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Abstract
We present a reformulation of Grassmann calculus in terms of geometric

algebra — a unified language for physics based on Clifford algebra. In this
reformulation, Grassmann generators are replaced by vectors, so that every
product of generators has a natural geometric interpretation. The calculus
introduced by Berezin [1] is shown to be unnecessary, amounting to no
more than an algebraic contraction. Our approach is not only conceptually
clearer, but it is computationally more efficient, which we demonstrate by
treatments of the ‘Grauss’ integral and the Grassmann Fourier Transform.
Our reformulation is applied to pseudoclassical mechanics [2], where it is
shown to lead to a new concept, the multivector Lagrangian. To illustrate
this idea, the 3-dimensional Fermi oscillator is reformulated and solved,
and its symmetry properties discussed. As a result, a new and highly
compact formula for generating super-Lie algebras is revealed. We finish
with a discussion of quantization, outlining a new approach to fermionic
path integrals.

PACS numbers: 03.65.Fd, 11.30.Pb, 02.10.+w
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1 Introduction
Grassmann variables have become of great importance in modern theoretical
physics, playing a central rôle in areas such as second quantization, non-Abelian
gauge theory and supersymmetry [1, 3]. They are generally thought to require
extra ‘Grassmann’ degrees of freedom, quite separate from the degrees of freedom
associated with ordinary vectors in spacetime. Our aim in this paper is to show
that the introduction of extra Grassmann dimensions is unnecessary, and that the
ordinary geometric properties of vectors in real Euclidean space are sufficient to
account for all the properties of both Grassmann algebra and Berezin calculus. In
order to achieve this, we make use of the associative ‘geometric product’ between
vectors, ab = a·b+a∧b (this was defined independently by Clifford [4] and Grassmann
[5]). In this expression, a·b is the usual inner product, and a∧b is Grassmann’s
exterior product. The latter results in a ‘bivector’, which can be thought of as a
section of an oriented plane containing a and b. By utilising the exterior part of this
product, it is a simple matter to represent a Grassmann algebra within a Clifford
algebra. The great advantage of this approach is that the remaining, interior, part
of the product is precisely what is needed to carry out the calculations which are
conventionally done with Berezin calculus.

If {σi} are a set of orthonormal frame vectors, then, under the geometric
product, these satisfy the relations

σiσj + σjσi = 2δij, (1.1)

and thus generate a Clifford algebra. Clifford algebras have, of course, been used
in physics for many years, in the guise of the Pauli and Dirac matrices. Our point
of departure, prompted by the work of Hestenes [6], is to drop any connection
with matrix representations, and treat the {σi}, and all quantities formed from
these, as geometric entities in real space. The reward for this shift in view is that
it becomes possible to ‘geometrize’ many of the concepts of modern theoretical
physics, by locating them in the real physical geometry of space or spacetime.
Hestenes [7] has already demonstrated that the Dirac, Pauli and Schrödinger
equations can all be expressed geometrically in real space or spacetime. Over the
course of a series of papers [8, 9, 10, 11] we shall demonstrate that Grassmann
dimensions, point-particle and field supersymmetry, 2-spinors and twistors can
similarly be expressed geometrically. Furthermore, this is achieved without the
use of a commutative scalar imaginary, hitherto thought to be essential in modern
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physics (see for example [12]).
For the general theory of Grassmann calculus (the algebra of fermion creation

and annihilation operators) dealt with in this paper, the geometrization is carried
out by identifying the Grassmann variables as ordinary vectors in n-dimensional
Euclidean space. This enables quantities to be manipulated in ways that have
no counterpart in the prototype Grassmann system, by utilising the associative
geometric product. We illustrate this with treatments of the ‘Grauss’ integral,
and the Grassmann Fourier transform. The latter can be formulated in geometric
algebra as a rotation through π/2, so that the ‘Grassmann Fourier inversion theorem’
reduces to the simple fact that a rotation, followed by its inverse, gives the identity.
Similarly, once a Grassmann system has been formulated in geometric algebra, it
can be extended in ways previously unavailable, producing new mathematics and
the possibility of new physics. An example of this is the concept of a multivector
Lagrangian, which arises from the translation of Grassmann-valued Lagrangians,
but requires geometric algebra to be developed to its full potential [8].

