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Abstract
A new calculus, based upon the multivector derivative, is developed

for Lagrangian mechanics and field theory, providing streamlined and rig-
orous derivations of the Euler-Lagrange equations. A more general form
of Noether’s theorem is found which is appropriate to both discrete and
continuous symmetries. This is used to find the conjugate currents of the
Dirac theory, where it improves on techniques previously used for analyses
of local observables. General formulae for the canonical stress-energy and
angular-momentum tensors are derived, with spinors and vectors treated
in a unified way. It is demonstrated that the antisymmetric terms in the
stress-energy tensor are crucial to the correct treatment of angular momen-
tum. The multivector derivative is extended to provide a functional calculus
for linear functions which is more compact and more powerful than previ-
ous formalisms. This is demonstrated in a reformulation of the functional
derivative with respect to the metric, which is then used to recover the full
canonical stress-energy tensor. Unlike conventional formalisms, which result
in a symmetric stress-energy tensor, our reformulation retains the potentially
important antisymmetric contribution.
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1 Introduction
‘Clifford Algebra to Geometric Calculus [1]’ is one of the most stimulating modern
textbooks of applied mathematics, full of powerful formulae waiting for physical
application. In this paper we concentrate on one aspect of this book, multivector
differentiation, with the aim of demonstrating that it provides the natural framework
for Lagrangian field theory. In doing so we will demonstrate that the multivector
derivative simplifies proofs of a number of well-known formulae, and, in the case of
Dirac theory, leads to new results and insights.

The multivector derivative not only provides a systematic and rigorous method
of formulating the variational principle; it is also very powerful for performing the
manipulations of tensor analysis in a coordinate-free way. This power is exploited
in derivations of the conserved tensors for Poincaré and conformal symmetries.
While the results are not new, the clarity which geometric calculus brings to their
derivations compares very favourably with the traditional techniques of tensor
analysis.

A summary of geometric algebra and the multivector derivative is provided in
Section 2, with some applications to point-particle mechanics given in Section 3.
Section 4 then develops the main content of the paper, dealing with the application
of the multivector derivative to field theory. New results include the identification
of currents conjugate to continuous extensions of discrete symmetries in the Dirac
equation. The derivation of their conservation equations is easier than by any
previous method. We also find a bivector generalisation of the Euler homogeneity
property, valid for any Poincaré-invariant theory. Derivations of the canonical
stress-energy and angular-momentum tensors lead to a clear understanding of the
significance of antisymmetric terms in the stress-energy tensor, which are shown to
be related to the divergence of the spin bivector. Conformal transformations are
also considered, and we show how non-conservation of their conjugate tensors is
related to the mass term in coupled Maxwell-Dirac theory.

Finally, Section 5 introduces a generalisation of the multivector derivative,
appropriate for finding the derivative with respect to a multilinear function. Some
simple results are derived and are used to formalise the technique of finding the
stress-energy tensor by ‘functional differentiation with respect to the metric’. The
new formulation clarifies the role of reparameterisation invariance in this derivation
and also provides a simple proof of the equivalence (up to a total derivative) of the
canonical and functional stress-energy tensors. The artificially imposed symmetry of
the metric differentiation approach is seen to be unnecessary, and some implications



3

are discussed.

2 The Multivector Derivative
In this section we provide a brief summary of geometric algebra. We will adopt
the conventions of the other papers in this series (henceforth known as Paper I [2],
Paper II [3] and Paper IV [4]) which are also close to those of Hestenes & Sobczyk
[1].

We write (Clifford) vectors in lower case (a) and general multivectors in upper
case (A) or, in the case of fields, as Greek (ψ). The space of multivectors is graded
and multivectors containing elements of a single grade, r, are termed homogeneous
and written Ar. The geometric (Clifford) product is written by simply juxtaposing
multivectors AB.

We use the symbol 〈A〉r to denote the projection of the grade-r components
of A, and write the scalar (grade-0) part simply as 〈A〉. The interior and exterior
products are defined as

Ar ·Bs = 〈ArBs〉|r−s|
Ar∧Bs = 〈ArBs〉r+s

(2.1)

respectively, to which we add the scalar and commutator products

A∗B = 〈AB〉
A×B = 1

2(AB −BA). (2.2)

The operation of taking the commutator product with a bivector (a grade-2
multivector) is grade-preserving. Reversion is defined by

(AB)̃ = B̃Ã

ã = a for any vector a, (2.3)

and reverses the order of vectors in any given expression.
Most of this paper is concerned with relativistic field theory and uses the

spacetime algebra (STA). This is the geometric algebra of spacetime, and is
generated by a set of four orthonormal vectors {γµ}, where

γµ ·γν = gµν = diag(+ − − −). (2.4)
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The full STA is 16-dimensional and is spanned by

1, {γµ} {σk, iσk}, {iγµ}, i, (2.5)

where
i ≡ γ0γ1γ2γ3 (2.6)

is the pseudoscalar for spacetime and

σk ≡ γkγ0 (2.7)

are relativistic bivectors, representing an orthonormal frame of vectors in the space
relative to the time-like γ0 direction. To distinguish between relative and spacetime
vectors, we write the former in bold type.

One of the main aims of this paper is to demonstrate the generality and power
of the multivector derivative [1], which we now define. The derivative with respect
to a general multivector X is written as ∂X , and is introduced by first defining the
derivative in a fixed direction A as

A∗∂XF (X) = ∂

∂τ
F (X + τA)

∣∣∣∣∣
τ=0

. (2.8)

An arbitrary vector basis {ek}, with reciprocal basis {ek}, can be extended via
exterior multiplication to define a basis for the entire algebra {eJ}, where J is a
general (antisymmetric) index. With the reciprocal basis {ek} defined by ek·ej = δkj ,
the multivector derivative is now defined as

∂X =
∑
J

eJeJ ∗∂X , (2.9)

so that ∂X inherits the multivector properties of its argument X, as well as a
calculus from equation (2.8).

The most useful result for the multivector derivative is

∂X〈XA〉 = PX(A), (2.10)

where PX(A) is the projection of A on to the grades contained in X. From (2.10)
it follows that

∂X〈X̃A〉 = PX(Ã)
∂X̃〈X̃A〉 = PX(A). (2.11)
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Leibniz’ rule can now be used in conjunction with (2.10) to build up results for the
action of ∂X on more complicated functions; for example

∂X〈XX̃〉k/2 = k〈XX̃〉(k−2)/2X̃. (2.12)

The multivector derivative acts on objects to its immediate right unless brackets
are present, as in ∂X(AB) where ∂X acts on both A and B. If ∂X is only intended
to act on B we write this as ∂̇XAḂ, where the overdot denotes the multivector on
which the derivative acts. Leibniz’ rule can now be given in the form

∂X(AB) = ∂̇XȦB + ∂̇XAḂ. (2.13)

These conventions apply equally if the derivative is taken with respect to a scalar,
where the overdot notation remains a useful way of encoding partial derivatives. In
situations where the overdots could be confused with time derivatives, we replace
the former with overstars.

