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Abstract
The spacetime algebra (STA) is the natural, representation-free language

for Dirac’s theory of the electron. Conventional Pauli, Dirac, Weyl and
Majorana spinors are replaced by spacetime multivectors, and the quantum
σ- and γ-matrices are replaced by two-sided multivector operations. The
STA is defined over the reals, and the role of the scalar unit imaginary of
quantum mechanics is played by a fixed spacetime bivector. The extension to
multiparticle systems involves a separate copy of the STA for each particle,
and it is shown that the standard unit imaginary induces correlations between
these particle spaces. In the STA, spinors and operators can be manipulated
without introducing any matrix representation or coordinate system. Fur-
thermore, the formalism provides simple expressions for the spinor bilinear
covariants which dispense with the need for the Fierz identities. A reduction
to 2 + 1 dimensions is given, and applications beyond the Dirac theory are
discussed.
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1 Introduction
In this paper we present a new, direct method of translation between conventional
matrix-based approaches to spinors in 3 and 4 dimensions [1, 2], and the spacetime
algebra (STA) formalism of Hestenes [3, 4, 5, 6]. This method quickly yields the
Dirac equation and the spinor bilinear covariants in Hestenes’ STA form. With
spinors and quantum matrix operators expressed in the real STA, all algebraic
manipulations can be performed without ever introducing a matrix representation.
The result is a very powerful language for expressing and analysing the Dirac
equation, which provides many new insights into the geometric substructure of the
Dirac theory [6, 7].

We study the Pauli matrix algebra in Section 2, and demonstrate how quantum
spin states are formulated in terms of the real geometric algebra of space (which is
a subalgebra of the full STA). An extension to multiparticle systems is introduced,
in which separate (commuting) copies of the STA are taken for each particle.
These copies produce multiparticle states having more degrees of freedom than in
conventional quantum mechanics. Imposition of the complex structure removes
this extra freedom and shows how the scalar unit imaginary of quantum mechanics
induces correlations between particle spaces by locking their phases together.

In Section 3 the Dirac algebra is studied using the full, relativistic STA. The
STA form of the Dirac equation is derived and a table of Dirac spinor bilinear
covariants in STA form is presented. In Section 4 a similar approach is presented
for the Weyl representation, and it is shown how the 2-spinor calculus of Penrose
& Rindler [8] can be reformulated to great advantage. We close with a discussion
of other representations and dimensions; an appendix gives the STA translation
procedure for the Majorana representation.

We work throughout with the spacetime algebra [3, 9], which is the geometric
algebra of flat, Minkowski spacetime, and is generated by an orthonormal frame of
vectors {γµ}, µ = 0 . . . 3. The {γµ} satisfy the Dirac algebra

γµ ·γν = 1
2(γµγν + γνγµ) = gµν = diag(+ − − −), (1.1)

but are to be considered as four independent unit vectors. The full STA is 16-
dimensional, and is spanned by the basis

1, {γµ} {σk, iσk}, {iγµ}, i. (1.2)
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Here i ≡ γ0γ1γ2γ3 is the unit pseudoscalar. It squares to −1, and anticommutes
with vectors and trivectors. The spacetime bivectors {σk}, k = 1 . . . 3 are defined
by

σk ≡ γkγ0, (1.3)

and represent an orthonormal frame of vectors in the space relative to the γ0

direction. The {σk} generate the Pauli algebra of space, so that relative vectors
akσk are viewed as spacetime bivectors. To distinguish these from spacetime
vectors we write the former in bold type — a = akσk. The meaning of the σk is
unambiguous so these are left in normal type.

We use the symbol ˜ to denote the operation of (relativistic) reversion, which
reverses the order of vectors in any given product. Angled brackets 〈A〉r are used
to denote the projection of the grade-r part of A, with the scalar part written as
〈A〉. Other notations and conventions are detailed in Paper I [9] of this series.

2 Pauli Spinors
In this section we study spinors in the Pauli algebra of space. This is a useful
preliminary to the discussion of relativistic spinors and the Dirac algebra. The
algebra of space is generated by three orthonormal (relative) vectors {σk}, and is
spanned by

1, {σk}, {iσk}, i. (2.1)

Since σ1σ2σ3 = γ0γ1γ3γ3, space and spacetime both share the same pseudoscalar i.
When working non-relativistically, it is necessary to distinguish between relative

vectors {σk} and relative bivectors {iσk}, both of which are bivectors in the full
STA (1.2). Accordingly, we define two new operations in the STA,

A† = γ0Ãγ0,

Ā = γ0Aγ0,
(2.2)

which are the reversion and parity operations in the Pauli algebra. The presence of
γ0 in these definitions demonstrates that these operators are frame-dependent.

The Pauli operator algebra [1] is generated by the 2× 2 matrices

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −j
j 0

)
, σ̂3 =

(
1 0
0 −1

)
. (2.3)
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These operators act on 2-component complex spinors

|ψ〉 =
(
ψ1

ψ2

)
, (2.4)

where ψ1 and ψ2 are complex numbers. Throughout, we adopt the convention that
standard quantum operators appear with carets, and quantum states are written
as kets and bras. The unit scalar imaginary of conventional quantum mechanics is
written as j, to distinguish it from the geometric pseudoscalar i.

The column Pauli spinor |ψ〉 is placed in one-to-one correspondence with the
even multivector ψ (which satisfies ψ = ψ†) through the identification [10]

|ψ〉 =
(

a0 + ja3

−a2 + ja1

)
↔ ψ = a0 + akiσk. (2.5)

The action of the four quantum operators {σ̂k, j} translates as

σ̂k|ψ〉 ↔ σkψσ3 (k = 1, 2, 3)
j|ψ〉 ↔ ψiσ3.

