inequality

(a+ D)2 > 0 VA
= a’ + 2 a-b+ N2 > 0 VA
= (a-b)* < a?b?

We use this to define the cosine of the angle between a and b
via

a-b =|al|b| cos()
In non-Euclidean spaces, such as Minkowski space, we
cannot do this. But we can still introduce an orthogonal frame

and compute the dot product as eg. a, 0" or 1,,,a*b” where

Tuv IS the metric tensor




2. The Cross Product

This only exists in 3-d space and is defined such that a X b is
perpendicular to the plane defined by a and b, with magnitude
|a||b] sin(@) and such that a, b and a x b form a right-handed
set. This is sufficient to define the cross product uniquely. On
introducing a right-handed orthonormal frame {e; } we can

recover the usual definition in terms of components. We have
€1 Xe9 = €3 etc.
Or, in more general index notation
€; ><ej = €{jkCLk

If we now expand the vectors in terms of components,

a = a;e; and b = b;e;, we find

axb (aiei)x(bjej)

a; bj (67; X €j>
(eijkaibj)ek
So the geometric definition recovers the algebraic one. One

aim of GA is to extend this idea and avoid introducing frames

as much as possible.




‘ THE EXTERIOR PRODUCT I

The cross product has one major failing - it only exists in 3
dimensions. In 2-d there is nowhere else to go, whereas in 4-d
the concept of a vector orthogonal to a pair of vectors is not
unique. To see this, consider 4 orthonormal vectors €7 .. . e4.
If we take the pair ¢; and e and attempt to find a vector
perpendicular to both of these, we see that any combination of
e3 and e4 will do.

What we need is a means of encoding a plane geometrically,
without relying on the notion of a vector perpendicular to it. We

define the outer or wedge product a A b to be the directed area

swept out by @ and b. The plane has area |a||b| sin(8), which

is defined to be the magnitude of a A b.

/5] e

The outer product of two vectors defines an oriented plane.

This plane can be thought of as the parallelogram obtained by




sweeping one vector along the other. Changing the order of

the vectors reverses the orientation of the plane.

The result of the wedge product is neither a scalar nor a
vector. Itis a bivector — a new mathematical entity encoding

the notion of a plane.
Properties

1. The outer product of two vectors is antisymmetric,
aANb = —bAa

This follows from the geometric definition.

2. Bivectors form a linear space, the same way that vectors do.
In 3-d the addition of bivectors is easy to visualise (see picture
on next slide). In higher dimensions this addition is not always
SO easy to visualise, because two planes need not share a

common line. This can have some interesting consequences.

3. The outer product is distributive

aN(b+c) =aNb+ alc

This helps to visualise the addition of bivectors.




Note thatif &’ = a + \b, we still have ' Ab = aAb. There is
no unique dependence on a and b. It is sometimes better to

replace the directed parallelogram with a directed circle.

In 3-d the space of bivectors is three dimensional. An arbitrary
bivector can be decomposed in terms of an orthonormal frame
of bivectors.
alb (aiei)/\(bjej)
<CL2b3 — b3a2>62 /\63 + <CL3b1 — a1b3>63 /\61

—|‘<CL152 — CL2b1>61 N\ eés

The components in this frame are therefore those of the cross

product. In general, the components of a Ab are a[ib

jl-




‘ THE GEOMETRIC PRODUCT I

So far we have a symmetric inner product and an
antisymmetric outer product. Clifford’s great idea was to
introduce a new product which combines the two. This is the

geometric product, written simply as ab, and satisfying
ab =a-b+ aNb

The right-hand side is a sum of two distinct obejcts - a scalar

and a bivector. This looks strange, and goes against much of
what you might already have been taught. The easiest way to
think of the right-hand side is like a complex number, with real
and imaginary parts. These are carried round in a single

entity, which provides for many mathematical simplifications.

From the symmetry/antisymmetry of the terms on the

right-hand side, we see that
ba =b-a+bAa =a-b—alb

It follows that

a-b=3(ab+ba) anb= 3(ab— ba)

We can thus define the other products in terms of the
geometric product. This forms the starting point for an

axiomatic development (Lecture 3). For the time being we will




simply state some properties of the product.

1. General elements of a Geometric Algebra are called
multivectors and these form a linear space - scalars can

be added to hivectors, and vectors, etc.

. The geometric product is associative
A(BC) = (AB)C = ABC
. The geometric product is distributive
A(B+C)=AB+ AC

(Note that nothing is assumed about the commutation
properties of the geometric product. Matrix multiplication

IS a good picture to keep in mind.)
4. The square of any vector is a scalar.

The final axiom is sufficient to prove that the inner product of

two vectors is a scalar. Consider the expansion
(a + b)? (a+0)(a +b)
a® + b* + ab + ba

It follows that

ab+ba = (a +b)* —a® —b*

which is therefore a scalar.




‘ GEOMETRIC ALGEBRA IN 2-D I

The easiest way to understand the geometric product is by
example, so consider a 2-d space (a plane) spanned by 2

orthonormal vectors €1, eo2. These satisfy

€1-€2 = 0

>€1

The final entity present in the 2-d algebra is the bivector
€1 /\ eo. This is the highest grade element in the algebra,
which is often called the pseudoscalar, though directed
volume element is a more accurate description. This is
defined to be right-handed.

