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Abstract
We present a new treament of 2-spinors and twistors, using the spacetime

algebra. The key rôle of bilinear covariants is emphasized. As a by-product,
an explicit representation is found, composed entirely of real spacetime
vectors, for the Grassmann entities of supersymmetric field theory.
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1 Introduction
The aim of this presentation is to give a new translation of 2-spinors and twistors
into the language of Clifford algebra. This has certainly been considered before
[1, 2], but we differ from previous approaches by using the language of a particular
form of Clifford algebra, the spacetime algebra (henceforth STA), in which the
stress is on working in real 4-dimensional spacetime, with no use of a commutative
scalar imaginary i. Moreover, the quantities which are Clifford multiplied together
are always taken to be real geometric entities (vectors, bivectors, etc.), living in
spacetime, rather than complex entities living in an abstract or internal space.
Thus the real space geometry involved in any equation is always directly evident.

That such a translation can be achieved may seem surprising. It is generally
believed that complex space notions and a unit imaginary i are fundamental in areas
such as quantum mechanics, complex spin space, and 2-spinor and twistor theory.
However using the spacetime algebra, it has already shown [3] how the i appearing
in the Dirac, Pauli and Schrödinger equations has a geometrical explanation in
terms of rotations in real spacetime. Here we extend this approach to 2-spinors and
twistors, and thereby achieve a reworking that we believe is mathematically the
simplest yet found, and which lays bare very clearly the real (rather than complex)
geometry involved.

As another motivation for what follows, we should point out that the scheme we
present has great computational power, both for hand working, and on computers.
Every time two entities are written side by side algebraically a Clifford product
is implied, thus all our expressions can be programmed into a computer in a
completely definite and explicit fashion. There is no need either for an abstract
spin space, containing objects which have to be operated on by operators, or for an
abstract index convention. The requirement for an explicit matrix representation
is also avoided, and all equations are automatically Lorentz invariant since they
are written in terms of geometric objects.

Due to the restriction on space, we will only consider the most basic levels
of 2-spinor and twistor theory. There are many more results in our translation
programme for 2-spinors and twistors that have already been obtained, in particular
for higher valence twistors, the conformal group on spacetime, twistor geometry
and curved space differentiation, and these will be presented with proper technical
details in a forthcoming paper. However, by spending some time being precise
about the nature of our translation, we hope that even the basic level results
presented here will still be of use and interest. A short introduction is also given
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of the equivalent process for field supersymmetry, and we end by discussing some
implications for the rôle of 2-spinors and twistors in physics.

2 The Spacetime Algebra
The spacetime algebra is the geometric (Clifford) algebra of real 4-dimensional
spacetime. Geometric algebra and the geometric product are described in detail
in [4]. Our own conventions follow those of this reference, and are also described
in [5]. Briefly we define a multivector as a sum of Clifford objects of arbitrary
grade (grade 0 = scalar, grade 1 = vector, grade 2 = bivector, etc.). These are
equipped with an associative (geometric) product. We will also need the operation
of reversion which reverses the order of multivectors,

(AB)̃ = B̃Ã, (1)

but leaves vectors (and scalars) unchanged, so it simply reverses the order of the
vectors in any product.

The Clifford algebra for 3-dimensional Euclidean space is generatated by three
orthonormal vectors {σk}, and is spanned by

1, {σk} , {iσk} , i (2)

where i = σ1σ2σ3 is the pseudoscalar (highest grade multivector) for the space.
The pseudoscalar i squares to −1, and commutes with all elements of the algebra
in this 3-dimensional case, so is given the same symbol as the unit imaginary. Note,
however, that it has a definite geometrical rôle as on oriented volume element,
rather than just being an imaginary scalar. For future clarity, we will reserve
the symbol j for the uninterpreted commutative imaginary i, as used for example
in conventional quantum mechanics and electrical engineering. The algebra (2)
is the Pauli algebra, but in geometric algebra the three Pauli σk are no longer
viewed as three matrix-valued components of a single isospace vector, but as three
independent basis vectors for real space.