(2.6)

It is routine to verify these; for example

σ̂1|ψ〉 =
(
−a2 + ja1

a0 + ja3

)
↔ −a2 + a1iσ3

−a0iσ2 + a3iσ1
= σ1

(
a0 + akiσk

)
σ3. (2.7)

Finally, complex conjugation translates to

|ψ〉∗ ↔ σ2ψσ2. (2.8)

The Pauli equation (in natural units),

j∂t|ψ〉 = 1
2m

(
(−j∇− eA)2 − eσ̂kBk

)
|ψ〉+ eV |ψ〉, (2.9)

can now be written (in the Coulomb gauge) as [7, 11]

∂tψiσ3 = 1
2m(−∇2ψ + 2eA·∇ψiσ3 + e2A2ψ)− e

2mBψσ3 + eV ψ, (2.10)

where B is the magnetic field vector Bkσk. This translation achieves two important
goals: the scalar unit imaginary is eliminated, and all terms (both operators and
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states) are real-space multivectors. Removal of the distinction between states and
operators is an important conceptual simplification, arising naturally through the
use of the STA.

In order to translate the spinor inner product 〈ψ|φ〉 we need only consider its
real part. This is given by

<〈ψ|φ〉 ↔ 〈ψ†φ〉, (2.11)

so that, for example,

〈ψ|ψ〉 ↔ 〈ψ†ψ〉 = 〈(a0 − iakσk)(a0 + iakσk)〉
= (a0)2 + akak. (2.12)

It follows that the full inner product becomes

〈ψ|φ〉 ↔ 〈ψ†φ〉 − 〈ψ†φiσ3〉iσ3. (2.13)

The right hand side projects out the {1, iσ3} components from the geometric
product ψ†φ. We write this projection as 〈A〉S, and observe that, for Pauli-even
multivectors,

〈A〉S = 1
2(A− iσ3Aiσ3). (2.14)

As an example of (2.13), consider the expectation value

〈ψ|σ̂k|ψ〉 ↔ 〈ψ†σkψσ3〉 − 〈ψ†σkψi〉iσ3 = σk ·〈ψσ3ψ
†〉1, (2.15)

which gives the mean value of spin measurements in the k direction. The STA form
indicates that this is the component of the spin vector ψσ3ψ

† in the σk direction, so
that S = ψσ3ψ

† is the coordinate-free form of this vector. The even multivector ψ
can be decomposed into ψ = ρ1/2R where RR† = 1, so the spin vector is therefore

S = ρRσ3R
†. (2.16)

This demonstrates that the 2-sided construction of the expectation value (2.15)
is an instruction to rotate and dilate the fixed σ3 axis into the spin direction.
The original states of quantum mechanics therefore become operators in the STA,
acting on vectors. This explains why spinors transform single-sidedly under active
rotations of fields in space. If the vector S is rotated to a new vector R′SR̃′, then
the corresponding spinor must transform to R′ψ. In this way, the fixed {σk} frame
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is shielded from rotations, and there is no conflict with rotational invariance. We
use the term ‘spinor’ to denote any object which transforms single-sidedly under a
rotor R [9].

We can now consider the status of the fixed {σk} frame which, as is clear
from (2.10), only occurs explicitly on the right hand side of the spinor ψ. This is
analogous to rigid-body dynamics, in which a rotating frame {ek}, aligned with
the principal axes of the rotating body, can be related to a fixed laboratory frame
{σk} by

ek = RσkR
†. (2.17)

The dynamics is now contained in the rotor R, which can also be viewed as a
normalised spinor. The ek are unaffected by the choice of laboratory frame and,
under an active rotation, the body is rotated about its centre of mass, whilst the
laboratory frame is fixed. Such a rotation has ek 7→ R′ekR

′†, which is enforced by
R 7→ R′R, and (as with the Pauli theory) the fixed frame is shielded from rotations.
Gauge invariance can now be interpreted as the requirement that the physics is
unaffected by the position of the σ1 and σ2 axes in the iσ3 plane. In terms of
rigid-body dynamics, this means that the body behaves as a symmetric top. The
analogy between rigid-body dynamics and the STA form of the Pauli theory is
therefore strong [4], and we shall see in Section 3 that the analogy extends to Dirac
theory.

An arbitrary operator M̂ |ψ〉 is replaced by a multilinear function M(ψ) in
the STA. Since ψ is now a 4-component multivector, the space of operators M is
16-dimensional (this is the dimension of the group Gl(4,R)), and is easily large
enough to encompass the 8-dimensional Pauli operator algebra (which forms the
group Gl(2,C)). The subset of multilinear functions which represent Pauli operators
is defined by the requirement that M respect the complex structure:

jM̂(j|ψ〉) = −M̂ |ψ〉
⇒M(ψiσ3)iσ3 = −M(ψ). (2.18)

The set of M satisfying (2.18) is 8-dimensional, as required.
The Hermitian adjoint is defined by

〈ψ|M̂φ〉 = 〈M̂ †ψ|φ〉, (2.19)

which translates into two equations in the STA, one each for the real and imaginary
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parts. The real equation is

〈ψ†M(φ)〉 = 〈M †
HA(ψ)φ〉, (2.20)

and the imaginary equation simply restates (2.18). The subscript of MHA labels
the STA operator representation of the Pauli (Hermitian) adjoint. In geometric
algebra the adjoint to a linear function is defined via

〈M̄(ψ)φ〉 = 〈ψM(φ)〉, (2.21)

where we have employed the overbar notation of Hestenes & Sobczyk [12]. It is
always clear from the context when the overbar is being employed to denote the
geometric adjoint or parity (2.2). The Pauli adjoint is now given by the combination
of a reversion, the geometric adjoint, and a second reversion:

MHA(ψ) = M̄ †(ψ†). (2.22)

For example, if M(ψ) = AψB, then MHA(ψ) = A†ψB†. Since the STA action of
the σ̂k operators takes ψ into σkψσ3, it follows that these operators are, properly,
Hermitian. The attractive feature of (2.22) is that the Pauli operator algebra can
now be fully integrated into the wider subject of multilinear function theory — the
study of linear functions within geometric algebra [12].

2.1 2-Particle Pauli States
In quantum theory, 2-particle states are assembled from direct products of single-
particle states. To represent these states in the STA, we must consider direct
products of two copies of the STA itself. For present purposes, however, we need
only take copies of the even (Pauli) subalgebra of the full STA. The direct product
is usually written as ⊗, but we will drop this symbol and use superscripts to label
the single-particle algebra from which any particular element is derived. Thus we
write σ1 ⊗ σ1 as σ1

1σ
2
1, where the σ1

1σ
2
1 product is commutative and associative.