Having introduced geometric algebra in Section 2, and dealt with the translation
of Grassmann calculus into geometric algebra in Section 3, much of the rest of
this paper is devoted to the illustrative example of ‘pseudoclassical’ mechanics. A
pseudoclassical system is one in which the dynamical variables are Grassmann-
valued, and such systems are often introduced as models for the classical mechanics
of spin-1

2 particles. After reformulating a particular example, the 3-dimensional
Fermi oscillator, we are able to solve it explicitly, and study its symmetry properties
with a generalization of Noether’s theorem. In doing so, we find that a key rôle is
played by the fiducial tensor, which is the symmetric square root of the metric tensor.
The ubiquity of this tensor in our approach suggests that it has a fundamental
importance, and the techniques we introduce for handling it are likely to prove
useful in other fields. A by-product of this work worth emphasising is a new,
matrix-free, way of generating super-Lie algebras. This generalizes the approach to
Lie algebras developed in [13], and should have significant applications beyond the
Grassmann Poisson bracket context treated here.

Our treament of pseudoclassical mechanics ends with a discussion of quantiza-
tion, from both the canonical and path-integral viewpoints. Canonical quantization
is shown to amount to a restriction to a classical g = 2 spinning particle (though in
the non-relativistic case the g-factor is put in by hand). Hamilton’s equations also
have a natural classical interpretation after quantization, in which time derivatives
are given by the commutator with a bivector. The meaning of path-integral quan-
tization is less clear, and we outline an alternative possibility, in which Berezin
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integration (contraction) is replaced by genuine Riemann integration over the
dynamical variables of the system, as expressed in geometric algebra. An appendix
contains the details of the translation of the Grassmann Fourier Transform.

2 An Introduction to Geometric Algebra
In this section we give an outline of geometric algebra, concentrating on the
definitions and results needed for this paper. We have endeavoured to keep this
self-contained, whilst being as succinct as possible. Those familiar with geometric
algebra will only need to read this section to discover our conventions, but others
may like to study one or two of the following references. The most detailed and
comprehensive text on geometric algebra is [14], and most of the results of this
section can be found in greater detail there. More pedagogical introductions are
provided in [6] and [15], and some aspects are covered in detail in [16]. A useful
list of recommended additional texts is contained in [17].

2.1 Axioms and Definitions
It should be stressed from the outset that there is more to geometric algebra than
just Clifford algebra. To paraphrase from the introduction to [14], Clifford algebra
provides the grammar out of which geometric algebra is constructed, but it is
only when this grammar is augmented with a number of secondary definitions and
concepts that one arrives at a true geometric algebra. It is therefore preferable
to introduce geometric algebra through the axioms outlined in [14], rather than
through the more abstract definitions conventionally used to introduce Clifford
algebras (see [18] for example).

A geometric algebra consists of a graded linear space, the elements of which
are called multivectors. These are defined to have an addition, and an associative
product which is distributive. The space is assumed to be closed under these
operations. Multivectors are given geometric significance by identifying the grade-1
elements as vectors. The final axiom that distinguishes a geometric algebra is that
the square of any vector is a real scalar.

From these rules it follows that the geometric product of 2 vectors a, b can be
decomposed as

ab = a·b+ a∧b, (2.1)
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where
a·b = 1

2(ab+ ba) (2.2)

is the standard scalar, or inner, product (a real scalar), and

a∧b = 1
2(ab− ba) (2.3)

is the wedge, or outer, product originally introduced by Grassmann. This gives rise
to a new quantity, a bivector, which represents a directed plane segment containing
the vectors a and b, and is a grade-2 multivector.