A quantum spin state contains a pair of complex numbers, ψ1 and ψ2

|ψ〉 =
(
ψ1

ψ2

)
, (3)

and has a one to one correspondence with an even multivector ψ. A general
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even element can be written as ψ = a0 + akiσk, where a0 and the ak are scalars
(summation convention assumed), and the correspondence works via the basic
identification

|ψ〉 =
(

a0 + ja3

−a2 + ja1

)
↔ ψ = a0 + akiσk. (4)

We will call ψ a spinor, as one of its key properties is that it has a single-sided
transformation law under rotations (section 3).

To show that this identification works, we also need the translation of the
angular momentum operators on spin space. We will denote these operators σ̂k,
where as usual

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −j
j 0

)
, σ̂z =

(
1 0
0 −1

)
. (5)

The translation scheme is then

|φ〉 = σ̂k |ψ〉 ↔ φ = σkψσ3 (k = 1, 2, 3). (6)

Verifying that this works is a matter of computation, e.g.

σ̂x |ψ〉 =
(
−a2 + ja1

a0 + ja3

)
↔ −a2 + a3iσ1− a0iσ2 + a1iσ3 = σ1

(
a0 + akiσk

)
σ3, (7)

demonstrates the correspondence for σ̂x. Finally we need the translation for the
action of j upon a state |ψ〉. This can be seen to be

|φ〉 = j |ψ〉 ↔ φ = ψ iσ3. (8)

We note this operation acts solely to the right of ψ. The significance of this will be
discussed later.

An implicit notational convention should be apparent above. Conventional
quantum states will always appear as bras or kets, while their STA equivalents
will be written using the same letter but without the brackets. Operators (e.g.
upon spin space) will be denoted by carets. We do not at this stage need a special
notation for operators in STA, because the rôle of operators is taken over by right
or left multiplication by elements from the same Clifford algebra as the spinors
themselves are taken from. This is the first example of a conceptual unification
afforded by STA — ‘spin space’ and ‘operators upon spin space’ become united,
with both being just multivectors in real space. Similarly the unit imaginary j is
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disposed of to become another element of the same kind, which in the next section
we show has a clear geometrical meaning.

In order to extend these results to 4-dimensional spacetime, we need the
full 16-component STA, which is generated by four vectors γµ. This has basis
elements 1 (scalar), γµ (vectors), iσk and σk (bivectors), iγµ (pseudovectors) and i
(pseudoscalar) (µ = 0, . . . , 3; k = 1, 2, 3). The even elements of this space, 1, σk,
iσk and i, coincide with the full Pauli algebra. Thus vectors in the Pauli algebra
become bivectors as viewed from the Dirac algebra. The precise definitions are

σk ≡ γkγ0 and i ≡ γ0γ1γ2γ3 = σ1σ2σ3. (9)

Note that though these algebras share the same pseudoscalar i, this anti-commutes
with the spacetime vectors γµ. Note also that reversion in this algebra (also denoted
by a tilde — R̃), reverses the sign of all bivectors, so does not coincide with Pauli
reversion. In matrix terms this is the difference between the Hermitian and Dirac
adjoints. It should be clear from the context which is implied.

A 4-component Dirac column spinor |ψ〉 is put into a one to one correspondence
with an even element of the Dirac algebra ψ [6] via

|ψ〉 =


a0 + ja3

−a2 + ja1

−b3 + jb0

−b1 − jb2

↔ ψ = a0 + akiσk + i(b0 + bkiσk). (10)

The resulting translation for the action of the operators γ̂µ is

γ̂µ |ψ〉 ↔ γµψγ0 (µ = 0, . . . , 3), (11)

which follows if the γ̂ matrices are defined in the standard Dirac-Pauli representation
[7]. Verification is again a matter of computation, and further details are given in
[5]. The action of j is the same as in the Pauli case,

j |ψ〉 ↔ ψ iσ3. (12)

3 Rotations and Bilinear Covariants
In STA, the vectors σk are simply the basis vectors for 3-dimensional space, which
means that the translation (6) for the action of the σ̂k can be recast in a particularly
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suggestive form. Let n be a unit vector, then the eigenvalue equation for the
measurement of spin in a direction n is conventionally

n·Ŝ |ψ〉 = ± h̄2 |ψ〉 , (13)

where in this scheme Ŝ is a ‘vector’, with ‘components’ Ŝk = (h̄/2)σ̂k. Now
n·Ŝ = h̄