Wherever possible, we will further abbreviate i1σ1
1 to iσ1

1 et cetera, and will write
the unit element of either space simply as 1.

The full 2-particle Pauli algebra is 8 × 8 = 64 dimensional, and the spinor
subalgebra is 4 × 4 = 16 dimensional — which is twice the dimension of the
direct product of two 2-component complex spinors. This is because we have
not taken the complex structure of the spinors into account. While the role of
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j is played in the two single-particle spaces by right multiplication by iσ1
3 and

iσ2
3 respectively, standard quantum mechanics does not distinguish between these

operations. Therefore we must include a projection operator to ensure that right
multiplication by iσ1

3 or iσ2
3 reduces to the same operation. This projector is

E12 = 1
2(1− iσ1

3iσ
2
3), (2.23)

so that
E12iσ1

3 = E12iσ2
3 = J12, (2.24)

where
J12 = 1

2(iσ1
3 + iσ2

3). (2.25)

The (multiparticle) STA representation of a 2-particle Pauli spinor is therefore
ψ1φ2E12, where ψ1 and φ2 are spinors (even multivectors) in their own spaces. A
complete basis for 2-particle spin states is(

1
0

)
⊗
(

1
0

)
↔ E12(

0
1

)
⊗
(

1
0

)
↔ −iσ1

2E
12(

1
0

)
⊗
(

0
1

)
↔ −iσ2

2E
12(

0
1

)
⊗
(

0
1

)
↔ iσ1

2iσ
2
2E

12

(2.26)

and the complex structure is provided by

j|ψ〉 ↔ ψJ12. (2.27)

This procedure extends to higher multiplicities, where all that is required is to
find the ‘quantum correlator’ E satisfying

Eiσj3 = Eiσk3 = J for all j, k. (2.28)

The beauty of this approach is that all the operations defined for the single-particle
STA extend naturally to the multiparticle algebra; for example the spinor inner
product generalises to

〈ψ†φ〉S = 〈ψ†φE〉E − 〈ψ†φJ〉J. (2.29)
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A full development of multiparticle spacetime algebra, including generalisation to
relativistic states, will be presented in a forthcoming paper.

We conclude this section with an illustration of the insights revealed by our
approach. The 2-particle singlet state |ε〉 is defined by

|ε〉 = 1√
2

{(
1
0

)
⊗
(

0
1

)
−
(

0
1

)
⊗
(

1
0

)}
, (2.30)

which translates into

ε = 1√
2(iσ1

2 − iσ2
2)1

2(1− iσ1
3iσ

2
3). (2.31)

This is normalised such that 〈ε†ε〉S = E. It can be confirmed that ε satisfies

iσ1
kε = −iσ2

kε, (2.32)

which we can use to provide a novel demonstration of the rotational invariance
of ε. Under a joint rotation of 2-particle space, a spinor ψ transforms to R1R2ψ,
where R1 and R2 are copies of the same rotor but in different spaces. It follows
from (2.32) that, under a rotation, ε transforms as

ε 7→ R1R2ε = R1R̃1ε = ε, (2.33)

so that ε is a genuine 2-particle scalar.

3 Dirac Spinors
In this section we extend the procedure of Section 2 to show how Dirac spinors
can be understood in terms of the geometry of real spacetime. This reveals the
geometrical role of spinors in the Dirac theory, following the approach of Hestenes
[4, 5]. Furthermore, this formulation is representation-free, highlighting the intrinsic
content of the Dirac theory.

The subject of relativistic spinors has, of course, been much discussed in the
literature; see for example the books by Penrose & Rindler [8, 13] and Benn &
Tucker [14], or the list of references provided by Figueiredo et al. [15] These
treatments invariably define spinors over the complex field, obscuring much of the
associated spacetime geometry. It is through the employment of the real STA that
this geometry is revealed.
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We begin with the γ-matrices in the standard Dirac-Pauli representation [1],

γ̂0 =
(
I 0
0 −I

)
and γ̂k =

(
0 −σ̂k
σ̂k 0

)
. (3.1)

A Dirac column spinor |ψ〉 is placed in one-to-one correspondence with an 8-
component even element of the STA (1.2) via [10, 16]

|ψ〉 =


a0 + ja3

−a2 + ja1

−b3 + jb0

−b1 − jb2

 ↔ ψ = a0 + akiσk + i(b0 + bkiσk). (3.2)

The action of the operators {γ̂µ, γ̂5, j} (where γ̂5 = γ̂5 = −jγ̂0γ̂1γ̂2γ̂3) translates as

γ̂µ|ψ〉 ↔ γµψγ0 (µ = 0, . . . , 3)
j|ψ〉 ↔ ψ iσ3

γ̂5|ψ〉 ↔ ψσ3,

(3.3)

which are verified by simple computation; for example

γ̂5|ψ〉 =


−b3 + jb0

−b1 − jb2

a0 + ja3

−a2 + ja1

 ↔ −b3 + b0σ3 + b1iσ2 − b2iσ1

+a0σ3 + a3i− a2σ1 + a1σ2
= ψσ3. (3.4)

Complex conjugation in this representation translates as

|ψ〉∗ ↔ −γ2ψγ2. (3.5)

As a simple application of (3.2) and (3.3), the Dirac equation itself,

γ̂µ(j∂µ − eAµ)|ψ〉 = m|ψ〉, (3.6)

becomes, upon postmultiplying by γ0,

∇ψiσ3 − eAψ = mψγ0, (3.7)

which is the form first discovered by Hestenes [3]. This translation is direct and
unambiguous, leading to an equation which is not only coordinate-free (since the
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vectors ∇ = γµ∂µ and A = γµAµ no longer refer to any frame) but is representation-
free as well! In manipulating (3.7) one needs only the algebraic rules for multiplying
spacetime multivectors, and the equation can be solved completely without ever
having to introduce a matrix representation. Equation (3.7) therefore expresses
the intrinsic geometric content of the Dirac equation.