The derivative with respect to spacetime position x is called the vector derivative,
and is given the symbol

∂x = ∇ = ∇x. (2.14)

Two useful results are
∇̇(ẋ·Ar) = rAr
∇̇(ẋ∧Ar) = (n− r)Ar,

(2.15)

where n is the dimension of the space. The left equivalent of ∇ is written as
←
∇ and

acts on multivectors to its immediate left, although it is not always necessary to
use

←
∇ since we can use the overdot notation to write A

←
∇ as Ȧ∇̇. The operator

↔
∇

acts both to its left and right, and is usually taken as acting on everything within
a given expression, for example

A
↔
∇ B = Ȧ∇̇B + A∇̇Ḃ. (2.16)

Finally, we need a notation for dealing with functions of multivectors. If F (X)
is a multivector-valued function of X (not necessarily linear) we write

A∗∂XF (X) = FX(A) = F (A), (2.17)

which is a linear function of A (the X-dependence is usually suppressed). The
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adjoint to F is defined via the multivector derivative as

F (B) = ∂A〈F (A)B〉. (2.18)

It follows that
〈AF (B)〉 = 〈F (A)B〉. (2.19)

A symmetric function is one for which F = F .
If f(x) is a function which maps between spacetime points, we define the

differential
f(a) = a·∇f(x), (2.20)

which is a linear function mapping vectors to vectors. This is extended to act on
all multivectors through the definition

f(a∧b∧. . .∧c) = f(a)∧f(b) . . .∧f(c), (2.21)

from which the determinant is defined as

f(I) = det(f)I, (2.22)

where I is the highest-grade element (pseudoscalar) for the algebra. For linear
vector functions, equation (2.19) has the useful extensions

Ar ·f(Bs) = f [f(Ar)·Bs] r ≤ s

f(Ar)·Bs = f [Ar ·f(Bs)] r ≥ s,
(2.23)

from which the inverse functions can be constructed:

f−1(A) = det(f)−1f(AI)I−1

f
−1(A) = det(f)−1I−1f(IA).

(2.24)

These are all the definitions and conventions we require; further details and
proofs can be found in Hestenes & Sobczyk [1].

3 Point-Particle Lagrangians
Before turning to field theory, it is instructive to see how the formalism of Sec-
tion 2 applies to the simpler case of classical mechanics. This analysis introduces
some of the concepts needed in later sections as well as demonstrating how the



7

multivector derivative can extend classical mechanics through the use of multivector-
parameterised symmetries.

To illustrate these techniques, we shall treat a classical model for a spin-1
2

fermion. This is a useful preliminary to the full Dirac theory and also demonstrates
that internal spin-1

2 has a satisfactory classical formulation without the introduction
of Grassmann variables [5, 6].

3.1 Euler-Lagrange Equations and Noether’s Theorem
Consider a scalar-valued function

L = L(ψi, ψ̇i), (3.1)

where ψi are a set of general multivectors, and ψ̇i denotes differentiation with
respect to some scalar parameter, which we will usually take to be time. We shall
assume here that L is not a function of time explicitly, and depends on time only
through ψi and ψ̇i.

We wish to extremise the action

S =
∫ t2

t1
dtL(ψi, ψ̇i) (3.2)

with respect to ψi. We write the variables ψi in the form [7]

ψi(t) = ψ0
i (t) + εφi(t), (3.3)

where φi is a multivector of the same grade(s) as ψi, ε is a scalar, and ψ0
i represents

the extremal path. We now take the derivative with respect to the parameter ε
and find that

∂εL =
∫ t2

t1
dt
(
φi∗∂ψiL+ φ̇i∗∂ψ̇iL

)
=

∫ t2

t1
dtφi∗

(
∂ψiL− ∂t(∂ψ̇iL)

)
, (3.4)

where ∂ψi is the multivector derivative with respect to ψi. For the action to be
stationary, (3.4) must vanish for all φi, and we can read off the Euler-Lagrange
equations

∂ψiL− ∂t(∂ψ̇iL) = 0. (3.5)

These extend naturally if higher-order derivatives are present. Equation (3.5) could
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alternatively have been derived by decomposing ψi in an explicit basis, varying each
component separately, and recombining the separate equations. The multivector
derivative approach is manifestly quicker, more elegant and leads to a clearer
understanding of the role of the variables in any Lagrangian.

The multivector derivative facilitates a more general version of Noether’s theo-
rem, by allowing for transformations parameterised by multivectors. This makes it
possible to derive conserved quantities conjugate to discrete symmetries, something
which cannot be done if only infinitesimal transformations are considered. The
standard results for scalar-parameterised transformations are a special case of this
more general result. Any transformation written in geometric algebra is necessarily
active, because the freedom from coordinates in geometric algebra prevents us from
writing down passive transformations. Passive transformations can accordingly be
eliminated from physics altogether and we contend that they should be.

The most general transformation parameterised by a single multivector M is

ψ′i = f(ψi,M), (3.6)

where f and M are, respectively, time-independent functions and multivectors.
The transformation f need not be grade-preserving, and can therefore provide an
analogue to supersymmetric transformations [5]. The symmetries we consider here
will preserve grade, however, as their associated geometry is much clearer. The
differential notation of Section 2 is helpful at this point and we define

f
A

(ψi,M) = A∗∂Mf(ψi,M). (3.7)

Defining now
L′ = L(ψ′i, ψ̇i

′), (3.8)

we have

A∗∂ML′ = f
A

(ψi,M)∗∂ψ′
i
L′ + f

A
(ψ̇i,M)∗∂ψ̇′

i
L′

= f
A

(ψi,M)∗
(
∂ψ′

i
L′ − ∂t(∂ψ̇′

i
L′)
)

+ ∂t
(
f
A

(ψi,M)∗∂ψ̇′
i
L′
)
. (3.9)

If we now assume that the equations of motion are satisfied for ψ′i (an assumption
which must be confirmed in any given instance) it follows that

A∗∂ML′ = ∂t
(
f
A

(ψi,M)∗∂ψ̇′
i
L′
)
. (3.10)
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We now differentiate out the A-dependence, yielding

∂ML
′ = ∂t

(
∂AfA(ψi,M)∗∂ψ̇′

i
L′
)

= ∂t

(
∗
∂M

∗
ψ
′

i ∗∂ψ̇′
i
L′
)
, (3.11)

where, as mentioned in Section 2, we have employed overstars rather than overdots
to avoid confusion with time derivatives. If L′ is independent of M the quantity
∂AfA(ψi,M) ∗ ∂ψ̇′

i
L′ is conserved, although both forms in (3.11) are useful in

practice. Equation (3.11) is the general result, appropriate to any transformation
parameterised by a multivector. These can include discrete symmetries, such as
reflections, and our result therefore extends the conventional theory based on
infinitesimal transformations [7].