2n
kσ̂k, so the STA translation for this equation is just

nψσ3 = ±ψ, (14)

where n is a (true) vector in ordinary 3-dimensional space. Multiplying on the
right by σ3ψ̃ (ψ̃ = a0 − akiσk), yields

nψψ̃ = ±ψσ3ψ̃. (15)

Now ψψ̃ is a scalar in the Pauli case

|ψ|2 ≡ ψψ̃ = ψ̃ψ (16)
= (a0)2 + (a1)2 + (a2)2 + (a3)2, (17)

so we can write
n = ±ψσ3ψ̃

|ψ|2
. (18)

This shows that the wavefunction ψ is in fact an instruction on how to rotate the
fixed reference direction σ3 and align it parallel or anti-parallel with the desired
direction n. The amplitude just gives a change of scale. This idea, of taking a fixed
or ‘fiducial’ direction, and transforming it to give the particle spin axis, is a central
one for the development of our physical interpretation of quantum mechanics.

In the relativistic case, ψψ̃ is not necessarily a pure scalar, and we have
ψψ̃ = ψ̃ψ = ρeiβ. The relativistic wavefunction ψ now specifies a spin axis s via
s = ρ−1ψγ3ψ̃, and a complete set of body axes eµ via

eµ = ρ−1ψγµψ̃. (19)

e0 = v is interpreted as the particle 4-velocity, while ρv is the standard Dirac
probabilty current — see [5] for further details. The main change in viewpoint
on going to the STA should now be apparent — instead of the discrete and
discontinous language of operators, eigenstates and eigenvalues we now have the
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idea of continuous families of transformations. This enables us to give a realistic
physical description of particle tracks and spin directions in interaction with external
apparatus [8].

One of the great advantages of geometric algebra is the way that rotation of a
general multivector is achieved in exactly the same fashion as for a single vector.
Thus to discuss Lorentz rotations for example, let us write ψ = ρ1/2eiβ/2R. Then
R is an even multivector satisfying RR̃ = R̃R = 1 and therefore corresponds to a
Lorentz rotation (combination of pure boost and spatial rotation). To rotate an
arbitrary multivector M we just form the analogue of (19) and write

M ′ = RMR̃. (20)

This is a very quick way of obtaining the transformation formulae for electric and
magnetic fields for example. If we use the whole wavefunction, which incorporates
information about the particle density, ρ, and also the β factor, and use it to rotate
a given fixed Clifford entity such as the γ0 and γ3 considered above, then we get
a physical density for some quantity. For example, the spin angular momentum
density for a Dirac particle is the bivector 1

2 h̄ψiσ3ψ̃. (Note the combination ψ . . . ψ̃
preserves grade for objects of grade 1, 2 and 3.) Such expressions can generally be
written equivalently as bilinear covariants in conventional Dirac theory notation
— for example, ρv = ψγ0ψ̃, the Dirac current, would be written conventionally
as jµ = 〈ψ|γ̂µ|ψ〉 — but in the STA version the meaning of the expression is
usually much clearer. We mention this point, since it will transpire that many
of the quantities of importance for 2-spinors and twistors turn out to be bilinear
covariants of the above kind, which could therefore in principle also be translated
into the Dirac notation, but again, look more straightforward in our version.

As a final comment, we should discuss the way in which specific Clifford elements
such as γ0 and iσ3 enter expressions such as ρv = ψγ0ψ̃, and why general Lorentz
covariance is not compromised by this. What is happening is that the wavefunction
ψ is an instruction to rotate from some fixed set of multivectors to the configuration
required (by the Dirac equation for example) at some given spacetime point. If
we desire the final configurations (at all positions) to be rotated an extra amount
R, then we must use a new wavefunction ψ′ = Rψ. This of course explains the
usual spinor transformation law under a global rotation of space, but also shows
us why we do not want to rotate the elements we started from as well. Thus
general covariance and invariance under global Lorentz rotations is assured if all
quantities appearing to the left of the wavefunction make no mention of specific
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axes, directions etc., while those to the right are allowed to do so, but must remain
fixed under such a rotation.

