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Spin
• Stern-Gerlach tells us that 

electron wavefunction contains 
two terms

• Describe state in terms of a 
spinor

• A 2-state system or qubit

S
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Pauli Matrices
• Operators acting on a spinor must obey 

angular momentum relations  

• Get spin operators

• These form a Clifford algebra
• A matrix representation of the geometric 

algebra of 3D space
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Observables
• Want to place Pauli theory in a more 

geometric framework with 
• Construct observables

• Belong to a unit vector
• Written in terms of polar coordinates, find 

parameterisation
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Rotors and Spinors
• From work on Euler angles, encode degrees 

of freedom in the rotor

• Represent spinor / qubit as element of the 
even subalgebra:

• Verify that 

Keeps result in even algebra
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Imaginary Structure
• Can construct imaginary action from

• So find that

• Complex structure controlled by a bivector
• Acts on the right, so commutes with operators 

applied to the left of the spinor
• Hints at a geometric substructure
• Can always use i to denote the structure
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Inner Products
• The reverse operation in 3D is same as 

Hermitian conjugation
• Real part of inner product is

• Follows that full inner product is

• The projection onto the 1 and Iσ3
components, 
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Observables
• Spin observables become

• All information contained in the spin vector

• Now define normalised rotor

• Operation of forming an observable reduces 
to Same as classical 

expression
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Rotating Spinors
• So have a natural ‘explanation’ for 2-sided 

construction of quantum observables
• Now look at composite rotations

• So rotor transformation law is

• Take angle through to 2π

Sign change for fermions
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Unitary Transformations
• Spinors can transform under the full unitary 

group U(2)
• Decomposes into SU(2) and a U(1) term
• SU(2) term becomes a rotor on left
• U(1) term applied on the right

• Separates out the group structure in a helpful 
way

• Does all generalise to multiparticle setting
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Magnetic Field
• Rotor contained in 
• Use this to Simplify equations
• Magnetic field
• Schrodinger equation

• Reduces to simple equation

• Magnitude is constant, so left with rotor 
equation

  1/2R
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Density Matrices
• Mixed states are  described by a density 

matrix
• For a pure state this is

• GA version is
• Addition is fine in GA!
• General mixed state from sum
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Spacetime Algebra
• Basic tool for relativistic physics is the 

spacetime algebra or STA.  

• Generators satisfy

• A matrix-free representation of Dirac theory
• Currently used for classical mechanics, 

scattering, tunnelling, supersymmetry,  gravity 
and quantum information

1   I I  0123
1 scalar   4 vectors   6 bivectors   4 trivectors    1 pseudoscalar
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Relative Space
• Determine 3D space relative for observer with  

velocity given by timelike vector
• Suppose event has position x in natural units

• The basis elements of relative vector are

• Satisfy

0
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Relative Split
• Split bivectors with    to determine relative 

split

• Relative vectors generate 3D algebra with 
same volume element

• Relativistic (Dirac) spinors constructed from 
full 3D algebra

0

1  i, I i I I

1 i Ii I
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Lorentz Transformation
• Moving observers 

construct a new 
coordinate grid

• Both position and time 
coordinates change

Time

Space

Need to re-express this in terms of vector 
transformations
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Frames and Boosts
• Vector unaffected by coordinate system, so

• Frame vectors related by

• Introduce the hyperbolic angle

• Transformed vectors now

Exponential of a bivector
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Spacetime Rotors
• Define the spacetime rotor

• A Lorentz transformation can now be written 
in rotor form

• Use the tilde for reverse operation in the STA 
(dagger is frame-dependent)

• Same rotor description as 3D
• Far superior to 4X4 matrices!
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Pure Boosts
• Rotors generate proper orthochronous 

transformations
• Suppose we want the pure boost from u to v

• Solution is

• Remainder of a general rotor is

A 3D rotor
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Velocity and Acceleration
• Write arbitrary 4-velocity as

• Acceleration is

• But
• So

Pure bivector

Acceleration bivector
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The vector derivative
• Define the vector derivative operator in the 

standard way

• So components of this are directional 
derivatives

• But now the vector product terms are 
invertible

• Can construct Green’s functions for
• These are Feynman propagators in 

spacetime 


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2 Dimensions
• Vector derivative is

• Now introduce the scalar+pseudoscalar field

• Find that

• Same terms that appear in the Cauchy-
Riemann equations!
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Analytic Functions
• Vector derivative closely related to definition 

of analytic functions
• Statement that     is analytic is
• Cauchy integral formula provides inverse
• This generalises to arbitrary dimensions
• Can construct power series in z because

• Lose the commutativity in higher dimensions
• But this does not worry us now!

   0
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Spacetime Vector Derivative
• Define spacetime vector derivative

• Has a spacetime split of the form

• First application - Maxwell equations
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Maxwell Equations
• Assume no magnetisation and polarisation 

effects and revert to natural units
• Maxwell equations become, in GA form

• Naturally assemble equations for the 
divergence and (bivector) curl

• Combine using geometric product
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STA Form

• Define the field strength (Faraday bivector)

• And current
• All 4 Maxwell equations unite into the single 

equation

• Spacetime vector derivative is invertible, can 
carry out first-order propagator theory

• First-order Green’s function for scattering
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Application 
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Lorentz Force Law
• Non-relativistic form is

• Can re-express in relativistic form as

• Simplest form is provided by rotor equation 
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Spin Dynamics
• Suppose that a particle carries a spin vector s

along its trajectory

• Simplest form of rotor equation then has

• Non relativistic limit to this equation is
Equation for a particle 
with g=2!
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Exercises
• 2 spin-1/2 states are represented by φ and ψ, 

with accompanying spin vectors

• Prove that

• Given that

• Prove that
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