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Resources
• A complete lecture course, 

including handouts, overheads 
and papers available from 
www.mrao.cam.ac.uk/~Clifford

• Geometric Algebra for Physicists 
out in March (C.U.P.) 

• David Hestenes’ website 
modelingnts.la.asu.edu
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What is Geometric Algebra?
• Geometric Algebra is a universal Language 

for physics based on the mathematics of 
Clifford Algebra

• Provides a new product for vectors
• Generalizes complex numbers to arbitrary 

dimensions
• Treats points, lines, planes, etc. in a single 

algebra
• Simplifies the treatment of rotations
• Unites Euclidean, affine, projective, spherical, 

hyperbolic and conformal geometry
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Grassmann
German schoolteacher    
1809-1877

Published the Lineale 
Ausdehnungslehre in 1844

Introduced the outer product

Encodes a plane segment

a  b  b  a

b

a



MIT1 2003 5

2D Outer Product
• Antisymmetry implies
• Introduce basis vectors

• Form product

• Returns area of the plane + orientation.
• Result is a bivector
• Extends (antisymmetry) to arbitrary vectors
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Complex Numbers
• Already have a product for vectors in 2D
• Length given by aa*
• Suggests forming

• Complex multiplication forms the inner and 
outer products of the underlying vectors!

• Clifford generalised this idea
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Hamilton
Introduced his quaternion 
algebra in 1844

Generalises complex 
arithmetic to 3 (4?) 
dimensions

Very useful for rotations, 
but confusion over the 
status of vectors

i2  j2  k2  ijk  1
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Quaternions
• Introduce the two quaternion ‘vectors’

• Product of these is
• where c0 is minus the scalar product and
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W.K. Clifford 1845-1879
Introduced the geometric 
product

Product of two vectors returns 
the sum of a scalar and a 
bivector
Think of this sum as like the 
real and imaginary parts of a 
complex number
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History
• Foundations of geometric algebra (GA) were 

laid in the 19th Century
• Key figures: Hamilton, Grassmann, Clifford 

and Gibbs
• Underused (associated with quaternions)
• Rediscovered by Pauli and Dirac for quantum 

theory of spin
• Developed by mathematicians (Atiyah etc.) in 

the 50s and 60s
• Reintroduced to physics in the 70s by David 

Hestenes
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Properties
• Geometric product is associative and 

distributive

• Square of any vector is a scalar

• Define the inner (scalar) and outer (exterior) 
products
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2D Algebra
• Orthonormal basis is 2D

• Parallel vectors commute

• Orthogonal vectors anticommute since

• Unit bivector has negative square
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2D Basis
• Build into a basis for the algebra

• Even grade objects form complex numbers
• Map between vectors and complex numbers

1 scalar 2 vectors 1 bivector

x

y x,z
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2D Rotations
• In 2D vectors can be rotated using complex 

phase rotations

• But
• Rotation


v, y u, x
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3 Dimensions
• Now introduce a third vector

• These all anticommute

• Have 3 bivectors now: 
e

e1,e2,e3

e1e2,e2e3,e3e1
e1

e3

e2
1e2  e2e1 etc.

e2e3

e1e2

e3e1
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Bivector Products
• Various new products to form in 3D
• Product of a vector and a bivector

• Product of two perpendicular bivectors:

• Set

• Recover quaternion relations

e1e1e2  e2 e1e2e3  e1e2e3  I

e2e3e3e1  e2e3e3e1  e2e1  e1e2

i  e2e3, j  e3e1, k  e1e2

i2  j2  k2  ijk  1
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3D Pseudoscalar
• 3D Pseudoscalar defined by
• Represents a directed volume element
• Has negative square

• Commutes with all vectors

• Interchanges vectors and planes

I  e1e2e3

I2  e1e2e3e1e2e3  e2e3e2e3  1

e1I  e1e1e2e3  e1e2e1e3  e1e2e3e1  Ie1

e2e3e1I  e2e3
Ie2e3  e1 e1
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3D Basis
Different grades correspond to different 
geometric objects

Grade 0
Scalar

Grade 1
Vector

Grade 2
Bivector

Grade 3
Trivector

1 e1,e2,e3 e1e2,e2e3,e3e1 I

eiej   ij  ijkIekGenerators satisfy Pauli relations

a  b  I a  bRecover vector cross product
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Reflections
• Build rotations from reflections
• Good example of geometric product – arises 

in operations

a

n

ba  a  nn
a  a  a  nn

Image of reflection is

b  a  a  a  2a  nn
 a  an  nan  nan
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Rotations
• Two rotations form a reflection

• Define the rotor 
• This is a geometric product!  Rotations given 

by

• Works in spaces of any dimension or 
signature

• Works for all grades of multivectors
• More efficient than matrix multiplication

a  mnanm  mnanm
R  mn

a  RaR R  nm

A  RAR
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3D Rotations
• Rotors even grade (scalar + bivector in 3D)
• Normalised:
• Reduces d.o.f. from 4 to 3 – enough for a 

rotation
• In 3D a rotor is a normalised, even element

• Can also write
• Rotation in plane B with orientation of B 
• In terms of an axis

RR  mnnm  1

R    B RR  2  B2  1

R  expB/2

R  expIn/2
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Group Manifold
• Rotors are elements of a 4D space, 

normalised to 1
• They lie on a 3-sphere
• This is the group manifold
• Tangent space is 3D
• Can use Euler angles

• Rotors R and –R define the same rotation
• Rotation group manifold is more complicated

R  expe1e2/2expe2e3/2expe1e2/2
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Lie Groups
• Every rotor can be written as 
• Rotors form a continuous Lie group
• Bivectors form a Lie algebra under the 

commutator product
• All finite Lie groups are rotor groups
• All finite Lie algebras are bivector algebras
• (Infinite case not fully clear, yet)
• In conformal case starting point of screw 

theory (Clifford, 1870s)!

R   expB/2
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Rotor Interpolation
• How do we interpolate between 2 rotations?
• Form path between rotors

• Find B from
• This path is invariant.  If points transformed, 

path transforms the same way
• Midpoint simply
• Works for all Lie groups

R0  R0
R1  R1

R  R0 expB

expB  R0R1

R1/2  R0 expB/2
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Interpolation 2
• For rotors in 3D can do even better!
• View rotors as unit vectors in 4D
• Path is a circle in a plane
• Use simple trig’ to get SLERP

• For midpoint add the rotors and normalise!

R0

R1



R  1
sin sin1  R0  sinR1

R1/2  sin/2
sin R0  R1 
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Exercises
Verify the following
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