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Abstract
This paper contains a tutorial introduction to the ideas of geometric alge-

bra, concentrating on its physical applications. We show how the definition
of a ‘geometric product’ of vectors in 2- and 3-dimensional space provides
precise geometrical interpretations of the imaginary numbers often used in
conventional methods. Reflections and rotations are analysed in terms of
bilinear spinor transformations, and are then related to the theory of analytic
functions and their natural extension in more than two dimensions (monogen-
ics). Physics is greatly facilitated by the use of Hestenes’ spacetime algebra,
which automatically incorporates the geometric structure of spacetime. This
is demonstrated by examples from electromagnetism. In the course of this
purely classical exposition many surprising results are obtained — results
which are usually thought to belong to the preserve of quantum theory. We
conclude that geometric algebra is the most powerful and general language
available for the development of mathematical physics.
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1 Introduction
. . . for geometry, you know, is the gate of science, and the gate
is so low and small that one can only enter it as a little child.

William K. Clifford

This paper was commissioned to chronicle the impact that David Hestenes’
work has had on physics. Sadly, it seems to us that his work has so far not really
had the impact it deserves to have, and that what is needed in this volume is that
his message be AMPLIFIED and stated in a language that ordinary physicists
understand. With his background in philosophy and mathematics, David is certainly
no ordinary physicist, and we have observed that his ideas are a source of great
mystery and confusion to many [1]. David accurately described the typical response
when he wrote [2] that ‘physicists quickly become impatient with any discussion of
elementary concepts’ — a phenomenon we have encountered ourselves.

We believe that there are two aspects of Hestenes’ work which physicists should
take particularly seriously. The first is that the geometric algebra of spacetime is
the best available mathematical tool for theoretical physics, classical or quantum
[3, 4, 5]. Related to this part of the programme is the claim that complex numbers
arising in physical applications usually have a natural geometric interpretation that
is hidden in conventional formulations [4, 6, 7, 8]. David’s second major idea is
that the Dirac theory of the electron contains important geometric information
[9, 2, 10, 11], which is disguised in conventional matrix-based approaches. We hope
that the importance and truth of this view will be made clear in this and the three
following papers. As a further, more speculative, line of development, the hidden
geometric content of the Dirac equation has led David to propose a more detailed
model of the motion of an electron than is given by the conventional expositions of
quantum mechanics. In this model [12, 13], the electron has an electromagnetic
field attached to it, oscillating at the ‘zitterbewegung’ frequency, which acts as a
physical version of the de Broglie pilot-wave [14].

David Hestenes’ willingness to ask the sort of question that Feynman specifically
warned against1, and to engage in varying degrees of speculation, has undoubt-
edly had the unfortunate effect of diminishing the impact of his first idea, that
geometric algebra can provide a unified language for physics — a contention that

1‘Do not keep saying to yourself, if you can possibly avoid it, ‘But how can it be like that?’,
because you will get “down the drain”, into a blind alley from which nobody has yet escaped.
Nobody knows how it can be like that.’ [15].
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we strongly believe. In this paper, therefore, we will concentrate on the first aspect
of David’s work, deferring to a companion paper [16] any critical examination of
his interpretation of the Dirac equation.

In Section 2 we provide a gentle introduction to geometric algebra, emphasising
the geometric meaning of the associative (Clifford) product of vectors. We illustrate
this with the examples of 2- and 3-dimensional space, showing that it is possible to
interpret the unit scalar imaginary number as arising from the geometry of real
space. Section 3 introduces the powerful techniques by which geometric algebra
deals with rotations. This leads to a discussion of the role of spinors in physics.
In Section 4 we outline the vector calculus in geometric algebra and review the
subject of monogenic functions; these are higher-dimensional generalisations of
the analytic functions of two dimensions. Relativity is introduced in Section 5,
where we show how Maxwell’s equations can be combined into a single relation
in geometric algebra, and give a simple general formula for the electromagnetic
field of an accelerating charge. We conclude by comparing geometric algebra with
alternative languages currently popular in physics. The paper is based on an lecture
given by one of us (SFG) to an audience containing both students and professors.
Thus, only a modest level of mathematical sophistication (though an open mind) is
required to follow it. We nevertheless hope that physicists will find in it a number
of surprises; indeed we hope that they will be surprised that there are so many
surprises!

2 An Outline of Geometric Algebra
The new math — so simple only a child can do it. Tom Lehrer

Our involvement with David Hestenes began ten years ago, when he attended a
Maximum Entropy conference in Laramie. It is a testimony to David’s range of
interests that one of us (SFG) was able to interact with him at conferences for the
next six years, without becoming aware of his interests outside the fields of MaxEnt
[17], neural research [18] and the teaching of physics [19]. He apparently knew
that astronomers would not be interested in geometric algebra. Our infection with
his ideas in this area started in 1988, when another of us (ANL) stumbled across
David’s book ‘Space-Time Algebra’ [20], and became deeply impressed. In that
summer, our annual MaxEnt conference was in Cambridge, and contact was finally
made. Even then, two more months passed before our group reached the critical
mass of having two people in the same department, as a result of SFG’s reading
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of David’s excellent summary ‘A Unified Language for Mathematics and Physics’
[4]. Anyone who is involved with Bayesian probability or MaxEnt is accustomed to
the polemical style of writing, but his 6-page introduction on the deficiencies of
our mathematics is strong stuff. In summary, David said that physicists had not
learned properly how to multiply vectors and, as a result of attempts to overcome
this, had evolved a variety of mathematical systems and notations that has come
to resemble Babel. Four years on, having studied his work in more detail, we
believe that he wrote no less than the truth and that, as a result of learning how
to multiply vectors together, we can all gain a great increase in our mathematical
facility and understanding.