The full algebra (G») is therefore spanned by

1 {61,62} €1 /\62

To study the properties of the bivector e; /A eo we first note
that

€169 = €e1-62 +e1N\ey = ej\es

That is, for orthogonal vectors the geometric product is a pure




bivector. Also note that
€r€1 — 62/\61 = —€1 /\62
from the antisymmetry of the exterior product. Another way of
saying this is that in GA orthogonal vectors anticommute.
We can now form products when €1 e multiplies vectors from
the left and the right. First from the left,
<€1 /\62)61 = <—6261>61 = —€g€1€1 = —€9
<€1 /\62)62 = <€162>62 = €1€2€9 = €1
We see that left multiplication by the bivector rotates vectors
90° clockwise (i.e. in a negative orientation). Similarly, acting
from the right
€1 <€1€2> = €9 €9 <€1€2> = —€1
So right multiplication rotates 90° anticlockwise.

The final product in the algebra to consider is the square of the
bivector ¢1 Aes

<€1 /\62)2 = €1€29€1€9 = —€1€1€2€9 — —1

From purely geometric considerations, we have discovered a
quantity which squares to —1. This fits with the fact that 2
successive left (or right) multiplications of a vector by €1 €2
rotates the vector through 180°, which is equivalent to
multiplying by —1.




‘ MULTIPLYING MULTIVECTORS .

Suppose that we have two completely arbitrary elements of

the G5 algebra, A and B. We can decompose these in terms

of our {e1, €5} frame as follows:

A ag + ai1€e1 + ases + aze; Aes

B = by +0bieg +byes + bseg Ney
The product of these two elements can be written
AB = po + p1e1 + p2e2 + pger Aes
We find that
po = agby + a1b1 + az02 — azbs

with similar formulae for p1, po> and p3. This multiplication law
IS easy to represent as part of a computer language (we often
use Maple). The basis vectors can also be represented with

matrices, though these can hide the geometry of the algebra.

If we introduce the symbol { AB) to denote the scalar term in

the product, we find that

In general, however, AB # BA.




‘ COMPLEX NUMBERS AND §» I

It is clear that there is a close relationship between GA in 2-d,
and the algebra of complex numbers. The unit bivector
squares to —1 and generates rotations through 90°. The
combination of a scalar and a bivector, which is formed
naturally via the geometric product, can therefore be viewed

as a complex number. We can write

Z =z +yeea =x+ 1y

Complex numbers serve a dual
purpose in 2-d. They gen-
erate rotations and dilations

through their polar decomposi-

tion 7 exp(j#), and they also

represent vectors as points on

the argand diagram.

But in G5 our vectors are grade-1 objects.

r =xe1 + yes

Is there a natural map between this and the complex number




Z? The answer is simple — pre-multiply by €1,
eirr =x+yeies =x+Ily=27

That is all there is to it! The role of the preferred vector €7 is
clear — it is the real axis. This product maps vectors in G

onto complex numbers in a natural manner.

Complex numbers to play two roles, as rotations/dilations, and

as position vectors. GA separates these roles, which is crucial

to generalising complex analysis to higher dimensions.

‘ ROTATIONS I

A positive rotation through an angle ¢ for a complex number

Z is achieved by

Z w— 7'
7! :re](9+¢)

— el? 7

We continue to use [ for the unit imaginary. The exponential

of a multivector is defined by power series in the normal way.




We can now apply this to rotate the vector r
r=eZw—r =e2d
V' =eel?Z = e 10,2 =10y
We therefore arrive at the formulae

p' = e 10 p = peld = o 10/2 ) o10/2

which are all equivalent. The final form will turn out to be the
most general. Note the importance of the fact that /

anticommutes with vectors. Do not get this with complex

numbers alone.

‘ APPLICATION — KEPLER ORBITS I

As an application of the preceeding, we will discuss an
alternative formulation for 2-d motion. We start by writing the

position vector x in terms of a complex number U by
r=UeU=U%, |¢|=r=UU
We use the tilde for complex conjugation. Now have
T = 2UU€1
= 27U = j:el(Nf = xzUeq

We now introduce the new variable s defined by

da _d dt
ds | dt’  ds




In terms of this

dU .
2% = xUeq

and
2d2—U =raxUe; + :i:gel
ds? ds
= iUe UU + 2i?Ue;? = U(dx + $37)
Now suppose we have motion in a central inverse square

force:

" X
mi = —pi—
7’0

The equation for U becomes
PU 1
ds?  2m

We recover the equation of simple harmonic motion! This has

U (%m:i:Q _ ﬁ) -y
r
a number of advantages:
. Easy to solve.
. Linear, so much better for perturbation theory.
. No singularity at 7 = 0, so better numerical stability.
. Universal — holds for £/ > 0 and £ < 0.
. Extends to 3-d

The particle completes 2 cycles every time U completes one,
with U is ‘centered’ on the orgin, instead of at the focus of the

ellipse.