It is worth commenting on our choice of the (+ − − −) metric. We can translate
our results to the opposite metric (− + + +) by introducing the operators

êµ = jγ̂µ, (3.8)

so that the {êµ} generate the Dirac algebra with opposite signature. The cor-
responding vectors {eµ} generate a 16-dimensional algebra whose even part is
isomorphic to the even subalgebra of the STA. With σk now defined as e0ek, we
employ the same identification (3.2), and the action of the {êµ} translates into

êµ|ψ〉 ↔ −eµψie3, (3.9)

with j and ê5 translating in the same way as (3.3). The Dirac equation in this
signature is

êµ(∂µ + jeAµ)|ψ〉 = m|ψ〉, (3.10)

which, using (3.9) and defining ∇e = eµ∂µ, becomes

∇eψiσ3 − eAψ = mψe0. (3.11)

This is identical to (3.7), the difference in sign of ∇2
e = −∇2 being handled by

e2
0 = −1. It is usually argued that the signature of the metric is irrelevant in
relativistic quantum mechanics, because superpositions of states are considered
over the complex field. Here we see an alternative explanation, which does not
require complex numbers. Although the full Clifford algebras of opposite signature
are different, their even subalgebras (the spinors) are isomorphic, so that any
operation on a spinor performed in one algebra has a counterpart in the second
algebra. We can now continue to work in the STA with signature (+ − − −),
with the understanding that it is always possible to translate between metrics.
Physically, it would be very surprising if the sign of the signature ever made a
difference.

In order to discuss the spinor inner product, it is necessary to distinguish
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between the two types of adjoint, Hermitian and Dirac. We write these as

〈ψ̄| − Dirac adjoint
〈ψ| − Hermitian adjoint, (3.12)

which translate as follows,

〈ψ̄| ↔ ψ̃

〈ψ| ↔ ψ† = γ0ψ̃γ0.
(3.13)

This makes it clear that the Dirac adjoint is the natural frame-invariant choice.
The inner product translates in the same manner as (2.13), so that

〈ψ̄|φ〉 ↔ 〈ψ̃φ〉 − 〈ψ̃φiσ3〉iσ3 = 〈ψ̃φ〉S, (3.14)

which is also easily verified by direct calculation. In a companion paper [17] we
shall work with the STA form of the Lagrangian for the Dirac equation, which to
illustrate (3.14) we give here:

L = 〈ψ̄|(γ̂µ(j∂µ − eAµ)−m)|ψ〉 ↔ 〈∇ψiγ3ψ̃ − eAψγ0ψ̃ −mψψ̃〉. (3.15)

By utilising (3.14) the STA forms of the Dirac spinor bilinear covariants [2] are
readily found; for example

〈ψ̄|γ̂µ|ψ〉 ↔ 〈ψ̃γµψγ0〉 − 〈ψ̃γµψiγ3〉iσ3 = γµ ·〈ψγ0ψ̃〉1 (3.16)

identifies the vector ψγ0ψ̃ as the coordinate-free representation of the Dirac current.
Since ψψ̃ contains only scalar and pseudoscalar terms, we can define ρeiβ = ψψ̃

and, assuming ρ 6= 0, ψ can be written as ρ1/2eiβ/2R. The ‘rotor’ R satisfies RR̃ = 1
and generates Lorentz transformations. The full set of bilinear covariants [18] can
now be written as

Scalar 〈ψ̄|ψ〉 ↔ 〈ψψ̃〉 = ρ cos β
Vector 〈ψ̄|γ̂µ|ψ〉 ↔ ψγ0ψ̃ = ρv

Bivector 〈ψ̄|jγ̂µν |ψ〉 ↔ ψiσ3ψ̃ = ρeiβS

Pseudovector 〈ψ̄|γ̂µγ̂5|ψ〉 ↔ ψγ3ψ̃ = ρs

Pseudoscalar 〈ψ̄|jγ̂5|ψ〉 ↔ 〈ψψ̃i〉 = −ρ sin β,

(3.17)
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where
v = Rγ0R̃

s = Rγ3R̃
(3.18)

and
S = isv. (3.19)

These are summarised neatly by the equation

ψ(1 + γ0)(1 + iγ3)ψ̃ = ρ cosβ + ρv + ρeiβS + iρs+ iρ sinβ. (3.20)

The full Dirac spinor ψ contains (in the rotor R) an instruction to carry out a
rotation of the fixed {γµ} frame into the frame of observables. The single-sided
transformation law for the spinor ψ is thus interpreted and, as in the Pauli case,
the {γµ} frame is shielded from active rotations of spacetime observables, so that
its presence does not compromise Lorentz invariance. The analogy with rigid-body
dynamics, discussed in Section 2, therefore extends immediately to the relativistic
theory, where γ0 is now interpreted as the fixed time-like vector which determines
the laboratory frame.

Once the spinor bilinear covariants are written in STA form (3.17) they can be
manipulated far more easily than in conventional treatments. The Fierz identities,
which relate the various observables (3.17), are simple to derive [18] because there
is no longer any need for complicated index manipulations [19, 20]. Furthermore,
reconstituting ψ from the observables (up to a gauge transformation) is now a
routine exercise, carried out by writing

〈ψ〉S = 1
4

(
ψ + ψ̄ + σ3(ψ + ψ̄)σ3

)
= 1

4(ψ + γ0ψγ0 + σ3ψσ3 + γ3ψγ3), (3.21)

so that
ψ〈ψ̃〉S = 1

4ρ(eiβ + vγ0 − eiβSiσ3 + sγ3). (3.22)

The right-hand side of (3.22) can be found directly from the observables, and the
left-hand side gives ψ to within a complex multiple. Defining

Z = 1
4ρ(eiβ + vγ0 − eiβSiσ3 + sγ3) (3.23)

we find that, up to an arbitrary phase factor,

ψ = (ρeiβ)1/2Z(ZZ̃)−1/2. (3.24)
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The identification of the rotor R suggests that the vector Rγ0R̃ can be inter-
preted as a 4-velocity field. This idea is examined critically in a further paper
[7], in which integral curves (streamlines) are plotted following this 4-velocity. In
conventional formulations of the Dirac equation, a velocity operator is found whose
eigenvalues are plus or minus the speed of light. It is argued that an accurate
determination of the velocity, by measuring the position of a particle at two different
times, leads to a large uncertainty in the momentum, which then favours higher
velocities. Even in the context of conventional Dirac theory, this argument has
a number of problems [21]. Applied to the STA velocity, the argument contains
the further flaw that it assumes an incorrect relation between velocity and momen-
tum. The status of velocity in the conventional operator approach to Dirac theory
remains problematic, whereas the STA formalism provides an unambiguous answer.