2.1 How to Multiply Vectors
A linear space is one upon which addition and scalar multiplication are defined.
Although such a space is often called a ‘vector space’, our use of the term ‘vector’
will be reserved for the geometric concept of a directed line segment. We still
require linearity, so that for any vectors a and b we must be able to define their
vector sum a + b. Consistent with our purpose, we will restrict scalars to be real
numbers, and define the product of a scalar λ and a vector a as λa. We would like
this to have the geometrical interpretation of being a vector ‘parallel’ to a and of
‘magnitude’ λ times the ‘magnitude’ of a. To express algebraically the geometric
idea of magnitude, we require that an inner product be defined for vectors.

• The inner product a·b, also known as the dot or scalar product, of two vectors
a and b, is a scalar with magnitude |a||b| cos θ, where |a| and |b| are the
lengths of a and b, and θ is the angle between them. Here |a| ≡ (a·a) 1

2 , so
that the expression for a·b is effectively an algebraic definition of cos θ.

This product contains partial information about the relative direction of any two
vectors, since it vanishes if they are perpendicular. In order to capture the remaining
information about direction, another product is conventionally introduced, the
vector cross product.

• The cross product a × b of two vectors is a vector of magnitude |a||b| sin θ
in the direction perpendicular to a and b, such that a, b and a × b form a
right-handed set.
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2.2 A Little Un-Learning
These products of vectors, together with their expressions in terms of components
(which we will not need or use here), form the basis of everyday teaching in
mathematical physics. In fact, the vector cross product is an accident of our
3-dimensional world; in two dimensions there simply isn’t a direction perpendicular
to a and b, and in four or more dimensions that direction is ambiguous. A more
general concept is needed, so that full information about relative directions can
still be encoded in all dimensions. Thus, we will temporarily un-learn the cross
product, and instead introduce a new product, called the outer product:

• The outer product a∧b has magnitude |a||b| sin θ , but is not a scalar or a
vector; it is a directed area, or bivector, oriented in the plane containing a
and b. The outer product has the same magnitude as the cross product and
shares its anticommutative (skew) property: a∧b = −b∧a.

A way to visualise the outer product is to imagine a∧b as the area ‘swept out’ by
displacing a along b, with the orientation given by traversing the parallelogram
so formed first along an a vector then along a b vector [3]. This notion leads
to a generalisation (due to Grassmann [21]) to products of objects with higher
dimensionality, or grade. Thus, if the bivector a∧b (grade 2) is swept out along
another vector c (grade 1), we obtain the directed volume element (a∧b)∧c, which
is a trivector (grade 3). By construction, the outer product is associative:

(a∧b)∧c = a∧(b∧c) = a∧b∧c. (1)

We can go no further in 3-dimensional space — there is nowhere else to go.
Correspondingly, the outer product of any four vectors a∧b∧c∧d is zero.

At this point we also drop the convention of using bold-face type for vectors
such as a — henceforth vectors and all other grades will be written in ordinary
type (with one specific exception, discussed below).

2.3 The Geometric Product
The inner and outer products of vectors are not the whole story. Since a·b is a
scalar and a∧b is a bivector area, the inner and outer products respectively lower



6

and raise the grade of a vector. They also have opposite commutation properties:

a·b = b·a,
a∧b = −b∧a. (2)

In this sense we can think of the inner and outer products together as forming
the symmetric and antisymmetric parts of a new product, (defined originally by
Grassmann [22] and Clifford [23]) which we call the geometric product, ab:

ab = a·b+ a∧b. (3)

Thus, the product of parallel vectors is a scalar — we take such a product, for
example, when finding the length of a vector. On the other hand, the product of
orthogonal vectors is a bivector — we are finding the directed area of something.
It is reasonable to suppose that the product of vectors that are neither parallel nor
perpendicular should contain both scalar and bivector parts.

How on Earth do I Add a Scalar to a Bivector?

Most physicists need a little help at this point [1]. Adding together a scalar and
a bivector doesn’t seem right at first — they are different types of quantities. But
it is exactly what you want an addition to do! The result of adding a scalar to a
bivector is an object that has both scalar and bivector parts, in exactly the same
way that the addition of real and imaginary numbers yields an object with both
real and imaginary parts. We call this latter object a ‘complex number’ and, in
the same way, we shall refer to a (scalar+bivector) as a ‘multivector’, accepting
throughout that we are combining objects of different types. The addition of scalar
and bivector does not result in a single new quantity in the same way as 2 + 3 = 5;
we are simply keeping track of separate components in the symbol ab = a·b+ a∧b
or z = x+ iy. This type of addition, of objects from separate linear spaces, could
be given the symbol ⊕, but it should be evident from our experience of complex
numbers that it is harmless, and more convenient, to extend the definition of
addition and use the plain, ordinary + sign.

We have defined the geometric product in terms of the inner and outer product
of two vectors. An alternative and more mathematical approach is to define the
associative geometric product via a set of axioms and introduce two ‘new’ products
a·b ≡ 1

2(ab+ ba) and a∧b ≡ 1
2(ab− ba). Then, for example, if we assert that the

square of any vector should be a scalar, this would allow us to prove that the
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product a·b is scalar-valued, since ab+ ba = (a+ b)2− a2− b2. This more axiomatic
approach is taken in Chapter 1 of Hestenes & Sobczyk [5].

2.4 Geometric Algebra of the Plane
A 1-dimensional space has insufficient geometric structure to show what is going
on, so we begin in two dimensions, taking two orthonormal basis vectors σ1 and σ2.
These satisfy the relations

σ1 ·σ1 = 1,
σ2 ·σ2 = 1,

σ1∧σ1 = 0,
σ2∧σ2 = 0 (4)

and
σ1 ·σ2 = 0. (5)

The outer product σ1∧σ2 represents the directed area element of the plane and
we assume that σ1, σ2 are chosen such that this has the conventional right-handed
orientation. This completes the geometrically meaningful quantities that we can
make from these basis vectors:

1,
scalar

{σ1, σ2},
vectors

σ1∧σ2.

bivector (6)

We now assemble a Clifford algebra from these quantities. An arbitrary linear
sum over the four basis elements in (6) is called a multivector. In turn, given two
multivectors A and B, we can form their sum S = A+B by adding the components:

A ≡ a01 + a1σ1 + a2σ2 + a3σ1∧σ2

B ≡ b01 + b1σ1 + b2σ2 + b3σ1∧σ2

S = (a0 + b0)1 + (a1 + b1)σ1 + (a2 + b2)σ2 + (a3 + b3)σ1∧σ2.