As a complementary exercise, one might decide to rotate the elements (such
as γ0, iσ3, etc.) we start from, by R say, leaving the final configuration fixed. In
this case we have ψ′ = ψR̃. This is what happens under a change of ‘phase’ for
example, where |ψ〉 7→ ejθ |ψ〉. Here the STA equivalent undergoes ψ 7→ ψeθiσ3 ,
which thus corresponds to a rotation of starting orientation through 2θ radians
about the fiducial σ3 direction. The action of j itself is thus a rotation through
π about the σ3 axis. Note particularly that only one copy of real spacetime is
necessary to represent what is going on in this process.

4 2-spinors
Having been explicit about our translation of quantum Dirac and Pauli spinors, we
are now in a position to begin the translation of 2-spinor theory. For the latter we
adopt the notation and conventions of the standard exposition, [9, 10].

The basic translation is as follows. In 2-spinor theory, a spinor can be written
either as an abstract index entity κA, or as a complex spin vector in spin-space
(just like a quantum Pauli spinor) κ. We put a 2-spinor κA in 1-1 correspondence
with a Clifford spinor κ via

κA ↔ κ(1 + σ3), (21)

where κ is the Clifford Pauli spinor in one to one correspondence with the column
spinor κ (via 4). The function of the ‘fiducial projector’ (1 + σ3) (actually half
this must be taken to get a projection operator) relates to what happens under a
‘spin transformation’ represented by an arbitrary complex spin matrix R. The new
spin vector is Rκ and has only 4 real degrees of freedom, whereas an arbitrary
Lorentz rotation specified by a Clifford R applied to a Clifford κ gives the quantity
Rκ, which contains 8 degrees of freedom. However, applying R to κ(1 + σ3) limits
the degrees of freedom back to 4 again, in conformity with what happens in the
2-spinor formulation.

The complex conjugate spinor κA′ belongs to the opposite ideal under the action
of the projector (1 + σ3),

κA
′ ↔ −κiσ2(1− σ3). (22)

This explains why κA and its complex conjugate have to be treated as belonging
to different ‘modules’ in the Penrose and Rindler theory. Note that in more
conventional quantum notation our projectors (1± σ3) would correspond to the
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chirality operators (1±jγ̂5), or in the notation of the appendix of [10], to (multiples
of) Π and Π̃. We do not use these alternative notations since it is a vital part
of what we are doing that the projection operators should be constructed from
ordinary spacetime entities.

The most important quantities associated with a single 2-spinor κA are its flag-
pole Ka = κAκA

′ , and the flagplane determined by the bivector P ab = κAκBεA
′B′ +

εABκA
′
κB

′ . Here we use the Penrose notation in which a is a ‘lumped index’ repre-
senting the spinor indices AA′ etc. Now in order to get a precise translation for
quantities like κAκA′ , or κAκBεA′B′ , it is necessary to develop ‘multiparticle STA’
[11]. This still involves real spacetime, but with a separate copy for each particle.
We have carried this out and thereby found the STA equivalents of 2-spinor outer
product expressions. However, we have also discovered a mapping from the spin-1

2
space of a single spinor to the spin-1 space of general complex world vectors (as
Penrose & Rindler call them), which applied in reverse enables us to find ‘spin-1

2 ’
(i.e. just one copy of spacetime) equivalents for the lumped index expressions. It is
these equivalents we give now, and proper proofs are contained in [5].

Firstly, if we write ψ = κ(1 + σ3), the flagpole of the 2-spinor κA is just (up to
a factor 2) the Dirac current associated with the wavefunction ψ,

K = 1
2ψγ0ψ̃ = κ(γ0 + γ3)κ̃. (23)

We see that the projector (1 + σ3) has produced a massless (null) current.
Secondly, the flagplane bivector is a rotated version of the fiducial bivector σ1:

P = 1
2ψσ1ψ̃ = κ(γ1∧(γ0 + γ3))κ̃. (24)

Since σ1 anticommutes with iσ3, while γ0 commutes, P responds at double rate
to phase rotations κ 7→ κeiσ3θ, whilst the flagpole is unaffected. A convenient
spacelike vector L, perpendicular to the flagpole and satisfying P = L∧K, is
L = (κκ̃)−1/2κγ1κ̃, that is, just the ‘body’ 1-direction.