This decomposition extends to the geometric product of a vector with a grade-r
multivector Ar as,

aAr = a·Ar + a∧Ar, (2.4)

where
a·Ar = 〈aAr〉r−1 = 1

2(aAr − (−1)rAra) (2.5)

is known as the inner product, and lowers the grade of Ar by one. Similarly,

a∧Ar = 〈aAr〉r+1 = 1
2(aAr + (−1)rAra) (2.6)

raises the grade by one. This is usually referred to as the exterior product with a
vector, and defines the grading for the entire algebra inductively. We have used
the notation 〈A〉r to denote the result of the operation of taking the grade-r part
of A (this is a projection operation). As a further abbreviation we write the scalar
(grade 0) part of A simply as 〈A〉.

The entire multivector algebra can be built up by repeated multiplication
of vectors. Multivectors which contain elements of only one grade are termed
homogeneous, and will usually be written as Ar to show that A contains only a
grade-r component. Homogeneous multivectors which can be expressed purely as
the outer product of a set of (independent) vectors are termed blades.

The geometric product of two multivectors is (by definition) associative, and for
two homogeneous multivectors of grade r and s this product can be decomposed
as follows:

ArBs = 〈AB〉r+s + 〈AB〉r+s−2 . . .+ 〈AB〉|r−s|. (2.7)

‘·’ and ‘∧’ will continue to be used for the lowest-grade and highest-grade terms of
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this series, i.e.

Ar ·Bs = 〈AB〉|s−r| (2.8)
Ar∧Bs = 〈AB〉s+r, (2.9)

which we call the interior and exterior products respectively. The exterior product
is associative, and satisfies the symmetry property

Ar∧Bs = (−1)rsBs∧Ar. (2.10)

Two final pieces of notation are as follows. Reversion, Ã, reverses the order of
vectors in any multivector, so that

(AB)̃ = B̃Ã, (2.11)

and ã = a for any vector a. It is simple to check that this implies

Ãr = (−1)r(r−1)/2Ar. (2.12)

The modulus |A| is defined for positive definite spaces by

|A|2 = 〈AÃ〉 ≥ 0, (2.13)

and |A| = 0 if and only if A=0.
Finally, we use the convention throughout that, in the absence of brackets, an

inner or outer product always takes precedence over a geometric product.

2.2 Orthonormal Bases and Clifford Algebras
The definitions of Section 2.1 are general to all geometric algebras, regardless
of metric signature, however in this paper we shall be concerned almost entirely
with finite-dimensional Euclidean algebras. A finite algebra is generated by the
introduction of a set of n independent frame vectors {ei}, which leads to a geometric
algebra with the basis

1, {ei}, {ei∧ej}, {ei∧ej∧ek}, . . . , e1∧e2 . . .∧en. (2.14)

Any multivector can now be expanded in this basis, but it should be emphasised
that one of the strengths of geometric algebra is that it possible to carry out many
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calculations in a basis-free way. The above basis need not be orthonormal, and
for much of this paper we will be concerned with frames where no restrictions are
placed on the inner product.

The highest-grade blade in this algebra is given the name ‘pseudoscalar’ (or
directed volume element), and is of special significance in geometric algebra. Its
unit is given the special symbol I (or i in three or four dimensions). It is a pure
blade, and a knowledge of I is sufficient to specify the vector space over which the
algebra is defined (see [14]). This pseudoscalar also defines the duality operation
for the algebra, since multiplication of a grade-r multivector by I results in a
grade-(n− r) multivector.

If we choose an orthonormal set of basis vectors {σk}, these satisfy

σj ·σk = δjk (2.15)

or
σjσk + σkσj = 2δjk, (2.16)

which is the conventional starting point for the matrix representation theory of
finite Clifford algebras [18, 19] (this has an obvious extension for indefinite metrics).
Orthogonality of the basis vectors implies

σi∧σj = σiσj (i 6= j). (2.17)

Note that in order to distinguish types of frame, we will use Greek letters for
orthonormal vectors, and reserve Roman letters for arbitrary, i.e. not necessarily
orthonormal, frames.