An arbitrary Dirac operator M̂ |ψ〉 is written as a multilinear function M(ψ),
which acts linearly on the entire even subalgebra of the STA. The 64 real dimensions
of this space of linear operators are reduced to 32 by the constraint (2.18)

M(ψiσ3) = M(ψ)iσ3 (3.25)

and, proceeding as at (2.22), the formula for the Dirac adjoint is

MDA(ψ) = ˜̄M(ψ̃). (3.26)

Self-adjoint Dirac operators satisfy M̃(ψ) = M̄(ψ̃), and clearly include the γ̂µ. The
Hermitian adjoint, MHA, is derived in the same way:

MHA(ψ) = M̄ †(ψ†), (3.27)

in agreement with the non-relativistic equation (2.22).
We now examine two important operator classes: projection and symmetry

operators. The particle/antiparticle projection operators translate into

1
2m(m∓ γ̂µpµ)|ψ〉 ↔ 1

2m(mψ ∓ pψγ0), (3.28)

and the spin-projection operators become

1
2(1± γ̂µsµγ̂5)|ψ〉 ↔ 1

2(ψ ± sψγ3). (3.29)

Provided that p·s = 0, the spin and particle projection operators commute.
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The three discrete symmetries C, P and T translate equally simply (following
the convention of Bjorken & Drell [1]):

P̂ |ψ〉 ↔ γ0ψ(x̄)γ0

Ĉ|ψ〉 ↔ ψσ1

T̂ |ψ〉 ↔ iγ0ψ(−x̄)γ1,

(3.30)

where x̄ = γ0xγ0 is (minus) a reflection in the time-like γ0 axis.
We stress that this analysis is not limited to the Dirac equation, but is applicable

to any type of equation involving Dirac spinors. For example, the equation for a
zero-charge particle with an anomalous magnetic moment [22],

j (γ̂µ∂µ + γ̂µνκF
µν) |ψ〉 = m|ψ〉, (3.31)

becomes
∇ψiσ3 + κFψiγ3 = mψγ0, (3.32)

and provides a model for a relativistic oscillator [23] when used with the quadratic
potential A = 1

2mωxγ0x. The STA formalism can also be employed in the study of
nonlinear spinor equations [24, 25] and semi-classical models. An example of the
latter is the Lagrangian of Barut & Zanghi [26],

L = j〈 ˙̄ψ|ψ〉+ pµ(ẋµ − 〈ψ̄|γ̂µ|ψ〉) + eAµ〈ψ̄|γ̂µ|ψ〉, (3.33)

which translates into

L = 〈ψ̇iσ3ψ̃ + p·(ẋ− ψγ0ψ̃) + eAψγ0ψ̃〉. (3.34)

This form of the Lagrangian has been used by one of us [16] to study its predictions
for the behaviour of an electron in a magnetic field. The Lagrangian (3.34) is also
considered in Paper III [17] of this series, where its symmetries are examined.

4 The Weyl Representation and 2-Spinor Calculus
In this section we develop a translation for the Weyl representation, after the
manner of Section 3. This is the starting point for a reformulation of the 2-spinor
calculus of Penrose & Rindler [8].
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The Weyl (chiral) representation is defined by [2]

γ̂0 =
(

0 −I
−I 0

)
and γ̂k =

(
0 −σ̂k
σ̂k 0

)
, (4.1)

and is obtained from the Dirac-Pauli representation (3.1) via the unitary matrix

û = 1√
2

(
I I

−I I

)
. (4.2)

A spinor in this representation is written as

|ψ〉 =
(
|κ〉
|ω̄〉

)
, (4.3)

where |κ〉 and |ω̄〉 are 2-component spinors. This is translated as

|ψ〉 =
(
|κ〉
|ω̄〉

)
↔ ψ = κ1

2(1 + σ3)− ω 1
2(1− σ3), (4.4)

where κ and ω are the Pauli-even equivalents of the the 2-component complex
spinors |κ〉, |ω̄〉, defined by equation (2.5). The action of the γ̂µ translates in the
same way as for Dirac spinors (3.3), as we see from the relations

γ̂0|ψ〉 =
(
−|ω̄〉
−|κ〉

)
↔ −ω 1

2(1 + σ3) + κ1
2(1− σ3) = γ0ψγ0 (4.5)

and

γ̂k|ψ〉 =
(
−σ̂k|ω̄〉
σ̂k|κ〉

)
↔ −σkωσ3

1
2(1 + σ3)− σkκσ3

1
2(1− σ3) = γkψγ0. (4.6)

We have used (2.6) and the fact that γ0 commutes with all Pauli-even elements.
The action of j and γ̂5 also translate as in (3.3), so that the chiral projection
operators 1

2(1± γ̂5) result in

1
2(1 + γ̂5)|ψ〉 ↔ ψ 1

2(1 + σ3) = κ1
2(1 + σ3)

1
2(1− γ̂5)|ψ〉 ↔ ψ 1

2(1− σ3) = −ω 1
2(1− σ3). (4.7)
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Our fundamental translation for a relativistic 2-spinor is consequently

|κ〉 ↔ κ1
2(1 + σ3). (4.8)

This differs from the Pauli spinor translation (2.5), and is closer to the usual
‘minimal left ideal’ definition of a spinor [14]. The true significance of (4.8) lies
not in the algebraic structure of the Pauli algebra, however, but in the fact that
the projector 1

2(1 + σ3) adds a scalar to a vector, and is a 3-space expression of a
null vector. The reason for identifying the projector with a null vector will become
apparent when we consider the vector current.