(7)

By this definition of a linear sum we have done almost nothing — the power comes
from the definition of the multiplication P = AB. In order to define this product,
we have to be able to multiply the 4 geometric basis elements. Multiplication by a
scalar is obvious. To form the products of the vectors we remember the definition
ab = a·b+ a∧b, so that

σ2
1 = σ1σ1 = σ1 ·σ1 + σ1∧σ1 = 1 = σ2

2,

σ1σ2 = σ1 ·σ2 + σ1∧σ2 = σ1∧σ2 = −σ2σ1.
(8)
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Products involving the bivector σ1∧σ2 = σ1σ2 are particularly important. Since
the geometric product is associative, we have:

(σ1σ2)σ1 = −σ2σ1σ1 = −σ2,

(σ1σ2)σ2 = σ1
(9)

and
σ1(σ1σ2) = σ2

σ2(σ1σ2) = −σ1.
(10)

The only other product is the square of σ1∧σ2:

(σ1∧σ2)2 = σ1σ2σ1σ2 = −σ1σ1σ2σ2 = −1. (11)

These results complete the definition of the product and enable, for example, the
processes of addition and multiplication to be coded as computer functions. In
principle, these definitions could be made an intrinsic part of a computer language,
in the same way that complex number arithmetic is already intrinsic to some
languages. To reinforce this point, it may be helpful to write out the product
explicitly. We have,

AB = P ≡ p01 + p1σ1 + p2σ2 + p3σ1∧σ2, (12)

where
p0 = a0b0 + a1b1 + a2b2 − a3b3,

p1 = a0b1 + a1b0 + a3b2 − a2b3,

p2 = a0b2 + a2b0 + a1b3 − a3b1,

p3 = a0b3 + a3b0 + a1b2 − a2b1.

(13)

Multivector addition and multiplication obey the associative and distributive laws,
so that we have, as promised, the geometric algebra of the plane.

We emphasise the important features that have emerged in the course of this
derivation.

• The geometric product of two parallel vectors is a scalar number — the
product of their lengths.

• The geometric product of two perpendicular vectors is a bivector — the
directed area formed by the vectors.

• Parallel vectors commute under the geometric product; perpendicular vectors
anticommute.
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• The bivector σ1∧σ2 has the geometric effect of rotating the vectors {σ1, σ2}
in its own plane by 90◦ clockwise when multiplying them on their left. It
rotates vectors by 90◦ anticlockwise when multiplying on their right. This
can be used to define the orientation of σ1 and σ2.

• The square of the bivector area σ1∧σ2 is a scalar: (σ1∧σ2)2 = −1.

By virtue of the last two properties the bivector σ1∧σ2 becomes our first candidate
for the role of the unit imaginary i, and in 2-dimensional applications it fulfills this
role admirably. Indeed, we see that the even-grade elements z = x+ yσ1σ2 form a
natural subalgebra, equivalent to the complex numbers.

2.5 The Algebra of 3-Space
If we now add a third orthonormal vector σ3 to our basis set, we generate the
following geometrical objects:

1,
scalar

{σ1, σ2, σ3},
3 vectors

{σ1σ2, σ2σ3, σ3σ1},
3 bivectors

area elements

σ1σ2σ3

trivector
volume element

(14)

From these objects we form a linear space of (1 + 3 + 3 + 1) = 8 = 23 dimensions,
defining multivectors as before, together with the operations of addition and multi-
plication. Most of the algebra is the same as in the 2-dimensional version because
the subsets {σ1, σ2}, {σ2, σ3} and {σ3, σ1} generate 2-dimensional subalgebras, so
that the only new geometric products we have to consider are

(σ1σ2)σ3 = σ1σ2σ3,

(σ1σ2σ3)σk = σk(σ1σ2σ3) (15)

and
(σ1σ2σ3)2 = σ1σ2σ3σ1σ2σ3 = σ1σ2σ1σ2σ

2
3 = −1. (16)

These relations lead to new geometrical insights:

• A simple bivector rotates vectors in its own plane by 90◦, but forms trivectors
(volumes) with vectors perpendicular to it.

• The trivector σ1σ2σ3 commutes with all vectors, and hence with all multivec-
tors.
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The trivector σ1σ2σ3 also has the algebraic property of being a square root of
minus one. In fact, of the eight geometrical objects, four have negative square
{σ1σ2, σ2σ3, σ3σ1, σ1σ2σ3}. Of these, the trivector σ1σ2σ3 is distinguished by its
commutation properties, and by the fact that it is the highest-grade element in
the space. Highest-grade objects are generically called pseudoscalars, and σ1σ2σ3 is
thus the unit pseudoscalar for 3-dimensional space. In view of its properties we
give it the special symbol i:

i ≡ σ1σ2σ3. (17)

We should be quite clear, however, that we are using the symbol i to stand for a
pseudoscalar, and thus cannot use the same symbol for the commutative scalar
imaginary, as used for example in conventional quantum mechanics, or in electrical
engineering. We shall use the symbol j for this uninterpreted imaginary, consistent
with existing usage in engineering. The definition (17) will be consistent with our
later extension to 4-dimensional spacetime.