In Sections 5.2 and 4 we will be interested in geometric algebra in two and three
dimensions respectively. The Clifford algebra of the Euclidean plane is generated
by a pair of vectors {σ1, σ2} satisfying (2.15), and is spanned by

1, σ1, σ2 I, (2.18)

where I ≡ σ1σ2. The unit pseudoscalar here satisfies I2 = −1, and anticommutes
with vectors. The even-grade part of this algebra forms a subalgebra, and can be
put in a one-to-one correspondence with the complex field. Furthermore, there is a
natural map between even elements z (complex numbers) and vectors x, via

x = σ1z, (2.19)
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where the vector σ1 has been singled out as a unit vector along the real axis. In
this way the complex number z can be viewed as a rotation/dilation acting on σ1

to generate x.
The Clifford algebra for 3-dimensional space is generated by three orthonormal

vectors {σ1, σ2, σ3}, and is spanned by

1, {σk}, {iσk}, i (2.20)

where i ≡ σ1σ2σ3. Here the pseudoscalar squares to −1 and commutes with all
elements of the algebra, and so is naturally given the symbol of the unit imaginary
(in a matrix representation it will be i times the unit matrix). The algebra (2.20) is
the Pauli algebra, but in geometric algebra the three Pauli matrices are no longer
viewed as three components of a single isospace vector, but as three independent
basis vectors for space.

3-dimensional space has the distinguishing feature that the dual of any bivector
is a vector, and this is used to define the standard vector cross product as

a×b = 1
i
a∧b. (2.21)

A detailed development of 3-dimensional geometric algebra is contained in [20].

2.3 Linear Functions and the Outermorphism
Geometric algebra has many advantages when used for developing the theory of
linear functions, as is shown in [14, Chapter 3] and [16]. Below we will summarize
the conventions and notation of [16], and state a number of results without proof.

If f(a) is a linear function mapping vectors to vectors (in the same space), then
it can be extended via ‘outermorphism’ to act linearly on multivectors as follows,

f(a∧b∧. . .∧c) = f(a)∧f(b) . . .∧f(c), (2.22)

so that f is grade-preserving. An example of this, which will be useful later, is a
rotation, the action of which on a vector a can be written as

R(a) = eB/2ae−B/2, (2.23)
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where B is the plane(s) of rotation. The outermorphism extension of this is

R(A) = eB/2Ae−B/2, (2.24)

which provides a very compact way to handle rotations.
Since the pseudoscalar is unique up to a scale factor, we can define the determi-

nant via
f(I) = det(f)I, (2.25)

which demonstrates its rôle as the volume scale factor.
The adjoint f to f , is defined to satisfy

〈f(A)B〉 = 〈Af(B)〉, (2.26)

which turns out to be a special case of the more general formulae,

Ar ·f(Bs) = f [f(Ar)·Bs] r ≤ s

f(Ar)·Bs = f [Ar ·f(Bs)] r ≥ s.
(2.27)

A symmetric function is one for which f = f . Equations (2.27) can be used to
derive the inverse functions,

f−1(A) = det(f)−1f(AI)I−1

f
−1(A) = det(f)−1I−1f(IA).

(2.28)

The concept of an eigenvector is generalized to that of an eigenblade A, which
is a blade satisfying

f(A) = αA, (2.29)

where α is a real eigenvalue. Eigenvectors with complex eigenvalues are replaced by
eigenbivectors with real eigenvalues. These bivector blades each specify a plane for
which they are the pseudoscalar, and thus define a complex structure containing
more geometrical information than the scalar imaginary i.