If M is a scalar parameter, α, say, (3.11) reduces to the more familiar form

∂αL
′ = ∂t

(
(∂αψ′i)∗∂ψ̇′

i
L′
)
, (3.12)

and if L′ is α-dependent, useful results are still obtained by setting α = 0:

∂αL
′|α=0 = ∂t

(
(∂αψ′i)∗∂ψ̇′

i
L′
)∣∣∣
α=0

. (3.13)

As an application of this we consider time-translation, for which

ψ′i(t, α) = ψi(t+ α) (3.14)
⇒ ∂αψ

′
i|α=0 = ψ̇i. (3.15)

If all t-dependence enters L through the dynamical variables only, equation (3.13)
gives

∂tL = ∂t(ψ̇i∗∂ψ̇iL), (3.16)

and we define the conserved Hamiltonian as

H = ψ̇i∗∂ψ̇iL− L. (3.17)

Many of the results in this section generalise to to the case where the Lagrangian
is multivector-valued [5, 8]. ‘Multivector Lagrangians’ allow for large numbers
of coupled scalar Lagrangians to be combined into a single entity and both the
Euler-Lagrange equations and Noether’s theorem have satisfactory formulations in
this case.
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3.2 Point-Particle Lagrangians with Spin
As an interesting application of these results, we consider the classical model for
spin-1

2 particles [5] introduced by Barut & Zanghi [9] (this has also been analysed
previously by one of us [10]). The Lagrangian contains spinor variables and can be
written in the STA as [3]

L = 〈ψ̇iσ3ψ̃ + p(ẋ− ψγ0ψ̃) + eA(x)ψγ0ψ̃〉. (3.18)

Our dynamical variables are x, p and ψ, where ψ is an even multivector, and the
dot denotes differentiation with respect to some arbitrary parameter τ . In order to
derive the equations of motion we first consider the ψ equation,

∂τ (iσ3ψ̃) = −iσ3
˙̃ψ − 2γ0ψ̃p+ 2γ0ψ̃A

⇒ ψ̇iσ3 = Pψγ0, (3.19)

where P = p− eA and we have used (2.10). In deriving (3.19) there is no pretence
that ψ and ψ̃ are independent variables — we have just one variable and everything
else is taken care of by the multivector derivative.

The p equation is simple:
ẋ = ψγ0ψ̃, (3.20)

although since ẋ2 = ρ2 is not, in general, equal to 1, τ cannot necessarily be viewed
as the proper time for the particle.

The x equation is

ṗ = e∇A(x)·(ψγ0ψ̃)
= e(∇∧A)·ẋ+ eẋ·∇A

⇒ Ṗ = eF ·ẋ. (3.21)

We can now use (3.13) to derive some consequences for this model. The
Hamiltonian is given by

H = ẋ∗∂ẋL+ ψ̇∗∂ψ̇L− L
= P ·ẋ, (3.22)

and is conserved absolutely. The 4-momentum and angular momentum are con-
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served only if A = 0, when (3.18) reduces to the free-particle Lagrangian

L0 = 〈ψ̇iσ3ψ̃ + p(ẋ− ψγ0ψ̃)〉. (3.23)

The 4-momentum is found by considering translations,

x′ = x+ αa, (3.24)

and is simply p. The component of p in the ẋ direction gives the energy (3.22).
The angular momentum is found by considering rotational invariance, so we set

x′ = eαB/2xe−αB/2

p′ = eαB/2pe−αB/2

ψ′ = eαB/2ψ

(3.25)

(spinors have a single-sided transformation law under rotations) in which case L′0
is independent of α. It follows that the quantity

(B ·x)∗∂ẋL0 + 1
2(Bψ)∗∂ψ̇L0 = B ·(x∧p+ 1

2ψiσ3ψ̃) (3.26)

is conserved for arbitrary B. The angular momentum is therefore p∧x− 1
2ψiσ3ψ̃,

which exhibits the required spin-1
2 behaviour. The factor of 1

2 originates from the
transformation law (3.25).

We can also consider transformations in which the spinor is acted on to the
right. These correspond to gauge transformations, though a wider class is now
available than for the standard column-spinor formulation. These transformations
quickly yield interesting results when used in conjunction with (3.13). For example,

ψ′ = ψeαiσ3 (3.27)

can be used to show that 〈ψψ̃〉 is constant, and

ψ′ = ψeασ3 (3.28)

leads to the equation
∂τ 〈iψψ̃〉 = −2P ·(ψγ3ψ̃). (3.29)

These may be combined to give

∂τ (ψψ̃) = 2iP ·(ψγ3ψ̃). (3.30)
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Finally, the duality transformation

ψ′ = ψeαi (3.31)

yields
2〈ψ̇σ3ψ̃〉 = ∂τ 〈ψσ3ψ̃〉 = 0. (3.32)

In fact, the Lagrangian (3.18) is unsatisfactory for a number of reasons. It is
not reparameterisation-invariant, so that it is not possible to define a proper time;
it is not gauge-invariant; and it predicts a zero gyromagnetic moment [10]. Indeed,
it is clear from (3.21) that something already has gone wrong, since we expect to
see ṗ rather than Ṗ coupling to F ·x. However, the derivation of a suitable angular
momentum is sufficient reason to continue constructing Lagrangians of this type, in
an effort to find one having all the required properties. This subject will be taken
further in a later paper.

4 Field Theory
The potential of the multivector derivative is more fully realised when the formalism
of Section 3.1 is extended to encompass field theory. It provides great formal clarity
by allowing spinors and tensors to be treated in a unified way (c.f. the approach of
Belinfante [11]) and it inherits the computational advantages of geometric algebra.
This is manifest in derivations of the stress-energy and angular-momentum tensors
for Maxwell and coupled Maxwell-Dirac theory. The formalism provides a clearer
understanding of the role of antisymmetric terms in the stress-energy tensor, and
their relation to spin.

Noether’s theorem is also formulated in terms of the multivector derivative, and
this is used to derive new conjugate currents in Dirac theory, using the spacetime
algebra approach to spinors described in Paper II [3]. This greatly simplifies the
derivations of many results for local observables in the Dirac theory.

4.1 Euler-Lagrange Equations and Noether’s Theorem
In this section we will restrict our attention to relativistic field theory (though the
results are easily reproduced for the non-relativistic case). Consider a scalar-valued
Lagrangian density

L = L(ψi,∇ψi), (4.1)
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where ψi is a multivector. Here we have assumed that L can be written as a
function of ψi and ∇ψi only, which must be confirmed; an example is provided by
electromagnetism in Section 4.3. The action is defined as

S =
∫
|d4x|L, (4.2)

where |d4x| is the invariant measure. Proceeding as in Section 3.1, we write

ψi(x) = ψ0
i (x) + εφi(x), (4.3)

where φi contains the same grades as ψi. We now find that

∂εS =
∫
|d4x| (φi∗∂ψiL+ (∇φi)∗∂∇ψiL) . (4.4)

The last term here can be written, employing the overdot notation of Section 2, as

〈∇̇φ̇i∂∇ψiL〉 = ∇·〈φi∂∇ψiL〉1 − φi∗
(

(∂∇ψiL)
←
∇
)

(4.5)

and, assuming the boundary term vanishes, we find that

∂εS =
∫
|d4x|φi∗

(
∂ψiL − (∂∇ψiL)

←
∇
)
. (4.6)

From (4.6) we can read off versions of the Euler-Lagrange equations appropriate to
the multivector character of ψi. If ψi only contains grade-r terms, for example, we
deduce that the grade-r part of the quantity enclosed in brackets vanishes:

〈∂ψiL − (∂∇ψiL)
←
∇〉r = 0. (4.7)

If, on the other hand, ψ is a general even multivector (as is the case for the Dirac
equation) our Euler-Lagrange equation is

∂ψL = (∂∇ψL)
←
∇, (4.8)

or
∂ψ̃L = ∇(∂(∇ψ)̃ L). (4.9)

Equation (4.7) allows for vectors, tensors and spinor variables to be handled in a
single equation: a considerable unification!