In 2-spinor theory, a ‘spin-frame’ is usually written oA, ιA, but for notational
reasons, and to draw out the parallel with twistors, we prefer to write these as ωA,
πA. In our translation, a spin-frame ωA, πA is packaged together to form a Clifford
Dirac spinor φ via

φ = ω 1
2(1 + σ3)− πiσ2

1
2(1− σ3). (25)

Now
φφ̃ = 1

2κ(1 + σ3)iσ2ω̃ + reverse = λ+ iµ say. (26)
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If one now calculates the 2-spinor inner product for the same spin-frame one finds

{ω,π} = ωAπ
A = −(λ+ jµ). (27)

Thus the complex 2-spinor inner product is in fact a disguised version of the
quantity φφ̃. The ‘disguise’ consists of representing something that is in fact a
pseudoscalar (the i in λ + iµ) as an uninterpreted scalar j. The condition for a
spin frame to be normalized, ωAπA = 1, is in our approach the condition for φ to
be a Lorentz transformation, that is φφ̃ = 1 (except for a change of sign which in
twistor terms corresponds to negative helicity). We can thus say “a normalized
spin frame is equivalent to a Lorentz transformation”.

The orthonormal real tetrad, ta, xa, ya, za, determined by such a spin-frame
[9, p120], is in fact the same (up to signs) as the frame of ‘body axes’ eµ = φγµφ̃

which we drew attention to in standard Dirac theory, whilst the null tetrad is just
a rotated version of a certain ‘fiducial’ null tetrad as follows:

la = 1√
2

(ta + za) = ωAωA
′ ↔ φ(γ0 + γ3)φ̃, (28)

na = 1√
2

(ta − za) = πAπA
′ ↔ φ(γ0 − γ3)φ̃, (29)

ma = 1√
2

(xa − jya) = ωAπA
′ ↔ −φ(γ1 + iγ2)φ̃, (30)

ma = 1√
2

(xa + jya) = πAωA
′ ↔ −φ(γ1 − iγ2)φ̃. (31)

Note that the x or y axis is inverted with respect to the world vector equivalents,
which is a feature that occurs throughout our translation of 2-spinor theory. Note
also that γ1 − iγ2 and γ1 + iγ2 involve trivector components. This is how complex
world vectors in the Penrose & Rindler formalism appear when translated down
to equivalent objects in a single-particle STA space. We shall find a use for these
shortly as supersymmetry generators.

5 Valence-1 Twistors
On page 47 of [10] the authors state ‘Any temptation to identify a twistor with
a Dirac spinor should be resisted. Though there is a certain formal resemblance
at one point, the vital twistor dependence on position has no place in the Dirac
formalism.’ We argue on the contrary that a twistor is a Dirac spinor, with a
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particular dependence on position imposed. Our fundamental translation is

Z = φ− rφ γ0 iσ3
1
2(1 + σ3), (32)

where φ is an arbitrary constant relativistic STA spinor, and r = xµγµ is the
position vector in 4-dimensions. To start making contact with the Penrose notation,
we decompose the Dirac spinor Z, quite generally, as

Z = ω 1
2(1 + σ3)− π iσ2

1
2(1− σ3). (33)

Then the pair of Pauli spinors ω and π are the translations of the 2-spinors ωA and
πA′ appearing in the usual Penrose representation

Zα = (ωA, πA′). (34)

In (34) πA′ is constant and ωA is meant to have the fundamental twistor dependence
on position

ωA = ωA0 − jxAA
′
πA′ , (35)

where ωA0 is constant. We thus see that the arbitary constant spinor φ in (32) is

φ = ω0
1
2(1 + σ3)− π iσ2

1
2(1− σ3). (36)

We note this is identical to the STA representation of a spin-frame.
This ability, in the STA, to package the two parts of a twistor together, and

to represent the position dependence in a straightforward fashion, leads to some
remarkable simplifications in twistor analysis. This applies both with regard
to connecting the twistor formalism with physical properties of particles (spin,
momentum, helicity, etc.), and to the sort of computations required for establishing
the geometry associated with a given twistor.