2.4 Non-Orthonormal Frames
We shall make frequent use of non-orthonormal frames, which we usually designate
{ei} or {fi}. We now summarise a few results concerning these.

From the non-orthonormal set of n vectors, {ei}, we can define the (non-zero)
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pseudoscalar for this frame as

En = e1∧e2∧. . .∧en. (2.30)

The reciprocal frame {ei} satisfies

ei ·ej = δij, (2.31)

and is constructed via [14, Chapter 1]

ei = (−1)i−1e1∧. . . ěi . . .∧enEn, (2.32)

where the check symbol on ěi signifies that this vector is missing from the product,
and En is the pseudoscalar for the reciprocal frame, defined as

En = en∧en−1∧. . .∧e1. (2.33)

This satisfies
EnE

n = 1 (2.34)

⇒ En = En/(En)2. (2.35)

The components of the vector a in the ei frame are given by a·ei, so that

a = (a·ei)ei, (2.36)

where the summation convention is implied. Since eiei = n, it follows from (2.2)
that

eiae
i = (2− n)a. (2.37)

For a multivector of grade r, this can be extended to give

eiAre
i = (−1)r(n− 2r)Ar. (2.38)

Thus,
ei(ei ·Ar) = ei∧(ei ·Ar) = rAr, (2.39)

so that the operator ∑i e
i∧(ei · counts the grade of its multivector argument.

The metric tensor g is an example of a symmetric linear operator, and is defined
by

g(ei) = ei. (2.40)
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As a matrix, it has components gij = ei ·ej, and it follows from (2.25), that

g(En) = Ẽn (2.41)

⇒ det(g) = EnẼn = |En|2. (2.42)

It turns out to be very convenient to work with the ‘fiducial frame’ {σk}, which
is the orthonormal frame determined by the {ei} via

ek = h(σk) = hjkσj, (2.43)

where h is the unique, symmetric fiducial tensor. The requirement that h be
symmetric means that the {σk} frame must satisfy

σk ·ej = σj ·ek, (2.44)

which, together with orthonormality, defines a set of n2 equations that determine
the σk (and hence h) uniquely, up to permutation. These permutations only alter
the labels for the frame vectors, and do not re-define the frame itself. From (2.43)
it is simple to prove that

h(ej) = h(ej) = σj = σj, (2.45)

from which it can be seen that h is the ‘square-root’ of g,

g(ei) = ei = h2(ei). (2.46)

It follows that
det(h) = |En|. (2.47)

The fiducial tensor, together with other non-symmetric square-roots of the metric
tensor, correspond to what are usually called vierbeins in 4-dimensional spacetime.
These find many applications in the geometric calculus approach to differential
geometry [21].

3 Grassmann Variables and Berezin Calculus
In this section we will outline the basis of our translation between Grassmann
calculus and geometric algebra. It will be shown that the geometric algebra
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defined in Section 2 is sufficient to formulate all of the required concepts, thus
integrating them into a single unifying framework. This is illustrated with a simple
example, the ‘Grauss’ integral, with the more interesting example of the Grassmann
Fourier transform, which demonstrates the full potential of the geometric algebra
approach, contained in Appendix A. We finish the section with a discussion of
further developments and some potential applications.

3.1 The Translation to Geometric Algebra
The basis of Grassmann calculus is described in many sources. Reference [1] is one
of the earliest, and now classic, texts, a useful summary of which is contained in
the Appendices to [2]. More recently, Grassmann calculus has been extended to
the field of superanalysis [22, 23], as well as in other directions [24, 25].