2.6 Interlude
We have now reached the point which is liable to cause the greatest intellectual shock.
We have played an apparently harmless game with the algebra of 3-dimensional
vectors and found a geometric quantity i ≡ σ1σ2σ3 which has negative square and
commutes with all multivectors. Multiplying this by σ3, σ1 and σ2 in turn we get

(σ1σ2σ3)σ3 = σ1σ2 = iσ3,

σ2σ3 = iσ1,

σ3σ1 = iσ2,

(18)

which is exactly the algebra of the Pauli spin matrices used in the quantum
mechanics of spin-1

2 particles! The familiar Pauli matrix relation,

σ̂iσ̂j = 1δij + jεijkσ̂k, (19)

is now nothing more than an expression of the geometric product of orthonormal
vectors. We shall demonstrate the equivalence with the Pauli matrix algebra
explicitly in a companion paper [24], but here it suffices to note that the matrices

σ̂1 ≡
(

0 1
1 0

)
, σ̂2 ≡

(
0 −j
j 0

)
, σ̂3 ≡

(
1 0
0 −1

)
(20)
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comprise a matrix representation of our 3-dimensional geometric algebra. Indeed,
since we can represent our algebra by these matrices, it should now be obvious
that we can indeed add together the various different geometric objects in the
algebra — we just add the corresponding matrices. These matrices have four
complex components (eight degrees of freedom), so we could always disentangle
them again.

Now it is clearly true that any associative algebra can be represented by a
matrix algebra; but that matrix representation may not be the best interpretation
of what is going on. In the quantum mechanics of spin-1

2 particles we have a case
where generations of physicists have been taught nothing but matrices, when there
is a perfectly good geometrical interpretation of those same equations! And it
gets worse. We were taught that the (σ̂1, σ̂2, σ̂3) were the components of a vector
σ̂, and how to write things like a · σ̂ = akσ̂k and S2 = (σ̂2

1 + σ̂2
2 + σ̂2

3)h̄2/4. But,
geometrically, {σ1, σ2, σ3} are three orthonormal vectors comprising the basis of
space, so that in akσ̂k the {ak} are the components of a vector along directions σk
and the result akσk is a vector, not a scalar. With regard to S2, if you want to find
the length of a vector, you must square and add the components of the vector along
the unit basis vectors — not the basis vectors themselves. So the result σkσk = 3
is certainly true, but does not have the interpretation usually given to it.

These considerations all indicate that our present thinking about quantum
mechanics is infested with the deepest misconceptions. We believe, with David
Hestenes, that geometric algebra is an essential ingredient in unravelling these
misconceptions.

On the constructive side, the geometric algebra is easy to use, and allows us to
manipulate geometric quantities in a coordinate-free way. The σ-vectors, which play
an essential role, are thereby removed from the mysteries of quantum mechanics,
and used to advantage in physics and engineering. We shall see that a similar fate
awaits Dirac’s γ-matrices.

The algebra of 3-dimensional space, the Pauli algebra, is central to physics,
and deserves further emphasis. It is an 8-dimensional linear space of multivectors,
which we write as

M = α

scalar
+ a

vector
+ ib

bivector
+ iβ

pseudoscalar
(21)

where a ≡ akσk, b ≡ bkσk, and we have reverted to bold-face type for 3-dimensional
vectors. This is the exception referred to earlier; we use this convention [4]
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to maintain a visible difference between spacetime 4-vectors and vectors of 3-
dimensional space. There is never any ambiguity concerning the basis vectors {σk},
however, and these will continue to be written unbold.

The space of even-grade elements of this algebra,

ψ = α + ib, (22)

is closed under multiplication and forms a representation of the quarternion algebra.
Explicitly, identifying i, j, k with iσ1, −iσ2, iσ3, respectively, we have the usual
quarternion relations, including the famous formula

i2 = j2 = k2 = ijk = −1. (23)

Finally in this section, we relearn the cross product in terms of the outer product
and duality operation (multiplication by the pseudoscalar):

a×b = −ia∧b. (24)

Here we have introduced an operator precedence convention in which an outer or
inner product always takes precedence over a geometric product. Thus a∧b is
taken before the multiplication by i.

The duality operation in three dimensions interchanges a plane with a vector
orthogonal to it (in a right-handed sense). In the mathematical literature this
operation goes under the name of the ‘Hodge dual’. Quantities like a or b would
conventionally be called ‘polar vectors’, while the ‘axial vectors’ which result from
cross-products can now be seen to be disguised versions of bivectors.

3 Rotations and Geometric algebra
Geometric algebra is useful to a physicist because it automatically incorporates
the structure of the world we inhabit, and accordingly provides a natural language
for physics. One of the clearest illustrations of its power is the way in which it
deals with reflections and rotations. The key to this approach is a theorem due to
Hamilton [25]: given any unit vector n (n2 = 1), we can resolve an arbitrary vector
x into parts parallel and perpendicular to n: x = x⊥ + x‖. These components are
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identified algebraically through their commutation properties:

nx‖ = x‖n (scalar),
nx⊥ = −x⊥n (bivector). (1)

The vector x⊥ − x‖ can therefore be written −nxn. Geometrically, the transforma-
tion x→ −nxn represents a reflection in a plane perpendicular to n. To make a
rotation we need two of these reflections:

x→ mnxnm = RxR̃, (2)

where R ≡ mn is called a ‘rotor’. We call R̃ ≡ nm the ‘reverse’ of R, because it is
obtained by reversing the order of all geometric products. The rotor is even (i.e.
viewed as a multivector it contains only even-grade elements), and is unimodular,
satisfying RR̃ = R̃R = 1.