For present purposes, we confine ourselves to establishing the link with massless
particles, and define a set of quantities to represent various properties of such
particles (most of which are useful in the formulation of twistor geometry as well).
These are basically just the bilinear covariants of Dirac theory, adapted to the
massless case. Firstly, the null momentum associated with the particle is

p = Z (γ0 − γ3) Z̃. (37)



12

This is constant (independent of spacetime position), since

Z (γ0 − γ3) Z̃ = φ (γ0 − γ3) φ̃ = π (1 + σ3)π̃ γ0. (38)

p thus points in the flagpole direction of π. Secondly, the flagpole of the twistor
itself, defined as the flagpole of its principal part ωA, is the null vector

w = Z (γ0 + γ3) Z̃. (39)

Evaluated at the origin, this becomes

w0 = φ (γ0 + γ3) φ̃ = ω0 (1 + σ3) ω̃0 γ0. (40)

Thirdly, we define an angular momentum bivector in the usual way for Dirac theory
(see above)

M = Z iσ3 Z̃. (41)

Substituting from (32) for Z yields (in two lines)

M = M0 + r∧p, (42)

where the constant part M0 is given by

M0 = φ iσ3 φ̃. (43)

This angular momentum coincides with the real skew tensor field

Mab = iω(AπB)εA
′B′ − iω(A′

πB
′)εAB, (44)

on page 68 of [10], who have

Mab = Mab
0 − xapb + xbpa. (45)

The key calculation showing that (41) is the correct angular momentum, is to
demonstrate that the Pauli-Lubanski vector for this massless case is proportional
to the momentum. In the STA, the Pauli-Lubanski vector (the non-orbital part of
the angular momentum, expressed as a vector) is given generally by

S = p·(iM). (46)
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Now p·(iM) = p·(iM0 + ir∧p) and p·(ir∧p) = −i(p∧r∧p) = 0. Also

p iM0 = φ (γ0 − γ3) φ̃ iφ iσ3 φ̃, (47)

so that writing φφ̃ = φ̃φ = ρeiβ, we have

p iM0 = −ρe−iβ φ(−γ3 + γ0) φ̃ (48)

and therefore
S = −ρ cos β p. (49)

The helicity s is thus just minus the scalar part of the product φφ̃.

6 Field Supersymmetry Generators
A common version of the field supersymmetry generators required for the Poincaré
super-Lie algebra uses 2-spinors Qα with Grassmann entries:

Qα = −i
(
∂

∂θα
− iσµαα′θ

α′
∂µ

)
, (50)

where the θα and θ
α are Grassmann variables, and µ is a spatial index [12, 13,

14]. A translation of Qα into STA basically amounts to finding real spacetime
representations for the θα variables. Using 2-particle STA we have found such
representations, and they turn out to be two distinct copies of the complex null
tetrad discussed above. The two copies arise in a natural fashion in our version of
2-spinor theory, but are harder to spot in a conventional approach.

This has an interesting ‘single particle’ equivalent, using the 4 quantities γ0±γ3

and γ1 ± iγ2 as effective Grassmann variables, with the anticommutator {A,B}
replaced by the symmetric product 〈ÃB〉. With

θ1 = γ0 + γ3 θ1 = γ0 − γ3

θ2 = γ1 + iγ2 θ2 = −γ1 + iγ2

it is a simple exercise to verify that the θα satisfy the required supersymmetry
algebra (with {A,B} ≡ 〈ÃB〉)

{θα, θβ} = {θα, θβ} = 0, {θα, θβ} = 2δαβ. (51)



14

This raises interesting new possibilites, similar to those outlined in [15], of being
able to reduce the arena of ‘superspace’ to ordinary spacetime, without in any way
diminishing its richness or interest.