Noether’s theorem for field Lagrangians can also be derived in the same way
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as in Section 3.1. We begin by considering a general multivector-parameterised
transformation,

ψ′i = f(ψi,M). (4.10)

With L′ = L(ψ′i,∇ψ′i), we have

A∗∂ML′ = f
A

(ψi,M)∗∂ψ′
i
L′ + 〈∇f

A
(ψi,M)∂∇ψ′

i
L′〉

= ∇·〈f
A

(ψi,M)∂∇ψ′
i
L′〉1 + f

A
(ψi,M)∗

(
∂ψ′

i
L′ − (∂∇ψ′

i
L′)

←
∇
)
.(4.11)

If we now assume that the ψ′i satisfy their equations of motion (which must again
be verified) we find that

∂ML′ = ∂A∇·〈fA(ψi,M)∂∇ψ′
i
L′〉1. (4.12)

This is the most general result. It applies even if ψ′i is evaluated at a different
spacetime point from ψi, when

ψ′i(x) = f (ψi(h(x)),M) . (4.13)

If we now take M to be a scalar, α, we find that

∂αL′ = ∇·〈∂αψ′i∂∇ψ′
i
L′〉1 (4.14)

so that, if L′ is independent of α, the current

j = 〈∂αψ′i∂∇ψ′
i
L′〉1

∣∣∣
α=0

(4.15)

satisfies the conservation equation

∇·j = 0. (4.16)

An inertial frame relative to the constant time-like velocity γ0 sees charge

Q =
∫
|d3x|j ·γ0 (4.17)

as conserved with respect to its local time.
If L′ is dependent on α, useful consequences can be derived from the important

formula
∂αL′|α=0 = ∇·〈∂αψ′i∂∇ψ′

i
L′〉1

∣∣∣
α=0

. (4.18)
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4.2 Spacetime Transformations and their Conjugate Tensors
In this section we use (4.18) to analyse the consequences of Poincaré and confor-
mal invariance. This enables us to identify conserved stress-energy and angular-
momentum tensors, while further demonstrating the effectiveness of the multivector
derivative.

We first consider translations:

x′ = x+ αn

ψ′i(x) = ψi(x′)
(4.19)

and, assuming L′ is only x-dependent through the fields, (4.18) gives

n·∇L = ∇·〈n·∇ψi∂∇ψiL〉1. (4.20)

From this we define the adjoint to the canonical stress-energy tensor as

T (n) = 〈n·∇ψi∂∇ψiL − nL〉1 (4.21)

which satisfies
∇·T (n) = 0. (4.22)

The canonical stress-energy tensor is the adjoint function, which, from (2.18), is

T (n) = ∇̇〈ψ̇i∂∇ψiLn〉 − nL. (4.23)

It follows from (4.22) that

Ṫ (∇̇)·n = 0 for all n,
⇒ Ṫ (∇̇) = 0, (4.24)

so that T (n) is a conserved tensor. In the γ0 frame there is now a conserved 4-vector

p =
∫
|d3x|T (γ0), (4.25)

which is identified as the total momentum. The total energy is

E =
∫
|d3x|γ0 ·T (γ0). (4.26)

We next consider rotations, assuming initially that all fields ψi transform as
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vectors. We define
x′ = e−αB/2xeαB/2

ψ′i(x) = eαB/2ψi(x′)e−αB/2,
(4.27)

which again we regard as an active rotation of fields from one spacetime point to
another. This differs from (3.25) in the relative direction of the rotation for the
position vector x and the fields ψi, resulting in a sign difference in the contribution
of the spin. In order to apply (4.18) we use

∂αψ
′
i|α=0 = B×ψi − (B ·x)·∇ψi (4.28)

and
∂αL′|α=0 = ∇·(x·BL). (4.29)

Together, these yield the conserved vector

J(B) = 〈(B×ψi − (B ·x)·∇ψi)∂∇ψiL〉1 +B ·xL, (4.30)

which satisfies

∇̇·J̇(B) = 0
⇒ J̇(∇̇)·B = 0 for all B
⇒ J̇(∇̇) = 0. (4.31)

The adjoint function J(n) is, therefore, a conserved bivector-valued function of
position, which we identify as the canonical angular-momentum tensor. The
calculation of J(n) is a simple application of (2.18):

J(n) = ∂B〈(B×ψi − (B ·x)·∇ψi)∂∇ψiLn+B ·xLn〉
= 〈ψi×(∂∇ψiLn)〉2 − x∧∇̇〈ψ̇i∂∇ψiLn〉+ x∧(nL)
= T (n)∧x+ 〈ψi×(∂∇ψiLn)〉2. (4.32)

If one of the fields ψ, say, transforms single-sidedly (as a spinor), then (4.32)
contains a term 〈1

2ψ∂∇ψLn〉2.
The first term in (4.32) is the routine p∧x component, and the second term is

due to the spin of the field. The general form of J(n) is therefore

J(n) = T (n)∧x+ S(n). (4.33)
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By applying (4.31) to (4.33) and using (4.24), we find that

T (∇̇)∧ẋ+ Ṡ(∇̇) = 0. (4.34)

The first term in (4.34) can be written as −∂a∧T (a), which returns the characteristic
bivector [1] B of T (n). The antisymmetric part of T (n) can always be written in
terms of this bivector as

TA(a) = 1
2B ·a, (4.35)

so that
T (a)∧∂a = 1

2(B ·a)∧∂a = B. (4.36)

Equation (4.34) now gives
B = −Ṡ(∇̇), (4.37)

so that, in any Poincaré-invariant theory, the antisymmetric part of the stress-energy
tensor is a total divergence. In order for (4.32) to hold, however, the antisymmetric
part of T (n) must be retained, since it cancels the divergence of the spin term:
although TA(n) is a total divergence, x∧TA(n) certainly is not.

By inserting (4.23) into (4.32) and setting J̇(∇̇) = 0, we find the interesting
equation

〈ψi×(∂ψiL) + (∇ψi)×(∂∇ψiL)〉2 = 0, (4.38)

which is satisfied by any Poincaré-invariant theory. If spinor terms are present, the
left-hand side includes terms of the type

1
2〈ψi(∂ψiL) + (∇ψi)(∂∇ψiL)〉2. (4.39)

Equation (4.38) is a generalised Euler homogeneity condition, and is a consequence
of the assumed isotropy of space.