As an example, let us rotate the unit vector a into another unit vector b,
leaving all vectors perpendicular to a and b unchanged (a simple rotation). We can
accomplish this by a reflection perpendicular to the unit vector which is half-way
between a and b (see Figure 1):

n ≡ (a+ b)/|a+ b|. (3)

This reflects a into −b, which we correct by a second reflection perpendicular to b.
Algebraically,

x→ b
a+ b

|a+ b|
x
a+ b

|a+ b|
b (4)

which represents the simple rotation in the a∧b plane. Since a2 = b2 = 1, we define

R ≡ 1 + ba

|a+ b|
= 1 + ba√

2(1 + b·a)
, (5)

so that the rotation is written
b = RaR̃, (6)

which is a ‘bilinear’ transformation of a. The inverse transformation is

a = R̃bR. (7)
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n

-nan

b

a

Figure 1: A rotation composed of two reflections

The bilinear transformation of vectors x → RxR̃ is a very general way of
handling rotations. In deriving this transformation the dimensionality of the space
of vectors was at no point specified. As a result, the transformation law works for
all spaces, whatever dimension. Furthermore, it works for all types of geometric
object, whatever grade. We can see this by considering the product of vectors

xy → RxR̃ RyR̃ = R(xy)R̃, (8)

which holds because R̃R = 1.
As an example, consider a 2-dimensional rotation:

ei = RσiR̃ (i = 1, 2). (9)

A rotation by angle θ is performed by the even element (the equivalent of a complex
number)

R ≡ exp(−σ1σ2θ/2) = cos(θ/2)− σ1σ2 sin(θ/2). (10)

As a check:

Rσ1R̃ = exp(−σ1σ2θ/2)σ1 exp(σ1σ2θ/2)
= exp(−σ1σ2θ) σ1

= cos θ σ1 + sin θ σ2, (11)
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and
Rσ2R̃ = − sin θ σ1 + cos θ σ2. (12)

The bilinear transformation is much easier to use than the one-sided rotation
matrix, because the latter becomes more complicated as the number of dimensions
increases. Although this is less evident in two dimensions, in three dimensions it is
obvious: the rotor

R ≡ exp(−ia/2) = cos(|a|/2)− i a
|a|

sin(|a|/2) (13)

represents a rotation of |a| radians about the axis along the direction of a. If
required, we can decompose rotations into Euler angles (θ, φ, χ), the explicit form
being

R = e−iσ3φ/2e−iσ2θ/2e−iσ3χ/2. (14)

We now examine the composition of rotors in more detail. In three dimensions,
let the rotor R transform the unit vector along the z-axis into a vector s:

s = Rσ3R̃. (15)

Now rotate the s vector into another vector s′, using a rotor R′. This requires

s′ = R′sR̃′ = (R′R)σ3(R′R)̃ , (16)

so that the transformation is characterised by

R→ R′R, (17)

which is the (left-sided) group combination rule for rotors. Now suppose that we
start with s and make a rotation of 360◦ about the z-axis, so that s′ returns to s.
What happens to R is surprising; using (13) above, we see that

R→ −R. (18)

This is the behaviour of spin-1
2 particles in quantum mechanics, yet we have done

nothing quantum-mechanical; we have merely built up rotations from reflections.
How can this be? It turns out [24] that it is possible to represent a Pauli spinor

|ψ 〉 (a 2-component complex spinor) as an arbitrary even element ψ (four real
components) in the geometric algebra of 3-space (21). Since ψψ̃ is a positive-definite
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scalar in the Pauli algebra we can write

ψ = ρ
1
2R. (19)

Thus, the Pauli spinor |ψ 〉 can be seen as a (heavily disguised) instruction to
rotate and dilate. The identification of a rotor component in ψ then explains
the double-sided action of spinors on observables. The spin-vector observable, for
example, can be written in geometric algebra as

S = ψσ3ψ̃ = ρRσ3R̃, (20)

which has the same form as equation (15). This identification of quantum spin with
rotations is very satisfying, and provides much of the impetus for David Hestenes’
work on Dirac theory.

A problem remaining is what to call an arbitrary even element ψ. We shall call
it a spinor, because the space of even elements forms a closed algebra under the
left-sided action of the rotation group: ψ → Rψ gives another even element. This
accords with the usual abstract definition of spinors from group representation
theory, but differs from the column vector definition favoured by some authors [26].

4 Analytic and Monogenic Functions
Returning to 2-dimensional space, we now use geometric algebra to reveal the
structure of the Argand diagram. From any vector r = xσ1 + yσ2 we can form an
even multivector (a 2-dimensional spinor):

z ≡ σ1r = x+ Iy, (1)

where
I ≡ σ1σ2. (2)

Using the vector σ1 to define the real axis, there is therefore a one-to-one corre-
spondence between points in the Argand diagram and vectors in two dimensions.
Complex conjugation,

z∗ ≡ z̃ = rσ1 = x− Iy, (3)

now appears as a natural operation of reversion for the even multivector z, and (as
shown above) it is needed when rotating vectors.
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We now consider the fundamental derivative operator

∇ ≡ σ1∂x + σ2∂y, (4)

and observe that

∇z = (σ1∂x + σ2∂y)(x+ σ1σ2y) = σ1 + σ2σ1σ2 = 0, (5)

∇z∗ = (σ1∂x + σ2∂y)(x− σ1σ2y) = σ1 − σ2σ1σ2 = 2σ1. (6)

Generalising this behaviour, we find that

∇zn = 0, (7)

and define an analytic function as a function f(z) (or, equivalently, f(r)) for which

∇f = 0. (8)

Writing f = u+ Iv, this implies that

(∂xu− ∂yv)σ1 + (∂yu+ ∂xv)σ2 = 0, (9)

which are the Cauchy-Riemann conditions. It follows immediately that any non-
negative, integer power series of z is analytic. The vector derivative is invertible so
that, if

∇f = s (10)

for some function s, we can find f as

f = ∇−1s. (11)

Cauchy’s integral formula for analytic functions is an example of this:

f(z) = 1
2πI

∮
dz′

f(z′)
z′ − z

(12)

is simply Stokes’s theorem for the plane [5]. The bivector I−1 is necessary to rotate
the line element dz′ into the direction of the outward normal.