The basis of our approach is to utilise the natural embedding of Grassmann
algebra within geometric algebra, thus reversing the usual progression from Grass-
mann to Clifford algebra via quantization. Throughout this paper we will retain
the symbol ζi for Grassmann variables, and use the symbol ↔ to show that we
are translating from one language to the other. We start with a set of Grassmann
variables ζi, satisfying the anticommutation relations

{ζi, ζj} = 0. (3.1)

In this paper we are only concerned with Grassmann variables which carry vector
indices; spinors with Grassmann entries will be treated in a later paper. In geometric
algebra we will represent each Grassmann variable ζi by a vector ei, and the product
of Grassmann variables by an exterior product, so

ζiζj ↔ ei ∧ ej, (3.2)

where {ei} are a set of arbitrary vectors spanning an n-dimensional space. Equa-
tion (3.1) is now satisfied by virtue of the antisymmetry of the exterior product,

ei∧ej + ej∧ei = 0. (3.3)

The {ei} are not necessarily orthonormal because as these vectors represent Grass-
mann variables, nothing can be assumed about their inner product. Any arbitrary
Grassmann element built out of a string of the {ζi} can now be translated into a
multivector.
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Next, we need a translation for the calculus introduced by Berezin [1]. In this
calculus, differentiation is defined by the rules

∂ζj
∂ζi

= δij, (3.4)

ζj

←−
∂

∂ζi
= δij, (3.5)

together with the ‘graded Leibnitz rule’,

∂

∂ζi
(f1f2) = ∂f1

∂ζi
f2 + (−1)[f1]f1

∂f2

∂ζi
, (3.6)

where [f1] is the parity (even/odd) of f1. Our translation of this is achieved by
introducing the reciprocal frame {ei}, and replacing

∂

∂ζi
( ↔ ei ·( (3.7)

so that
∂ζj
∂ζi

↔ ei ·ej = δij. (3.8)

We stress that we are using upper and lower indices to distinguish a frame from its
reciprocal frame, whereas Grassmann algebra only uses these indices to distinguish
metric signature.

The graded Leibnitz rule follows simply from the axioms of geometric algebra.
For example, if f1 and f2 are grade-1 and so, upon translation, are replaced by
vectors a and b, then the rule (3.6) becomes

ei ·(a∧b) = ei ·ab− aei ·b. (3.9)

This expresses one of the most useful identities of geometric algebra,

a·(b∧c) = a·bc− a·cb, (3.10)

for any three vectors a, b, c.
Right differentiation translates in the same way,

)
←−
∂

∂ζi
↔ )·ei, (3.11)
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and the standard results for Berezin second derivatives [1] can also be verified
simply. For example, given that F is the multivector equivalent of the Grassmann
variable f(ζ),

∂

∂ζi

∂

∂ζj
f(ζ) ↔ ei ·(ej ·F )

= (ei∧ej)·F
= −ej ·(ei ·F ) (3.12)

shows that second derivatives anticommute, and
(
∂f

∂ζi

) ←−
∂

∂ζj
↔ (ei ·F )·ej

= ei ·(F ·ej) (3.13)

shows that left and right derivatives commute.
The final concept we need is that of integration over a Grassmann algebra.

In Berezin calculus, this is defined to be the same as right differentiation (apart
perhaps from some unimportant extra factors of i and 2π [23]), so that

∫
f(ζ)dζndζn−1 . . . dζ1 ≡ f(ζ)

←−
∂

∂ζn

←−
∂

∂ζn−1
. . .

←−
∂

∂ζ1
. (3.14)

We can translate these in exactly the same way as the right derivative (3.7). The
only important formula is that for the total integral∫

f(ζ)dζndζn−1 . . . dζ1 ↔ (. . . ((F ·en)·en−1) . . .)·e1

= 〈FEn〉, (3.15)

where again F is the multivector equivalent of f(ζ), as defined by (3.1). Equation
(3.15) picks out the coefficient of the pseudoscalar part of F via

〈F 〉n = αEn (3.16)
⇒ 〈FEn〉 = α, (3.17)

so that the Grassman integral simply returns the coefficient α.
A change of variables is performed by a linear transformation f , say (see
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Section 2.3)

ei
′ = f(ei) (3.18)

⇒ E ′n = f(En) = det(f)En. (3.19)

However ei transforms under f−1 to preserve orthonormality, so

ei
′ = f

−1(ei) (3.20)
⇒ En′ = det(f)−1En, (3.21)

which is the usual result for a change of variables in a Grassmann multiple integral.
That E ′nEn′ = 1 follows from the definitions.