7 Conclusions
When 2-spinors and twistors are absorbed into the framework of spacetime algebra,
they become both easier to manipulate and interpret, and many parallels are
revealed with ordinary Dirac theory. In particular the bilinear covariants of Dirac
theory (expressed in STA), turn out to be precisely those needed to understand the
rôle of higher valence spinors and twistors. As a byproduct of the translation we
have shown that a commutative scalar imaginary is unnecessary in the formulation
of 2-spinor and twistor theory. Furthermore, had space permitted, we would have
presented a discussion of the mapping we have constructed between lumped vector
index expressions, and spin-1

2 equivalents. This would have made it evident that the
notion that 2-spinor or twistor space is more fundamental than the space of ordinary
vectors or tensors, is misplaced. In our version the spinor space itself is imbued
with all the metrical properties of spacetime, and the construction of vectors and
tensors using outer products of spinors (as given in Penrose & Rindler for example)
can be shown via our translation to use precisely the metrical properties already
present at the so-called spinor level (which is in fact just ordinary spacetime).

Normalized spin-frames have been shown to be identical to Lorentz transforms,
with spin frames in general identical to constant Dirac spinors (even multivectors in
the STA approach). Twistors themselves have been shown to be Dirac spinors, with
a particular position dependence imposed, and the physical quantities constructed
from them to be just the standard Dirac bilinear covariants. It is therefore clear
that some of the claims of the ‘strong twistor’ programme, as described in e.g. [16],
must appear in a new light, though the full implications remain to be worked out.

References
[1] R. Ablamowicz, Z. Oziewicz, and J. Rzewuski. Clifford algebra approach to

twistors. J. Math. Phys., 23(2):231, 1982.

[2] R. Ablamowicz and N. Salingaros. On the relationship between twistors and
Clifford algebras. Lett. in Math. Phys., 9:149, 1985.



15

[3] D. Hestenes. Observables, operators, and complex numbers in the Dirac theory.
J. Math. Phys., 16(3):556, 1975.

[4] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus. Reidel,
Dordrecht, 1984.

[5] C.J.L. Doran, A.N. Lasenby, and S.F. Gull. States and operators in the
spacetime algebra. Found. Phys., 23(9):1239, 1993.

[6] S.F. Gull. Charged particles at potential steps. In A. Weingartshofer and
D. Hestenes, editors, The Electron, page 37. Kluwer Academic, Dordrecht,
1991.

[7] J.D. Bjorken and S.D. Drell. Relativistic Quantum Mechanics, vol 1. McGraw-
Hill, New York, 1964.

[8] S.F. Gull, A.N. Lasenby, and C.J.L. Doran. Electron paths, tunnelling and
diffraction in the spacetime algebra. Found. Phys., 23(10):1329, 1993.

[9] R. Penrose and W. Rindler. Spinors and space-time, Volume I: two-spinor
calculus and relativistic fields. Cambridge University Press, 1984.

[10] R. Penrose and W. Rindler. Spinors and space-time, Volume II: spinor and
twistor methods in space-time geometry. Cambridge University Press, 1986.

[11] C.J.L Doran, A.N. Lasenby, S.F. Gull, S.S. Somaroo, and A.D. Challinor.
Spacetime algebra and electron physics. Adv. Imag. & Elect. Phys., 95:271,
1996.

[12] P.G.O. Freund. Supersymmetry. Cambridge University Press, 1986.

[13] P. Srivastava. Supersymmetry, Superfields and Supergravity. Adam Hilger,
Britsol, 1986.

[14] H.J.W. Müller-Kirsten and A. Wiedemann. Supersymmetry. World Scientific,
1987.

[15] C.J.L. Doran, A.N. Lasenby, and S.F. Gull. Grassmann mechanics, mul-
tivector derivatives and geometric algebra. In Z. Oziewicz, B. Jancewicz,
and A. Borowiec, editors, Spinors, Twistors, Clifford Algebras and Quantum
Deformations, page 215. Kluwer Academic, Dordrecht, 1993.



16

[16] R. Penrose. Twistor theory, its aims and achievements. In C.J. Isham, R. Pen-
rose, and D.W. Sciama, editors, Quantum Gravity — an Oxford Symposium.
Oxford University Press, 1975.