This definition (8) of an analytic function generalises easily to higher dimensions,
where these functions are called monogenic, although the simple link with power
series disappears. Again, there are some surprises in three dimensions. We have all
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learned about the important class of harmonic functions, defined as those functions
ψ(r) satisfying the scalar operator equation

∇2ψ = 0. (13)

Since monogenic functions satisfy

∇ψ = 0, (14)

they must also be harmonic. However, this first-order equation is more restrictive,
so that not all harmonic functions are monogenic. In two dimensions, the solutions
of equation (13) are written in terms of polar coordinates (r, θ) as

ψ =
{
rn

r−n

}{
cosnθ
sinnθ

}
. (15)

Complex analysis tells us that there are special combinations (analytic functions)
which have particular radial dependence:

ψ1 = rn (cosnθ + I sinnθ) = zn, (16)

ψ2 = r−n (cosnθ − I sinnθ) = z−n. (17)

In this way we can, in two dimensions, separate any given angular component into
parts regular at the origin (rn) and at infinity (r−n). These parts are just the
spinor solutions of the first-order equation (14).

The situation is exactly the same in three dimensions. The solutions of ∇2ψ = 0
are

ψ =
{
rl

r−l−1

}
Pm
l (cos θ)eimφ, (18)

but we can find specific combinations of angular dependence which are associated
with a radial dependence of rl or r−l−1. We show this by example for the case
l = 1. Obviously, non-trivial solutions of ∇ψ = 0 must contain more than just a
scalar part — they must be multivectors. For the position vector r we find the
following relations:

∇rσ3 = 3σ3, (19)
∇σ3r = −σ3, (20)
∇rk = krk−2r. (21)
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(Equation 20 can be derived from a more general formula given in Section 5.) We
can assemble solutions proportional to r and r−2:

1
2 (3σ3r + rσ3) = r (2 cos θ + iσφ sin θ) (22)

|r|−3rσ3 = r−2 (cos θ − iσφ sin θ) , (23)

where σφ is the unit vector in the azimuthal direction.
Alternatively, we can generate a spherical monogenic ψ from any spherical

harmonic Φ:
ψ = ∇Φσ3. (24)

We have chosen to place the vector σ3 to the right of Φ so as to keep ψ within the
even subalgebra of spinors. This practice is also consistent with the conventional
Pauli matrix representation (20) [24]. As an example, we try this procedure on the
l = 0 harmonics:

Φ = 1 −→ ψ = 0
Φ = r−1 −→ ψ = r−2 (cos θ − iσφ sin θ) . (25)

For a selection of l = 1 harmonics we obtain

Φ = r cos θ −→ ψ = σ3σ3 = 1
Φ = r−2 cos θ −→ ψ = r−3 (−(3 cos2 θ − 1) + 3iσφ sin θ cos θ) . (26)

Some readers may now recognise this process as similar to that in quantum
mechanics when we add the spin contribution to the orbital angular momentum,
making a total angular momentum j = l ± 1

2 . The combinations of angular
dependence are the same as in stationary solutions of the Dirac equation. In
particular, (25) indicates that only one monogenic arises from l = 0. That is correct
— only the j = 1

2 state exists. Turning to (26) we see that there is one state with no
angular dependence at all, and that the other has terms proportional to Pm

2 (cos θ).
These can also be interpreted in terms of j = 1

2 and j = 3
2 respectively.

The process by which we have generated these functions has, of course, nothing
to do with quantum mechanics — another clue that many quantum-mechanical
procedures are much more classical than they seem.



20

5 The Algebra of Spacetime
The spacetime of Einstein’s relativity is 4-dimensional, but with a difference. So
far we have assumed that the square of any vector x is a scalar, and that x2 ≥ 0.
For spacetime it is appropriate to make a different choice. We take the (+ − − −)
metric usually preferred by physicists, with a basis for the spacetime algebra [20]
(STA) made up by the orthonormal vectors

{γ0, γ1, γ2, γ3}, where γ2
0 = −γ2

k = 1 (k = 1, 2, 3). (1)

These vectors {γµ} obey the same algebraic relations as Dirac’s γ-matrices, but our
interpretation of them is not that of conventional relativistic quantum mechanics.
We do not view these objects as the components of a strange vector of matrices,
but (as with the Pauli matrices of 3-space) as four separate vectors, with a clear
geometric meaning.

From this basis set of vectors we construct the 16 (= 24) geometric elements of
the STA:

1 {γµ} {σk, iσk} {iγµ} i

1 scalar 4 vectors 6 bivectors 4 pseudovectors 1 pseudoscalar . (2)

The time-like bivectors σk ≡ γkγ0 are isomorphic to the basis vectors of 3-
dimensional space; in the STA they represent an orthonormal frame of vectors in
space relative to the laboratory time vector γ0 [4, 20]. The unit pseudoscalar of
spacetime is defined as

i ≡ γ0γ1γ2γ3 = σ1σ2σ3, (3)

which is indeed consistent with our earlier definition.
The geometric properties of spacetime are built into the mathematical language

of the STA — it is the natural language of relativity. Equations written in the
STA are invariant under passive coordinate transformations. For example, we can
write the vector x in terms of its components {xµ} as

x = xµγµ. (4)

These components depend on the frame {γµ} and change under passive transfor-
mations, but the vector x is itself invariant. Conventional methods already make
good use of scalar invariants in relativity, but much more power is available using
the STA.
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Active transformations are performed by rotors R, which are again even multi-
vectors satisfying RR̃ = 1:

eµ = RγµR̃, (5)

where the {eµ} comprise a new frame of orthogonal vectors. Any rotor R can be
written as

R = ±eB, (6)

where B = a + ib is an arbitrary 6-component bivector (a and b are relative
vectors). When performing rotations in higher dimensions, a simple rotation is
defined by a plane, and cannot be characterised by a rotation axis; it is an accident
of 3-dimensional space that planes can be mapped to lines by the duality operation.
Geometric algebra brings this out clearly by expressing a rotation directly in terms
of the plane in which it takes place.