Under a Lorentz transformation the spinor ψ transforms to Rψ, so that the
STA 2-spinors transform into

κ′ 12(1 + σ3) = Rκ1
2(1 + σ3)

ω′ 12(1− σ3) = Rω 1
2(1− σ3), (4.9)

and in the STA both spinors therefore have the same transformation law. If we
examine how the corresponding column spinors transform, we find that

Rκ1
2(1 + σ3) = R+κ

1
2(1 + σ3) +R−κσ3

1
2(1 + σ3)

Rω 1
2(1− σ3) = R+ω

1
2(1− σ3)−R−ωσ3

1
2(1− σ3) (4.10)

where R+ = 1
2(R + R†) and R− = 1

2(R − R†). The column spinors now have
different transformation laws: the |κ〉 transforms simply enough to R̂|κ〉, but the
|ω̄〉 transforms under the operator equivalent of

R−R− = γ0Rγ0

= (γ0R̃γ0)̃
= (R−1)†, (4.11)

so that |ω̄′〉 = (R̂−1)†|ω̄〉. This splitting of Lorentz transformations into two distinct
operations is an unattractive feature of the 2-spinor formalism. The problem is
that in carrying out relativistic manipulations in the Pauli algebra, the 2-spinor
formalism has already singled out a preferred time-like axis (the γ0 axis). This
breaks up expressions in a way that disguises their frame-independent meaning.
By working in the even subalgebra of the STA this problem can be avoided, since
recourse is always available to the full STA.

The transformation (4.9) shows why it is necessary to supplement the Pauli-even
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spinors κ, ω, with the projectors 1
2(1± σ3). An arbitrary rotor R would, in general,

map a Pauli-even element into the full 8-dimensional Pauli algebra. The presence
of a factor of 1

2(1±σ3) on the right, on the other hand, projects out a 4-dimensional
space which is closed under the action of a rotor R, and therefore forms an invariant
subspace.

We are now in a position to consider the 2-spinor calculus approach to relativistic
quantum mechanics [8, 27]. The basic idea is to treat Weyl spinors as 2-component
complex vectors, using standard vector-space notions. Thus the spinor |κ〉 is written
as κA, and a skew metric tensor εAB is introduced whose components are defined
to be those of the matrix iσ̂2. We can therefore write

κA ↔ κ1
2(1 + σ3)

κA ↔ iσ2κ
1
2(1 + σ3), (4.12)

although there is rarely any need to distinguish κA and κA, since the translation
into the STA eliminates all reference to components.

In (4.3) there are two different types of spinor, which transform differently
under Lorentz rotations. To distinguish these ‘modules’, the second type |ω̄〉 are
usually given primed indices. In terms of components the two modules are related
by κ̄A′ = (κA)∗. The Pauli-even equivalent of (κA)∗ is σ2(iσ2κ)σ2 = κiσ2, bringing
us to the next aspect of our translation

κ̄A′ ↔ −κiσ2
1
2(1− σ3), (4.13)

where κ is the Pauli-even equivalent of κA. We have differed slightly from our
previous definition [10] in order to maintain consistency with the conventions
adopted in section 2. As before, κA and κ̄A′ transform differently under Lorentz
rotations:

κA 7→ (R)ABκB

κ̄A′ 7→ (R−1†)A′
B′

κ̄B′ ,
(4.14)

but these are merely separate manifestations of the same underlying transformation
κ 7→ Rκ.

The 2-spinor inner products are written as κAωA and κ̄A
′
ω̄A′ . In order to

translate these, we first expand

κAωA = κ0ω1 − κ1ω0

= (−a0b2 − a3b1 + a2b0 + a1b3) + j(−a3b2 + a0b1 − a1b0 + a2b3),(4.15)
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where we have used the identification (2.5). It can be verified that (4.15) translates
to

κAωA ↔ 〈iσ2κ̃ω〉 − iσ3〈iσ1κ̃ω〉 = 〈iσ2κ̃ω〉S, (4.16)

where again 〈 〉S denotes the projection of {1, iσ3} components. The 2-spinor inner
product is antisymmetric, κAωA = −ωAκA, which is seen from (4.16) as follows:

〈iσ2κ̃ω〉S = −〈ω̃κiσ2〉S
= −〈iσ2ω̃κ〉S. (4.17)

Since κ̄A′
ω̄A′ = (κAωA)∗, we see similarly that

κ̄A
′
ω̄A′ ↔ 〈κ̃ωiσ2〉S = 〈iσ2(−κiσ2)̃ (−ωiσ2)〉S. (4.18)

A particularly instructive way to express the 2-spinor inner product is to construct
the full Dirac spinor

ψ = κ1
2(1 + σ3)− ωiσ2

1
2(1− σ3), (4.19)

and observe that

ψψ̃ = κiσ2
1
2(1− σ3)ω̃ − ω 1

2(1 + σ3)iσ2κ̃

= −〈iσ2κ̃ω〉+ i〈iσ1κ̃ω〉. (4.20)

Apart from an irrelevant minus sign this has the same form as (4.16), except that
the projection is now onto the {1, i} components. The advantage of the form (4.20)
is that Lorentz invariance is manifest, since Rψψ̃R̃ = ψψ̃. Furthermore, (4.20)
demonstrates that a ‘normalised spin frame’ in the sense of Penrose & Rindler
[8] is equivalent to a Lorentz transformation. Equation (4.20) also defines the
zero-component of the Cartan map [28] from C2 × C2 to C4, which arises naturally
in the context of the 2-particle STA.