While all fundamental theories should be Poincaré-invariant, an interesting class
go beyond this and are invariant under conformal transformations. The conformal
group contains two further symmetries, of which the first is scale invariance. (In
fact dilation symmetry does not imply full conformal invariance, and the results
below are appropriate to any scale-invariant theory.) We define

x′ = eαx

ψ′i(x) = ediαψi(x′),
(4.40)
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so that
∇ψ′i(x) = e(di+1)α∇x′ψi(x′). (4.41)

If the theory is scale-invariant, it is possible to assign the conformal weights di such
that the left-hand side of (4.18) reduces to

∂αL′|α=0 = ∇·(xL). (4.42)

Equation (4.18) now takes the form

∇·(xL) = ∇·〈(diψi + x·∇ψi)∂∇ψiL〉1, (4.43)

so that

⇒ ∇·〈diψi∂∇ψiL〉1 = −∇·(T (x))
= −tr(T ). (4.44)

Thus, in a scale-invariant theory, the trace of the canonical stress-energy tensor is
a total divergence. The current conjugate to dilations is

j = 〈diψi∂∇ψiL+ T (x)〉1. (4.45)

By using the equations of motion, equation (4.44) can be written, in four dimensions,
as

di〈ψi∂ψiL〉+ (di + 1)〈∇ψi∂∇ψiL〉 = 4L, (4.46)

which is an Euler homogeneity requirement and can be taken as an alternative
definition of a scale-invariant theory.

The further generator of the conformal group is inversion:

x′ = x−1. (4.47)

As it stands this is not parameterised by anything, and cannot be applied to (4.18).
In order to derive a conserved tensor [12], (4.47) is combined with a translation to
define a special conformal transformation [1]:

x′ = h(x)
= (x−1 + αn)−1

= x(1 + αnx)−1, (4.48)



19

from which it follows that

⇒ h(a) = (1 + αxn)−1a(1 + αnx)−1, (4.49)

and h is therefore a spacetime-dependent rotation/dilation. This can be used to
postulate transformation laws for all fields (including spinors, which transform
single-sidedly) such that

L′ = L(ψ′i,∇ψ′i) = dethL(ψi(x′),∇x′ψi(x′)), (4.50)

and hence

∂αL′|α=0 = ∂α dethL|α=0 + deth(∂αx′)·∇x′L(ψi(x′),∇x′ψi(x′))|α=0 . (4.51)

It can be shown that
∂α deth|α=0 = −8x·n (4.52)

and
(∂αx′)·∇x′ = −(xnx)·∇, (4.53)

whence
∂αL′|α=0 = −∇·(xnxL). (4.54)

Special conformal transformations therefore lead to the tensor

T (xnx)− 〈(∂αψ′i)α=0 ∂∇ψiL〉1, (4.55)

whose adjoint is a tensor of the form

xT (n)x−K(n), (4.56)

which is conserved in a conformally-invariant theory.
By adding a total divergence, T (n) can be redefined to give a T ′(n) which is

symmetric and traceless. In this case (4.45) can be written as T ′(x) and (4.56)
becomes xT ′(n)x. We now have a set of four tensors, T ′(x), T ′(n), xT ′(n)x and
J(n), which are all conserved in conformally-invariant theories. This yields a set
of 1 + 4 + 4 + 6 = 15 conserved quantities — the dimension of the conformal
group. All this is well known, of course, but we believe this is the first time that
geometric algebra has been systematically applied to this problem. In doing so we
have simplified many of the derivations, and generated a clearer understanding of
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the results.

4.3 Electromagnetism
As an application of the results of Section 4.1 and Section 4.2 we consider the
electromagnetic Lagrangian [13]

L = −A·J + 1
2F ·F, (4.57)

where A is the vector potential, F = ∇∧A, and A couples to an external current J
which is not varied. To find the equations of motion we must first write F ·F as a
function of ∇A:

F ·F = 1
4〈(∇A− (∇A)̃ )2〉

= 1
2〈∇A∇A−∇A(∇A)̃ 〉. (4.58)

Since A is a pure vector, the appropriate form of the Euler-Lagrange equations is
(4.7)

〈∂ÃL−∇∂(∇A)̃ L〉1 = 0
⇒ ∇·F = J. (4.59)

With the identity ∇∧F = ∇∧(∇∧A) = 0, this yields the full Maxwell equations
∇F = J .

To calculate the free-field stress-energy tensor, we set J = 0 in (4.57) and work
with

L = −1
2〈FF̃ 〉, (4.60)

so that (4.23) gives
T (n) = ∇̇〈(n∧Ȧ)·F 〉 − 1

2n〈F
2〉. (4.61)

This expression is physically unsatisfactory, because it is not gauge-invariant. In
order to find a gauge-invariant form of (4.61), we write [14]

∇̇〈ȦF ·n〉 = (∇∧A)·(F ·n) + (F ·n)·∇A
= F ·(F ·n)− (F ·∇̇)·nȦ (4.62)

and observe that, since ∇·F = 0, the second term is a total divergence and can
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therefore be ignored. We are left with [15]

Tem(n) = F ·(F ·n)− 1
2nF ·F

= 1
2FnF̃ , (4.63)

which is both gauge-invariant and symmetric. As a check, the energy in the γ0

frame is given by∫
|d3x|〈γ0Fγ0F̃ 〉 =

∫
|d3x|12〈(E + iB)(E − iB)〉

=
∫
|d3x|12(E2 + B2), (4.64)

in agreement with standard formulations [7].
The angular momentum is found from (4.32):

J(n) = (∇̇〈ȦFn〉 − 1
2n〈F

2〉)∧x+ A∧(F ·n), (4.65)

where we have used the stress-energy tensor in the form (4.61). This expression
therefore suffers from the same lack of gauge invariance, and is fixed up in the
same way, using (4.62) and

(F ·n)∧A− x∧
(
(F ·∇̇)·nȦ

)
= −x∧((F·

↔
∇)·nA), (4.66)

which is a total divergence. This leaves simply

J(n) = Tem(n)∧x, (4.67)

and conservation is ensured by the result Ṫem(∇̇) = 0 and the symmetry of Tem.
The angular momentum in the γ0 frame is now∫

|d3x|Tem(γ0)∧x =
∫
|d3x|

(
P t− 1

2(E2 + B2)x + x×P
)
, (4.68)

where P is the Poynting vector −i(E ×B). The relative 3-space vector terms
in (4.68) give the centre of energy, and the relative bivector term is the angular
momentum (recall that the × signifies the commutator product (2.2) and not the
vector cross product).

By redefining the stress-energy tensor to be symmetric, the spin term in the
angular momentum has been absorbed into (4.63). For the case of electromagnetism
this has the advantage that gauge invariance is manifest, but it also suppresses the
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spin-1 nature of the field. Suppressing the spin term in this manner is not always
desirable, as we shall see with the Dirac equation.