For the 4-dimensional generalisation of the gradient operator ∇, we take account
of the metric and write

∇ ≡ γµ∂µ, (7)

where the {γµ} are a reciprocal frame of vectors to the {γµ}, defined via γµ·γν = δµν .
As an example of the use of STA, we consider electromagnetism, writing the

electromagnetic field in terms of the 4-potential A as

F = ∇∧A = ∇A−∇·A. (8)

The divergence term ∇·A is zero in the Lorentz gauge. The field bivector F is
expressed in terms of the more familiar electric and magnetic fields by making a
space-time split in the γ0 frame:

F = E + iB, (9)

where
E = 1

2 (F − γ0Fγ0) , iB = 1
2 (F + γ0Fγ0) . (10)

Particularly striking is the fact that Maxwell’s equations [20, 27] can be written in
the simple form

∇F = J, (11)

where J is the 4-current. Equation (11) contains all of Maxwell’s equations because
the ∇ operator is a vector and F is a bivector, so that the geometric product has
both vector and trivector components. This trivector part is identically zero in the
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absence of magnetic charges. It is worth emphasising [4] that this compact formula
(11) is not just a trick of notation, because the ∇ operator is invertible. We can,
therefore, solve for F :

F = ∇−1J. (12)

The inverse operator is known to physicists in the guise of the Green’s propagators
of relativistic quantum mechanics. We return to this point in a companion paper
[16], in which we demonstrate this inversion explicitly for diffraction theory.

It is possible here, as in three dimensions, to represent a relativistic quantum-
mechanical spinor (a Dirac spinor) by the even subalgebra of the STA [6, 24], which
is 8-dimensional. We write this spinor as ψ and, since ψψ̃ contains only grade-0
and grade-4 terms, we decompose ψ as

ψ =
(
ρeiβ

)1
2 R, (13)

where R is a spacetime rotor. Thus, a relativistic spinor also contains an instruction
to rotate — in this case to carry out a full Lorentz rotation. The monogenic equation
in spacetime is simply

∇ψ = 0, (14)

which, remarkably, is also the STA form of the massless Dirac equation [24].
Furthermore, the inclusion of a mass term requires only a simple modification:

∇ψ = mψγ3i. (15)

As a final example of the power of the STA in relativistic physics, we give a
compact formula for the fields of a radiating charge. This derivation is as explicit
as possible, in order to give readers new to the STA some feeling for its character,
but nevertheless it is still as compact as any of the conventional treatments in
the literature. Let a charge q move along a world-line defined by x0(τ), where τ
is proper time. An observer at spacetime position x receives an electromagnetic
influence from the charge when it lies on that observer’s past light-cone (Figure 2).
The vector

X ≡ x− x0(τ) (16)

is the separation vector down the light-cone, joining the observer to this intersection
point. We can take equation (16), augmented by the condition X2 = 0, to define a
mapping from the spacetime position x to a value of the particle’s proper time τ .
In this sense, we can write τ = τ(x), and treat τ as a scalar field. If the charge is
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Figure 2: A charge moving in the observer’s past light-cone

at rest in the observer’s frame we have

x0(τ) = τγ0 = (t− r)γ0, (17)

where r is the 3-space distance from the observer to the charge (taking c = 1). For
this simple case the 4-potential A is a pure 1/r electrostatic field, which we can
write as

A = q

4πε0

γ0

X ·γ0
, (18)

because X ·γ0 = t − (t − r) = r. Generalising to an arbitrary velocity v for the
charge, relative to the observer, gives

A = q

4πε0

v

X · v
, (19)

which is a particularly compact and clear form for the Liénard-Wiechert potential.
We now wish to differentiate the potential to find the Faraday bivector. This

will involve some general results concerning differentiation in the STA, which we
now set up; for further useful results see Chapter 2 of Hestenes & Sobczyk [5].
Since the gradient operator is a vector we must take account of its commutation
properties. Though it is evident that ∇x = 4, we need also to deal with expressions
such as

∗
∇ a

∗
x, where a is a vector, and where the stars indicate that the ∇ operates
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only on x rather than a. The result [5] is found by anticommuting the x past the
a to give ax = 2x·a− xa, and then differentiating this. Generalized to a grade-r
multivector Ar in an n-dimensional space, we have

∗
∇ Ar

∗
x= (−1)r(n− 2r)Ar. (20)

Thus, in the example given above,
∗
∇ a

∗
x= −2a. (See equation (20) for a 3-

dimensional application of this result.)
We will also need to exploit the fact that the chain rule applies in the STA as

in ordinary calculus, so that (for example)

∇x0 = ∇τ v, (21)

since x0 is a function of τ alone, and dx0/dτ ≡ ẋ0 = v is the particle velocity. In
equation (21) we use the convention that (in the absence of brackets or overstars)
∇ only operates on the object immediately to its right.

Armed with these results, we can now proceed quickly to the Faraday bivector.
First, since

0 = ∇X2 = ∇XX+
∗
∇ X

∗
X= (4−∇τ v)X + (−2X −∇τ Xv), (22)

it follows that
∇τ = X

X ·v
. (23)

As an aside, finding an explicit expression for ∇τ confirms that the particle
proper time can be treated as a scalar field — which is, perhaps, a surprising
result. In the terminology of Wheeler & Feynman [28], such a function is called
an ‘adjunct field’, because it obviously carries no energy or charge, being merely a
mathematical device for encoding information. We share the hope of Wheeler &
Feynman that some of the paradoxes of classical and quantum electrodynamics, in
particular the infinite self-energy of a point charge, might be avoidable by working
with adjunct fields of this kind.