In this way all the basic formulae of Grassmann calculus can be derived in
geometric algebra, and often the derivations are simpler. Moreover, they allow for
the results of Grassmann algebra to be incorporated into a wider scheme, where
they may find applications in other fields. Finally, this translation makes it clear
why there can be no measure associated with Grassmann integrals: nothing is
being added up!

3.2 Example: The ‘Grauss’ Integral
The Grassmann analogue of the Gaussian integral [1],∫

e
1
2a
jkζjζkdζn . . . dζ1 = det(a) 1

2 , (3.22)

where ajk is an antisymmetric matrix, is one of the most important results in
applications of Grassmann algebra, finding use for example in fermionic path
integration. It is instructive to see how this is formulated and proved in geometric
algebra. First, we translate

1
2a

jkζjζk ↔ 1
2a

jkej∧ek = A, say, (3.23)

where A is a general bivector. The integral now becomes
∫
e

1
2a
jkζjζkdζn . . . dζ1 ↔ 〈(1 + A+ A∧A

2! . . .)En〉. (3.24)
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We see immediately that this is only non-zero for even n (= 2m say), in which case
(3.24) becomes

1
m!〈(A)mEn〉. (3.25)

Precisely this type of expression was considered in a different context in [14, Chapter
3], which provides a good illustration of how the systematic use of a unified language
leads to new analogies and insights. In order to prove that (3.25) equals det(a)

1
2 ,

we need the result (proved in [14]) that any bivector can be written, not necessarily
uniquely, as a sum of orthogonal commuting blades1,

A = α1A1 + α2A2 + . . . αmAm, (3.26)

where

Ai ·Aj = −δij (3.27)
[Ai, Aj] = 0 (3.28)

A1A2 . . . Am = I. (3.29)

Equation (3.25) now becomes, using (2.42),

〈(α1α2 . . . αm)IEn〉 = det(g)− 1
2α1α2 . . . αm. (3.30)

If we now introduce the function

f(a) = A·a, (3.31)

it can be seen that the Ai blades are the eigenblades of f , with

f(Ai) = α2
iAi, (3.32)

so that
f(I) = f(A1∧A2∧. . . Am) = (α1α2 . . . αm)2f(I) (3.33)

⇒ det(f) = (α1α2 . . . αm)2. (3.34)
1This result only holds in spaces with Euclidean or Lorentzian signature [26]. Because of the

way we use the inner product to represent Berezin differentiation, we are implicitly assuming a
Euclidean space.
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In terms of components, however,

fkj = ej ·f(ek)
= gjla

lk, (3.35)

⇒ det(f) = det(g) det(a). (3.36)

Inserting (3.36) into (3.30), we have

1
m!〈(A)mEn〉 = det(a) 1

2 , (3.37)

as required.
This result can be derived more succinctly using the fiducial frame σi = h−1(ei)

to write (3.24) as
1
m!〈(A

′)mI〉, (3.38)

where A′ = 1
2a

jkσjσk. This automatically takes care of the factors of det(g) 1
2 ,

though it is instructive to note how these appear naturally otherwise.
Although this translation has not added much new algebraically, it has demon-

strated that notions of Grassmann calculus are completely unnecessary to the
problem. In many other applications, however, the geometric algebra formulation
does provide for important algebraic simplifications, as we demonstrate in Appendix
A. There, the Grassmann Fourier transform is expressed in geometric algebra as a
rotation followed by a duality transformation. This reduces the Grassmann Fourier
inversion theorem to a simple identity, the proof of which requires much more work
if carried out solely within Grassmann calculus.

