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Resources

* A complete lecture course,
iIncluding handouts, overheads
and papers available from
www.mrao.cam.ac.uk/~Clifford

87-YaYaaT= ] Alaebra 1tor F£h\

out in March (C.U.P.)

 David Hestenes’ website
modelingnts.la.asu.edu
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What is Geometric Algebra?

Geometric Algebra is a universal Language
for physics based on the mathematics of
Clifford Algebra

Provides a new product for vectors
Generalizes complex numbers to arbitrary

dimensions

Treats points, lines, planes, etc. in a single
algebra

Simplifies the treatment of rotations
Unites Euclidean, affine, projective, spherical,
hyperbolic and conformal geometry
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Grassmann
German schoolteacher
1809-1877

Published the Lineale
Ausdehnungslehre in 1844

Introduced the outer product
aNb=-bAa

Encodes a plane segment

,
v.
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2D Outer Product

» Antisymmetry implies
- Introduce basis vectors

= (a1b> —boaj)ejAeo
* Returns area of the plane + orientation.
* Result is a bivector

« Extends (antisymmetry) to arbitrary vectors
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Complex Numbers

* Already have a product for vectors in 2D
* Length given by aa*
« Suggests forming

(a1 + ant)(by — boi)

(a1b1 + aobo) — (a1bo — anby)e

« Complex multiplication forms the inner and
outer products of the underlying vectors!

 Clifford generalised this idea
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Hamilton

Introduced his quaternion
algebra in 1844

i =j* =k? =ijk=-1

arithmetic to 3 (47)
dimensions

Very useful for rotations,
but confusion over the
status of vectors
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Quaternions

 Introduce the two quaternion ‘vectors’

b=0b12+ by + b3k

- Product of these is

* where ¢, is minus the scalar product and
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W.K. Clifford 1845-1879

Introduced the geometric
product

ab = a-b+ aNb

the sum of a scalar and a
bivector

Think of this sum as like the
real and imaginary parts of a
complex number
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History

Foundations of geometric algebra (GA) were
laid in the 19th Century

Key figures: Hamilton, Grassmann, Clifford
and Gibbs

Underused (associated with quaternions)

Rediscovered by Pauli and Dirac for qguantum
theory of spin

Developed by mathematicians (Atiyah etc.) in
the 50s and 60s

Reintroduced to physics in the 70s by David
Hestenes
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Properties

« Geometric product is associative and
distributive

e Square of any vector is a scalar

(a + b)° = a® + b° + ab + ba

* Define the inner (scalar) and outer (exterior)
products
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2D Algebra

 Orthonormal basis is 2D

 Parallel vectors commute

* Orthogonal vectors anticommute since

» Unit bivector has negative square

(e1en)(ejen) = erjex(—ener)

—€1€1 — —1
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2D Basis

 Build into a basis for the algebra
1 €1, €o ei1N\Nes =
1 scalar 2 vectors 1 bivector

« Even grade objects form complex numbers

 Map between vectors and complex numbers

v+ Iy = ei1(ze; + yes) = erx

>

2 =x— Iy = xe;
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2D Rotations

* |n 2D vectors can be rotated using complex
phase rotations

1(ejen)eq 5€1

Ml y — exp (—I¢)x = xexp (o)
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3 Dimensions

 Now introduce a third vector

{e1,es2,e3}
« These all anticommute

eres = —ere; elc. .
1

« Have 3 bivectors now: {e1e>,eze3,e3¢e;}

, €3€]

€n¢eé3
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Bivector Products

Various new products to form in 3D
Product of a vector and a bivector

81(6182) — €7 61(8283) — €@1€2€3 — 1
* Product of two perpendicular bivectors:
(6283)(8381) = €2e3€3€] = €281 = —€1€e2
¢ Set
| = eres, ] = —ej3e]q, k = €16

Recover quaternion relations
i =j> =k*=ijk=-1
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3D Pseudoscalar

3D Pseudoscalar defined by = I = ejeze3
Represents a directed volume element
Has negative square

12 — @1€2€3€1€62€3 — er€e3€23 — —1
Commutes with all vectors
81] — @1€1€263 — —€1€ér€1e3 — e1€e2€e3€1 — 181

Interchanges vectors and planes

61] — €23
[8263 — —€1 el
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3D Basis

Different grades correspond to different

geometric objects
AN AR

1 er,ex,es  ejer,ezes,ezer 1

Generators satisfy Pauli relations eje; = 0 + €;ixlex

Recover vector cross product axb =—-la A\ b
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Reflections

 Build rotations from reflections

« Good example of geometric product — arises
In operations

a) = (a-n)n

{

a, =a—(a-n)n

Image of reflection is

b=a,—a)=a-2a-n)n
= a— (an + na)n = —nan
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Rotations

Two rotations form a reflection
a - —m(—nan)m = mnanm
Define the rotor R = mn
This is a geometric product! Rotations given

bv .
) a — RaR’ R" = nm

Works in spaces of any dimension or
signature

Works for all grades of multivectors 4 = RAR'
More efficient than matrix multiplication
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3D Rotations

Rotors even grade (scalar + bivector in 3D)
Normalised: RR" = mnnm = 1

Reduces d.o.f. from 4 to 3 — enough for a
rotation

In 3D a rotor Is a normalised, even element
R=a+B RR'=a*—-B? =

Can also write R = exp(—B/2)
Rotation in plane B with orientation of B
In terms of an axis R = exp(—0In/2)
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Group Manifold

* Rotors are elements of a 4D space,
normalised to 1

* They lie on a 3-sphere
* This is the group manifold

 Tangent space is 3D

« Can use Euler angles
R = GXp(—elequ/Z)6Xp(—€2€39/2)GXp(—€1€2l///2)

 Rotors R and —R define the same rotation
» Rotation group manifold is more complicated
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Lie Groups

Every rotor can be written as R = texp(—B/2)
Rotors form a continuous Lie group

Bivectors form a Lie algebra under the
commutator product

All finite Lie groups are rotor groups
All finite Lie algebras are bivector algebras
(Infinite case not fully clear, yet)

In conformal case starting point of screw
theory (Clifford, 1870s)!
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Rotor Interpolation

How do we interpolate between 2 rotations?

Form path between rotors
R(0) = Ry

R(1) = R, R(A) = Roexp(AB)

Find B from exp(B) = RyR,

This path is invariant. If points transformed,
path transforms the same way

Midpoint simply R(1/2) = Roexp(—B/2)
Works for all Lie groups
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Interpolation 2

For rotors in 3D can do even better! R,
View rotors as unit vectors in 4D R
Path is a circle in a plane \ g

Use simple trig’ to get SLERP }?n

R(A) = —L—(sin((1 = 1)0)R¢ + sin(AO)R 1)

sin(6)
For midpoint add the rotors and normalise!
R(1/2) = S0O2) gy k)

sin(0)
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Exercises

Verity the following
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