The Lagrangian (4.60) is not only Poincaré-invariant; it is invariant under the
full conformal group of spacetime. To see this, consider an arbitrary transformation
h, so that

x′ = h(x)
A′(x) = h(A(x′)). (4.69)

It follows that

∇∧A′(x) = h(∇x′)∧h(A(x′))
= h(∇x′∧A(x′))
= h(F (x′)), (4.70)

since h commutes with the exterior derivative. The transformed action is therefore∫
|d4x|12〈h(F (x′))2〉 =

∫
|d4x′|(deth)−1〈F (x′)·hh(F (x′))〉, (4.71)

and h generates a symmetry if

hh(B) = λ det(h)B (4.72)

for any bivector B, where λ is an arbitrary scalar constant. The set of transforma-
tions h satisfying (4.72) generates the conformal group, as we observe by writing
(4.72) as

h(A)·h(B) = λ det(h)A·B (4.73)

where A and B are bivectors; this relation holds for any h which satisfies

h(a)·h(b) = eα(x)a·b, (4.74)

with a, b vectors. Equation (4.74) provides a standard definition of the conformal
group [1]. All translations satisfy (4.72) trivially, since h = 1. Reflections and
rotations also satisfy (4.72) immediately, since for both of these hh = 1 and
deth = ±1.

The remaining conformal transformations are dilations and inversions, as we
studied in Section 4.2. Dilations clearly satisfy (4.72) and, as a check, the trace of
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the canonical stress-energy tensor is a total divergence:

∂nT (n) = −F ·F = 〈A
↔
∇ F 〉. (4.75)

The conserved current conjugate to dilations can be written in the form

1
2FxF̃ − F ·∇(x·A) (4.76)

but, since the second term is already a total divergence, we can write the conserved
vector as Tem(x). This is conserved since Tem(n) is traceless.

The final conformal transformation is inversion,

h(x) = x−1 = x

x2

h(a) = −xax
x4 (4.77)

deth = − 1
x8 ,

which again satisfies (4.72). The current conjugate to this is given by (4.56), and is

xTem(n)x. (4.78)

The complete list of conserved tensors in free-field electromagnetism is therefore
Tem(x), Tem(n), xTem(n)x, and Tem(n) ∧ x, and it is a simple matter to calculate
the modified conservation equations when a current is present.

4.4 Dirac Theory
The multivector derivative is particularly powerful when applied to the Dirac equa-
tion. To proceed, we must first eliminate column spinors and matrix operators from
Dirac theory, and work instead with multivectors in the STA. This reformulation
is carried out in Paper II [3], where it is shown that the Lagrangian for the Dirac
equation becomes

L = 〈∇ψiγ3ψ̃ − eAψγ0ψ̃ −mψψ̃〉, (4.79)

where ψ is an even multivector and A is an external field (which is not varied).
The appropriate form of the Euler-Lagrange equations is (4.9), giving

∇ψiγ3 − 2eAψγ0 − 2mψ = −∇(ψiγ3)
⇒ ∇ψiσ3 − eAψ = mψγ0, (4.80)
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which is the familiar STA form of the Dirac equation [3, 16].
We now analyse the Dirac equation from the Lagrangian (4.79), employing

the Noether theorem described in Section 4.1. There are two classes of symmetry,
according to whether or not the position vector x is transformed. For the rest of
this section we will consider position-independent transformations of the spinor ψ.
Spacetime transformations are dealt with in Section 4.5.

The transformations we study at this point are of the type

ψ′ = ψeαM , (4.81)

where M is a general multivector and α and M are independent of position.
Operations on the right of ψ arise naturally in the STA formulation of Dirac theory,
and should be thought of as generalised gauge transformations. In the standard
Dirac theory with column spinors, however, transformations like (4.81) cannot be
written down simply, and many of the results presented here are much harder to
derive.

Applying (4.18) to (4.81), we find that

∇·〈ψMiγ3ψ̃〉1 = ∂αL′|α=0 , (4.82)

which is a result we shall exploit by substituting various quantities for M . If M is
odd, equation (4.82) yields no information, since both sides vanish identically. The
first even M we consider is a scalar, λ, so that 〈ψMiγ3ψ̃〉1 is zero. It follows that

∂α
(
e2αλL

)∣∣∣
α=0

= 0
⇒ L = 0, (4.83)

so that, when the equations of motion are satisfied, the Dirac Lagrangian vanishes.
We next consider a duality transformation. Setting M = i, equation (4.82)

gives

−∇·(ρs) = −m∂α〈e2iαρeiβ〉
∣∣∣
α=0

,

⇒ ∇·(ρs) = −2mρ sin β, (4.84)

where ψψ̃ = ρeiβ and the spin current ρs is defined as ψγ3ψ̃. The role of the
β-parameter in the Dirac equation remains unclear [13, 16], although (4.84) relates
it to non-conservation of the spin current. Equation (4.84) is already known [13],
but it does not seem to have been pointed out before that the spin current is the
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conjugate current to duality rotations. In conventional versions, these would be
called ‘axial rotations’, with the role of i is taken by γ5. However, in our approach,
these rotations are identical to duality transformations for the electromagnetic field
— another unification provided by geometric algebra. The duality transformation
eiα is also the continuous analogue of discrete mass conjugation symmetry, since
ψ 7→ ψi changes the sign of the mass term in L. Hence we expect that the conjugate
current, ρs, is conserved for massless particles.

Finally, taking M to be an arbitrary bivector B yields

∇·(ψB ·(iγ3)ψ̃) = 2〈∇ψiB ·γ3ψ̃ − eAψB ·γ0ψ̃〉
= 2

〈
eAψ(σ3Bσ3 −B)γ0ψ̃

〉
, (4.85)

where we have used the equations of motion (4.80). Both sides of (4.85) vanish
for B = iσ1, iσ2 and σ3, with useful equations arising on taking B = σ1, σ2 and iσ3.
The last of these, B = iσ3, corresponds to the usual U(1) gauge transformation of
the spinor field, and gives

∇·(ρv) = 0, (4.86)

where ρv = ψγ0ψ̃ is the current conjugate to phase transformations, and is strictly
conserved. The remaining transformations, eασ1 and eασ2 , give

∇·(ρe1) = 2eρA·e2

∇·(ρe2) = −2eρA·e1,
(4.87)

where ρeµ = ψγµψ̃. Although these equations have been found before [13], the role
of ρe1 and ρe2, as currents conjugate to right-sided eασ2 and eασ1 transformations,
has not been noted. Right multiplication by σ1 and σ2 provide continuous versions
of charge conjugation, since the transformation ψ 7→ ψσ1 takes (4.80) into

∇ψiσ3 + eAψ = mψγ0. (4.88)

It follows that the conjugate currents are conserved exactly if the external potential
vanishes, or the particle has zero charge.

Many of the results in this section have been derived by David Hestenes [13, 16],
through an analysis of the local observables of the Dirac theory. The Lagrangian
approach simplifies many of these derivations and, more importantly, reveals that
many of the observables in the Dirac theory are conjugate to symmetries of the
Lagrangian, and that these symmetries have natural geometric interpretations.
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4.5 Spacetime Transformations in Maxwell-Dirac Theory
We now consider spacetime symmetries in the Dirac theory, and derive the canonical
stress-energy tensor and angular-momentum tensors. In doing so, we include the
free-field term for the electromagnetic field, and work with the coupled Lagrangian

L = 〈(∇ψ)iγ3ψ̃ − eAψγ0ψ̃ −mψψ̃ + 1
2F

2〉, (4.89)

in which ψ and A are both dynamical variables. Including both fields ensures that
the Lagrangian is Poincaré-invariant.