To differentiate A, we need ∇(X ·v). Using the results already established we
have

∇(vX) = ∇τ v̇X − 2v −∇τ v2 = Xv̇X − 2X − vXv
X ·v

, (24)

∇(Xv) = ∇τ Xv̇ + 4v −∇τ v2 = 2vXv +X

X ·v
, (25)
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which combine to give

∇(X ·v) = Xv̇X −X + vXv

2(X ·v) . (26)

This yields

∇A = q

4πε0

{
∇v
X ·v

− 1
(X ·v)2∇(X ·v)v

}

= q

8πε0(X ·v)3 (Xv̇vX +Xv − vX) , (27)

so that
∇·A = 0 (28)

and
F = q

4πε0

X ∧ v + 1
2XΩvX

(X · v)3 . (29)

Here, Ωv is the ‘acceleration bivector’ of the particle:

Ωv ≡ v̇v. (30)

The quantity v̇v = v̇∧v is a pure bivector, because v2 = 1 implies that v̇ · v = 0.
For more on the value of representing the acceleration in terms of a bivector, and
the sense in which Ωv is the rest-frame component of a more general acceleration
bivector, see Chapter 6 of Hestenes & Sobczyk [5].

The form of the Faraday bivector given by equation (29) is very revealing.
It displays a clean split into a velocity term proportional to 1/(distance)2 and a
long-range radiation term proportional to 1/(distance). The first term is exactly
the Coulomb field in the rest frame of the charge, and the radiation term,

Frad = q

4πε0

1
2XΩvX

(X · v)3 , (31)

is proportional to the rest-frame acceleration projected down the null-vector X.
Finally, we return to the subject of adjunct fields. Clearly X is an adjunct field,

as τ(x) was. It is easy to show that

A = −q
8πε0
∇2X, (32)
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so that
F = −q

8πε0
∇3X. (33)

In this expression for F we have expressed a physical field solely in terms of a
derivative of an ‘information carrying’ adjunct field. Expressions such as (32) and
(33) (which we believe are new, and were derived independently by ourselves and
David Hestenes) may be of further interest in the elaboration of Wheeler-Feynman
type ‘action at a distance’ ideas [28, 29].

6 Concluding Remarks
Most of the above is well known — the vast majority of the theorems presented
date back at least a hundred years. The trouble, of course, is that these facts, whilst
‘known’, were not known by the right people at the right time, so that an appalling
amount of reinvention and duplication took place as physics and mathematics
advanced. Spinors have a central role in our understanding of the algebra of space,
and they have accordingly been reinvented more often than anything else. Each
reincarnation emphasises different aspects and uses different notation, adding new
storeys to our mathematical Tower of Babel. What we have tried to show in this
introductory paper is that the geometric algebra of David Hestenes provides the
best framework by which to unify these disparate approaches. It is our earnest
hope that more physicists will come to use it as the main language for expressing
their work.

In the three following papers, we explore different aspects of this unification,
and some of the new physics and new insights which geometric algebra brings.
Paper II [24] discusses the translation into geometric algebra of other languages
for describing spinors and quantum-mechanical states and operators, especially
in the context of the Dirac theory. It will be seen that Hestenes’ form of the
Dirac equation genuinely liberates it from any dependence upon specific matrix
representations, making its intrinsic geometric content much clearer.

Paper III [27] uses the concept of multivector differentiation [5] to make many
unifications and improvements in the area of Lagrangian field theory. The use
of a consistent and mathematically rigorous set of tools for spinor, vector and
tensor fields enables us to clarify the role of antisymmetric terms in stress-energy
tensors, about which there has been some confusion. A highlight is the inclusion of
functional differentiation within the framework of geometric algebra, enabling us
to treat ‘differentiation with respect to the metric’ in a new way. This technique is
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commonly used in field theories as one means of deriving the stress-energy tensor,
and our approach again clarifies the role of antisymmetric terms.

Paper IV [16] examines in detail the physical implications of Hestenes’ formula-
tion and interpretation of the Dirac theory. New results include predictions for the
time taken for an electron to traverse the classically-forbidden region of a potential
barrier. This is a problem of considerable interest in the area of semiconductor
technology.

We have shown elsewhere how to translate Grassmann calculus [30, 31], and
some aspects of twistor theory [32] into geometric algebra, with many simplifications
and fresh insights. Thus, geometric algebra spans very large areas of both theoretical
and applied physics.

There is another language which has some claim to achieve useful unifications.
The use of ‘differential forms’ became popular with physicists, particularly as a
result of its use in the excellent, and deservedly influential, ‘Big Black Book’ by
Misner, Thorne & Wheeler [33]. Differential forms are skew multilinear functions, so
that, like multivectors of grade k, they achieve the aim of coordinate independence.
By being scalar-valued, however, differential forms of different grades cannot be
combined in the way multivectors can in geometric algebra. Consequently, rotors
and spinors cannot be so easily expressed in the language of differential forms. In
addition, the ‘inner product’, which is necessary to a great deal of physics, has
to be grafted into this approach through the use of the duality operation, and so
the language of differential forms never unifies the inner and outer products in the
manner achieved by geometric algebra.

This leads us to say a few words about the widely-held opinion that, because
complex numbers are fundamental to quantum mechanics, it is desirable to ‘com-
plexify’ every bit of physics, including spacetime itself. It will be apparent that
we disagree with this view, and hope earnestly that it is quite wrong, and that
complex numbers (as mystical uninterpreted scalars) will prove to be unnecessary
even in quantum mechanics.

The same sentiments apply to theories involving spaces with large numbers of
dimensions that we do not observe. We have no objection to the use of higher
dimensions as such; it just seems to us to be unnecessary at present, when the
algebra of the space that we do observe contains so many wonders that are not
yet generally appreciated.

We leave the last words to David Hestenes and Garret Sobczyk [5]:

Geometry without algebra is dumb! — Algebra without geometry is
blind!
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