In order to treat the Dirac equation, we need first the 2-spinor equivalents of
the γ- matrices. These are the σAA′

µ and σµA′A operators, which are the 2-spinor
forms of the ‘vector’ operators σ̂µ = (1, σ̂i) and ˆ̄σµ = (1,−σ̂i). A full derivation of
the translation of these operators can be carried out in the multiparticle STA, but
it is obvious from (4.5) and (4.6) that this must be:

σAA
′

µ κ̄A′ ↔ −γµκiσ2
1
2(1− σ3)γ0

σµA′Aκ
A ↔ γµκ1

2(1 + σ3)γ0.
(4.21)
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If the γ0 is (anti)commuted through to the left hand side, it changes the sign of the
projector. This agrees with the behaviour of the σAA′

µ and σµA′A operators, which
interchange modules. We now take the 2-spinor form of the Dirac equation,

jσAA
′

µ ∂µω̄A′ = mκA

jσµA′A∂µκ
A = mω̄A′ ,

(4.22)

and translate these into the pair of equations:

−∇ωiσ2
1
2(1− σ3)γ0iσ3 = mκ1

2(1 + σ3),
∇κ1

2(1 + σ3)γ0iσ3 = −mωiσ2
1
2(1− σ3). (4.23)

With ψ defined as in (4.19), these combine into the single equation

∇ψiσ3γ0 = mψ, (4.24)

which is Pauli-even. Postmultiplying by γ0 recovers equation (3.7), demonstrating
the true representation-independence of this equation.

Of the pair of equations (4.22), Penrose & Rindler [8] write ‘an advantage of the
2-spinor description is that the γ-matrices disappear completely – and complicated
γ-matrix identities simply evaporate! ’. While this is true, the comment applies even
more strongly to the equation (4.24), in which complicated 2-spinor identities have
also been eliminated!

The translation (4.21), together with the inner product (4.20), enables us to
write the 2-spinor vector current as

κAσ
AA′

µ κ̄A′ ↔ γµγ0κiσ2
1
2(1 + σ3)iσ2κ̃+ reverse

= −γµ ·(κ(γ0 + γ3)κ̃). (4.25)

This identifies the null vector −κ(γ0 + γ3)κ̃ as the relativistic current, justifying
our earlier comment that the idempotent 1

2(1 + σ3) should be viewed as a (Pauli)
null vector rather than as an algebraic projector. If we define the spinor

ψ = κ1
2(1 + σ3), (4.26)

the null vector is given (up to a factor of one-half) by ψγ0ψ̃. In this way, the
observables in the 2-spinor approach are unified with those from the translation of
the Dirac-Pauli representation.

We conclude this section with two examples of how the STA formulation
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considerably simplifies 2-spinor equations. The first is the relativistic spinor
equations discussed by Marx [29]:

j∂µσ
µ
A′Aκ

A = −mκ̄A′ ,

j∂µσAA
′

µ ω̄A′ = mωA.
(4.27)

These translate into the pair of equations

∇γ0κ
1
2(1− σ3)iσ3 = mκiσ2

1
2(1− σ3),

−∇γ0ωiσ2
1
2(1 + σ3)iσ3 = mω 1

2(1 + σ3) (4.28)

which, on defining the full spinor ψ as in (4.19), can be written as

∇ψ 1
2(1 + σ3)iσ3 = mψ 1

2(1 + σ3)iσ2γ0,

∇ψ 1
2(1− σ3)iσ3 = mψ 1

2(1− σ3)iσ2γ0
(4.29)

and combined into the single equation

∇ψiσ1 = −mψγ0, (4.30)

which is much easier to interpret and solve. Equation (4.30) is not gauge-invariant,
since ψiσ3 is not a solution of (4.30) if ψ is. However, the only difference between
(4.30) and (3.7) is the replacement of the right iσ3 with an iσ1, so that any solution
of the free-field Dirac equation (3.7) is transformed into a solution of (4.30) by
right-multiplying by e−iσ2π/4. The transformation ψ 7→ ψe−iσ2π/4 is natural in the
STA, where it may be viewed as an electroweak gauge transformation, but it is
much harder to express in the standard formalism because it mixes |ψ〉 and |ψ〉∗.

Our second application of the STA approach to 2-spinors is the Lagrangian
introduced by Plyuschay [30, 31], which provides a classical model for a massless,
spinning particle. The Lagrangian is

L = −1
2 ẋ

µσAA
′

µ κ̄A′κA + kaRa − sρ, (4.31)

where the ka are a set of three Lagrangian multipliers,

R1 = κAκ̇A + κ̄A
′ ˙̄κA′

R2 = j(κAκ̇A − κ̄A
′ ˙̄κA′)

R3 = eµσAA
′

µ (κ̄A′κ̇A + ˙̄κA′κA),
(4.32)
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eµ and s are constants, and

ρ = 1
E
eµσAA

′

µ j(κ̄A′κ̇A − ˙̄κA′κA) (4.33)

E = eµσAA
′

µ κ̄A′κA. (4.34)

On translation into the STA, we find

R1 ↔ 2〈κ̇iσ2κ̃〉
R2 ↔ 2〈κ̇iσ1κ̃〉
R3 ↔ −2〈eκ̇(γ0 + γ3)κ̃〉,

(4.35)

so that R1 and R2 are the iσ1 and iσ2 components of the bivector κ̇iσ3κ̃. After
variation of the Lagrangian, e is set equal to γ0, whereupon R3 becomes 2〈κ̇κ̃〉,
which is no longer Lorentz-invariant. This is the reason for introducing the arbitrary
vector e. The STA approach provides a more attractive way to circumvent this
problem: replace κ by an arbitrary Dirac spinor ψ, and then impose the constraint
that ψ be Pauli-even after variation. The result is the same, but the STA Lagrangian
is considerably more compact:

L = −2s〈ψ̇iσ3ψ̃〉
〈ψψ̃〉

+ 1
2〈ẋψ(γ0 + γ3)ψ̃〉+ 〈ψ̇iσ3Bψ̃〉. (4.36)

Here the three scalar Lagrangian multipliers have been replaced by a single space-
like bivector. The Lagrangian (4.36) is now manifestly Lorentz-invariant, and can
be manipulated using the approach developed in Paper III [17] of this series.