From (4.23) and (4.83), the stress-energy tensor is

T (n) = ∇̇〈ψ̇iγ3ψ̃n〉+ ∇̇〈ȦFn〉 − 1
2nF ·F, (4.90)

which once again is not gauge-invariant. We can manipulate the last two terms as
in Section 4.3, the only difference being that we now pick up a term from ∇·F = J

(J ≡ eψγ0ψ̃), giving

Tmd(n) = ∇̇〈ψ̇iγ3ψ̃n〉 − n·JA+ 1
2 F̃ nF, (4.91)

which is now gauge-invariant. Conservation of (4.91) can be confirmed using the
equations of motion (4.80) and (4.59). The first and last terms are the free-field
stress-energy tensors, and the middle term, −n·JA, arises from the coupling. The
stress-energy tensor for the Dirac theory in the presence of an external field A is
conventionally defined by the first two terms of (4.91), since the combination of
these is gauge-invariant.

Only the free-field electromagnetic contribution in (4.91) is symmetric; the other
terms each contain antisymmetric parts. The overall antisymmetric contribution is

TA = 1
2(T (n)− T (n))

= n·(∇·(1
4iρs))

= n·(−i∇∧(1
4ρs)), (4.92)

and is therefore completely determined by the exterior derivative of the spin current
[17].

The angular momentum is found from (4.32), using the rearrangement carried
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out in Section 4.3, and is

J(n) = Tmd(n)∧x+ 1
2iρs∧n, (4.93)

in full agreement with (4.92). The ease of derivation of (4.93) compares favourably
with the traditional operator approach [14]. It was crucial to the derivation that the
antisymmetric component of Tmd(n) was retained, in order to identify the spin-1

2
contribution to J(n). In (4.93) the spin term is determined by the trivector is, and
the fact that this trivector can be dualised to the vector s is a unique property of
four-dimensional spacetime.

The sole term breaking conformal invariance in (4.89) is the mass term 〈mψψ̃〉,
and it is useful to consider the currents conjugate to dilations and special conformal
transformations, and show how their non-conservation results from this term. For
dilations, since the conformal weight of a spinor field is 3

2 , (4.45) yields the current

jd = Tmd(x) (4.94)

(after subtracting out a total divergence). The conservation equation is

∇·jd = ∂n ·Tmd(n)
= 〈mψψ̃〉. (4.95)

For special conformal transformations, we know from (4.49) and (4.69) that the
A-field transforms as

A′(x) = (1 + αnx)−1A(x′)(1 + αxn)−1, (4.96)

and, since this is a rotation/dilation, we postulate for ψ the single-sided transfor-
mation

ψ′(x) = (1 + αnx)−2(1 + αxn)−1ψ(x′). (4.97)

In order to verify that (4.50) is satisfied, we need the result

∇
(
(1 + αnx)−2(1 + αxn)−1

)
= 0. (4.98)

From (4.55) we find that the conserved tensor is

Tc(n) = xTmd(n)x+ n·(ix∧(ρs)), (4.99)
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and the conservation equation is

Ṫc(∇̇) = 2〈mψψ̃〉x. (4.100)

In both (4.95) and (4.100) the conjugate tensors are conserved as the mass goes to
zero, as expected.

5 Multivector Techniques For Functional Differentiation
In the previous section we dealt with Lagrangians which are functions of multivector-
valued fields. In this section we will outline how to extend the formalism to include
multivector-valued functions as the dynamical variables in the Lagrangian. This is,
in fact, crucial to a complete formulation of gauge theory within geometric algebra,
which will be presented elsewhere.

In order to generalise the results of Section 4.1, it is necessary to extend the
multivector derivative so that it becomes possible to differentiate with respect
to a multivector-valued function. The resulting operator defines a ‘functional
calculus’ for linear functions, and provides a clear understanding of the meaning of
‘functional differentiation with respect to the metric’.

The advantage of the present approach is that only a slight elaboration of the
techniques outlined in Section 2 is required; no new notation or conventions are
needed. The quantities we wish to calculate are of the type

∂f(b)f(Ar), (5.1)

where b is a vector, Ar is an grade-r multivector, and f is a linear vector function.
Recall that f(b) is a shorthand notation for f(b, x) = b·∇f(x), so that in writing
(5.1) we must assume that f(b) and f(Ar) are evaluated at the same spacetime
point x. This can be enforced by the inclusion of a Dirac delta-function, but that
is not necessary for the manipulations carried out here.

To obtain an explicit formula for the derivative (5.1), we first project out from
Ar those terms which include the vector b. The appropriate projection operator is

Pb(Ar) = (Ar ·b−1)b = b∧(b−1 ·Ar), (5.2)
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so that

∂f(b)f(Ar) = ∂f(b)f(b∧(b−1 ·Ar))

= ∂f(b)
(
f(b)∧f(b−1 ·Ar)

)
. (5.3)

It is easily shown (for example, by expanding in a basis) that the factor f(Ar ·b−1)
does not depend on f(b), so, recalling (2.15), we obtain

∂f(b)f(Ar) = (n− r + 1)f(b−1 ·Ar), (5.4)

where n is the dimension of the space. We can extend (5.4) in a number of ways,
and will from now on take b to be a unit (time-like) vector (b−1 = b). Employing
the obvious result

∂f(b)f(b)·a = a, (5.5)

we find that

∂f(b)f(a)·c = b·a∂f(b)f(b)·c
= b·ac. (5.6)

This may be compared with the result of standard functional calculus, in which
the derivative of a scalar by a 2-tensor gives a 2-tensor (in this case t(b) = b·ac).
Equation (5.6) extends to

∂f(b)〈f(c∧d)·B2〉 = ∂̇f(b)〈ḟ(c)·(f(d)·B2)〉 − ∂̇f(b)〈ḟ(d)·(f(c)·B2)〉
= f(b·(c∧d))·B2, (5.7)

so that
∂f(b)〈f(A)B2〉 = f(b·〈A〉2)·B2, (5.8)

where B2 is an arbitrary bivector. Proceeding in this manner, we find the general
formula

∂f(b)〈f(A)B〉 =
∑
r

〈f(b·Ar)Br〉1. (5.9)

Equation (5.9) can be used to derive formulae for the functional derivative of
the adjoint. The general result can be expressed as

∂f(b)f(Ar) = 〈f(b·Ẋr)Ar〉1∂̇Xr (5.10)
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and when A is a vector, this admits the simpler form

∂f(b)f(a) = ab. (5.11)

If f is a symmetric function then f = f , but we cannot exploit this for functional
differentiation, since f and f are independent for the purposes of calculus.