5 Further Developments
In this section we consider two final topics. The first is the more general matrix
representation theory of the Dirac algebra, and the second is the Dirac equation in
2 + 1 dimensions [32], which is important in the study of anyonic systems (these
are systems with fractional statistics).
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5.1 Changes of Representation
In the matrix theory, a change of representation is carried out by a 4× 4 complex
matrix Ŝ, which defines new matrices

γ̂′µ = Ŝγ̂µŜ
−1, (5.1)

with a corresponding spinor transformation |ψ〉 7→ Ŝ|ψ〉. For the Dirac equation, it
is also a requirement that the transformed Hamiltonian be Hermitian, restricting
(5.1) to a unitary transformation

γ̂′µ = Ŝγ̂µŜ
†, ŜŜ† = 1. (5.2)

The STA approach proceeds instead by finding the analogue of the map (3.2)
corresponding to any given representation. In Section 4 this was carried out for
the Weyl matrices, and in Appendix A a construction is given for the Majorana
representation. Finding the map is routine once the form of Ŝ which relates the
required representation to the Dirac-Pauli matrices is determined. In constructing
this map there is freedom to rescale the STA equivalent spinor, which in Section 4
was used to remove some factors of

√
2.

Once the map has been found, the action of j and the {γ̂µ, γ̂5} matrices
translates in the same way as for the Dirac and Weyl representations (3.3), and the
action of the C, P and T operators is given by equation (3.30). The STA form of
these operators is independent of the matrix representation from which they were
obtained, and the Dirac equation always takes on the same form (3.7), which is
manifestly representation-free.

The Hermitian and Dirac adjoints always translates as in (3.13), although the
separate transpose and complex conjugation operations retain some dependence
on representation. For example, complex conjugation in the Dirac-Pauli and Weyl
representations translates as (3.5),

|ψ〉∗ ↔ −γ2ψγ2, (5.3)

whereas in the Majorana representation (Appendix A), we find that

|ψ〉∗ ↔ ψσ2. (5.4)

This clearly limits the usefulness of the complex conjugation operator. Equa-
tion (5.4) also demonstrates that, in the Majorana representation, complex conju-
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gation coincides with charge conjugation (up to a conventional phase factor).

5.2 2 + 1 Dimensions
We can adapt the approach of Section 2 to describe the Dirac theory in 2 + 1
dimensions. The result could be derived from the full Dirac equation (3.7) by
ignoring one of the spatial directions, but it is useful to make contact with the
standard matrix theory approach. A suitable representation is given by the 2× 2
matrices [32]

γ̂0 =
(

1 0
0 −1

)
, γ̂1 =

(
0 1
−1 0

)
, γ̂2 =

(
0 j

j 0

)
. (5.5)

A 2-component complex spinor is placed in one-to-one correspondence with an even
element ψ via

|ψ〉 =
(

α + ja0

−a2 − ja1

)
↔ ψ = α + iakγk, (5.6)

where i = γ0γ1γ2. The quantum matrix operators translate in the expected manner:

γ̂k|ψ〉 ↔ γkψγ0

j|ψ〉 ↔ ψγ1γ2 = ψiγ0,
(5.7)

and the Dirac equation in 2 + 1 dimensions becomes simply

∇ψi = mψ, (5.8)

or
∇ψγ1γ2 = mψγ0. (5.9)

This does indeed have the same form as the full Dirac equation (3.7), and could
have been found by projecting out the γ3 direction. Equation (5.9) can be analysed
with the techniques described in other papers of this series [7, 17].

6 Discussion and Conclusions
The spacetime algebra is the natural language for relativistic quantum mechanics,
expressing the physics in a manifestly Lorentz-invariant way. All relations can be
manipulated without ever introducing a matrix representation, greatly simplifying
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the algebra involved. Furthermore, every term in an expression is given a clear
geometric meaning. The unit scalar imaginary of quantum mechanics is replaced
by a fixed bivector in real space, and the 2-particle generalisation of this bivector
results in a projection operator which correlates each particle’s space. This strongly
suggests that a scalar unit imaginary is unnecessary for quantum mechanics,
a point frequently emphasised by Hestenes [6]. The real formulation also has
clear conceptual benefits, especially at the multiparticle level. For example, the
construction of 2-particle observables demonstrates that the quantum correlator
locks particle phases together and describes non-local interactions between particles.
This analysis will be given a relativistic extension in a forthcoming paper, in which
the generalisation to curved spacetime will also be discussed.

It has been suggested [33] that the STA cannot contain as much structure as the
complex Dirac algebra, since it is defined over the reals. We have demonstrated that
this is not true; the STA not only incorporates the Dirac theory, it also extends it
in ways that were previously unavailable. The geometry of real physical spacetime
is richer than is often realised, and spacetime algebra is the natural language to
exploit this richness.
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A Majorana Spinors
The Majorana representation [2] is defined by

γ̂0 =
(

0 σ̂2

σ̂2 0

)
γ̂1 =

(
−jσ̂3 0

0 −jσ̂3

)
(A.1)

γ̂2 =
(

0 σ̂2

−σ̂2 0

)
γ̂3 =

(
jσ̂1 0
0 jσ̂1

)
. (A.2)

Our translation for spinors in this representation is:

|ψ〉 =


a0 + jb0

−a2 + jb2

a1 + jb1

−a3 − jb3

 ↔ ψ = φ1
2(1 + σ2) + ωiσ2

1
2(1− σ2), (A.3)

where
φ = a0 + iakσk
ω = b0 + ibkσk.

(A.4)

This ensures that the {γ̂µ} and j operators translate as for the Dirac and Weyl
representations. Verification is a matter of computation. The simplest translation
to verify is j, since

ψiσ3 = −ω 1
2(1 + σ2) + φiσ3

1
2(1− σ2) (A.5)

has the effect of switching the rows of the column spinor and introducing a minus
sign, as required. The Dirac equation, the bilinear covariants, and the C, P and
T operations all translate in the same manner as in Section 3, although complex
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conjugation (which is representation-dependent) translates differently:

|ψ〉∗ ↔ ψσ2. (A.6)

It follows that Majorana (real) spinors are represented in the STA as

|ψ〉maj ↔ ψ 1
2(1 + σ2), (A.7)

and are therefore very similar to 2-spinors, but with a different choice of null vector
for the Pauli projector. With charge conjugation defined as in (3.30) we see that, in
the Majorana representation, charge conjugation and complex conjugation play the
same role. Applications of this translation include the classical model of Hasiewicz
et al. [34] and the geometric construction of Gibbons [35].