Our final results concern the functional derivative of the inverse function, given
by (2.24). We first need the result for the derivative of the determinant, as defined
by (2.22):

∂f(b)f(I) = f(b·I)
⇒ ∂f(b) det(f) = f(b·I)I−1

= det(f)f−1(b). (5.12)

This again coincides with the standard formula for functional differentiation of the
determinant by its corresponding tensor. The present proof, which follows directly
from the definitions (2.22) and (2.24) and the formula (5.4), is considerably more
concise than by conventional matrix/tensor methods. The result for the inverse is
now found to be:

∂f(b)f
−1(Ar) = ∂f(b)

(
(det f)−1f(ArI)I−1

)
= rf

−1(b∧Ar)− f
−1(b)·f−1(A), (5.13)

and the analogue of (5.9) is

∂f(b)〈f
−1(A)M〉 =

∑
r

∂f(b)〈(det f)−1f(ArI)I−1Mr〉

=
∑
r

−f−1(Ar)·(Mr ·f
−1(b)). (5.14)

In both cases we have made repeated use of (2.23).
An extension of these results can be expected to provide a rich elaboration of

multivector calculus. Some further developments will be given in a forthcoming
paper, but here we concentrate on a single application — the stress-energy tensor.
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5.1 The Stress-Energy Tensor Revisited
Functional differentiation with respect to the metric has become the standard
method for deriving the stress-energy tensor in the context of general relativity
[18, 19], so we need to examine how this is incorporated into our framework. As
an example we take free-field electromagnetism, for which the standard approach
involves writing the Lagrangian as

1
2F ·F = 1

2F
µνF ρσgµσgνρ, (5.15)

where F µν are the components of F with respect to an arbitrary frame. In order
to imagine varying gµν we do not need to introduce any concept of curved space,
since all that is required is an understanding of how coordinate frames are defined
in flat space. Following the approach of chapter 6 of Hestenes & Sobczyk [1], we
introduce a set of scalar coordinates {xµ}, so that x = x(x0, . . . x3). From this we
define a coordinate frame as

eµ = ∂xµx, (5.16)

which induces the metric
gµν = eµ ·eν . (5.17)

The reciprocal frame is defined as

eµ = ∇xµ, (5.18)

and it is easily verified that
eµ ·eν = δµν . (5.19)

The metric is now understood as the tensor mapping the reciprocal frame to the
coordinate frame:

g(eµ) = eµ. (5.20)

The metric is therefore tied to a given spacetime frame and so, in order to vary the
metric, we must vary this frame. This is achieved by a linear redefinition of the
spacetime point at which the coordinate fields xµ are evaluated, so that

xµ(x) 7→ xµ(h(x))
eµ 7→ h−1(eµ). (5.21)
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Variation of the metric therefore gives us information about the variation of the
action under reparameterisation, so we define

x′ = h(x),
ψ′(x′) = ψ(x), (5.22)

where h = h is a general linear function which need not be symmetric. The action
is now

S =
∫
|d4x|L(ψi(x),∇ψi(x))

=
∫
|d4x′|(deth)−1L(ψ′i(x′), h(∇x′)ψ′i(x′)). (5.23)

Since we have chosen h to be linear, h is not a function of position. We can therefore
unambiguously relabel the parameter in (5.23) so as to give

S =
∫
|d4x|(deth)−1L(ψ′i(x), h(∇)ψ′i(x))

=
∫
|d4x|(deth)−1L′. (5.24)

The form of ψ′i depends on the variable, with

ψ′i = h(ψi) – vector field,
ψ′i = ψi – spinor field. (5.25)

The cost of making the action integral invariant under active transformations
of spacetime is the introduction of a new tensor variable h, which is similar to the
vierbein of general relativity [19]. The h-tensor has no kinetic term and variation
of S with respect to h yields

h(eµ)∗∂h(eµ)S
∣∣∣
h=1

=
∫
|d4x|h(∂n)∗∂h(n)

(
(deth)−1L′

)∣∣∣
h=1

. (5.26)

Upon defining
∂h(n)

(
(deth)−1L′

)∣∣∣
h=1

= T (n), (5.27)
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equation (5.26) becomes

δS =
∫
|d4x|h(∂n)∗T (n)

=
∫
|d4x|ḣ(x)·T (∇̇)

= −
∫
|d4x|h(x)·Ṫ (∇̇). (5.28)

However, if the equations of motion are satisfied, δS must vanish for arbitrary h,
so that variation with respect to h leads to the conservation equation

Ṫ (∇̇) = 0, (5.29)

and the tensor T (n) is identified as the functional stress-energy tensor. To see that
this is equivalent to the canonical tensor, we use (5.12) in (5.27) to give

T (n) = ∂h(n)L′
∣∣∣
h=1
− nL. (5.30)

The first term in (5.30) can be written as

∂h(n)
(
ψ′i∗∂ψiL+ (h(∇)ψ′i)∗∂∇ψiL

)∣∣∣
h=1

= ∇̇〈ψ̇i∂∇ψiLn〉+ ∂h(n)ψ̇
′
i∗(∂ψiL+ ∇̇∂∇ψiL)

∣∣∣
h=1

(5.31)

and, assuming the equations of motion are satisfied, the second term in (5.31)
becomes 〈∂h(n)ψ

′
i

↔
∇ (∂∇ψiL)〉, which is a total divergence. On comparing (5.31)

with (4.23) we see that the tensors now agree, up to a total divergence.
We illustrate this with free-field electromagnetism and Dirac theory. For

electromagnetism, we have

T (n) = 1
2∂h(n)h(F )·h(F )

∣∣∣
h=1
− 1

2nF ·F
= (n·F )·F − 1

2nF ·F
= 1

2FnF̃ , (5.32)

which agrees with (4.63). The functional derivative approach automatically pre-
serves gauge invariance, since L′ is gauge-invariant. The derivation of the symmetric
tensor (5.32) has nothing to do with any imposed symmetry on h; it follows purely
from the form of L. We can see that this approach does not necessarily yield a
symmetric stress-energy by considering the free-field Dirac Lagrangian, for which
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we find

T (n) = ∂h(n)〈h(∇)ψiγ3ψ̃〉
= ∇̇〈ψ̇iγ3ψ̃n〉, (5.33)

in agreement with (4.91).
Traditional derivations of the stress-energy tensor by differentiating with respect

to the metric always finish up by imposing symmetry as a constraint on T (n) [19, 20].
In our approach, however, we have differentiated with respect h, which is a ‘square
root’ of the metric tensor g and is in general asymmetric. It is therefore natural
that our approach can give rise to asymmetric terms, which is very gratifying
since we have already seen that these are central to the correct treatment of spin
[21, 22, 23].

6 Summary and Conclusions
Geometric calculus is the natural language for the study of Lagrangian field theory.
Geometric algebra clarifies the physics, and the multivector derivative simplifies the
algebra. Passive transformations are eliminated, and only active transformations,
in which the particles (or experiments) are transferred from one spacetime point
to the other, are discussed. The geometric algebra approach allows for spinor and
vector variables to be treated in the same way and, applied to the Dirac theory,
leads to the identification of new conjugate currents.

Functional differentiation with respect to linear functions can also be handled
within multivector calculus, leading to powerful ways of manipulating the ‘vierbein’
fields of general relativity. The functional stress-energy tensor is not necessarily
symmetric, and the symmetry of the electromagnetic stress-energy tensor is a
consequence solely of gauge invariance.

In future work, a more complete formulation of gauge theory will be presented
utilising the techniques introduced in this paper. This will include treatments of
both electroweak symmetries and gravity.
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