3.3 Further Development and Comments
Before dealing with pseudoclassical mechanics, we make some further observations.
It is well known [1] that the operators

Q̂k = ζk + ∂

∂ζk
, (3.39)
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satisfy the Clifford algebra generating relation2

{Q̂j, Q̂k} = 2δjk. (3.40)

This can be seen from an interesting perspective in geometric algebra by utilising
the fiducial tensor, as follows:

Q̂ka(ζ) ↔ ek∧A+ ek ·A
= h(σk)∧A+ h−1(σk)·A
= h[σkh−1(A)], (3.41)

where A is the multivector equivalent of a(ζ) and we have used (2.27). The
operator Q̂k thus becomes an orthogonal Clifford vector (now Clifford multiplied),
sandwiched between a symmetric distortion and its inverse. (For details on the
how this h can be viewed as generating an induced geometry on the flat space of
the σk see [14].) It is now simple to see that

{Q̂j, Q̂k}a(ζ) ↔ h(2σj ·σkh−1(A))
= 2δjkA. (3.42)

The above is an example of the ubiquity of the fiducial tensor in applications
involving non-orthonormal frames (we will see many more in Section 4), which
makes it all the more surprising that this object is not more prominent in standard
expositions of linear algebra.

Berezin [1] defines dual operators to the Q̂k by

P̂k = 1
i
(ζk −

∂

∂ζk
), (3.43)

though a more useful structure is derived by dropping the i, and defining

P̂k = ζk −
∂

∂ζk
. (3.44)

2This is used by Sherry in [27, 28] as an alternative approach to quantizing a Grassmann
system.
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These satisfy

{P̂j, P̂k} = −2δjk (3.45)
{P̂j, Q̂k} = 0, (3.46)

so that the P̂k, Q̂k span a 2n-dimensional balanced algebra (signature n, n). The
P̂k can be translated in the same manner, this time giving (for a homogeneous
multivector)

P̂ka(ζ) ↔ ek∧Ar − ek ·Ar
= (−1)rh[h−1(Ar)σk], (3.47)

so that the {σk} frame now sits to the right of the multivector on which it operates.
The factor of (−1)r accounts for the minus sign in (3.45) and for the fact that
the left and right multiples anticommute in (3.46). Q̂k and P̂k can both be given
right analogues if desired. The geometric analogues of the P̂k and Q̂k operators,
and their relationship to the balanced (n, n) algebra, turn out to be very useful
for studying linear functions. This is demonstrated in [13], where they are used to
provide a new approach to linear function theory, in which all linear functions are
represented as (Clifford) polynomials of vectors.

The idea of using two frames, one on either side of a multivector, is a very
powerful one in many applications of geometric algebra. For example, in rigid
body dynamics [20] the two frames can be used to represent the laboratory and
body axes, and in the geometric algebra versions of the Pauli and Dirac equations
[7, 10, 29], the second frame is connected with the spin of the electron.

As a final comment in this section, we outline our philosophy on the use of
complex numbers. It was noted in Section 2.2 that within the 2-dimensional and
3-dimensional real Clifford algebras there exist multivectors that naturally play
the rôle of a unit imaginary, and in general there can exist many of these objects.
All of the results of complex analysis therefore follow, and in many cases are
enhanced. Similarly, functions of several complex variables can be studied in a real
2n-dimensional algebra. Elsewhere [9, 10] we will show that many other concepts
of modern theoretical physics can also be given real formulations, including (as
has been shown by Hestenes [7]) the Dirac, Pauli and Schrödinger equations. This
leads us to speculate that, though often mathematically convenient, a scalar unit
imaginary may be unnecessary for fundamental physics. For most occurrences of the
unit imaginary, it can be replaced by something geometrically meaningful (usually
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a bivector), however the literature on supersymmetry and superanalysis contains
many instances where a unit imaginary is introduced for purely formal reasons,
and where it plays no rôle in calculations. When dealing with such ocurrences, our
policy will be to drop all reference to the imaginary, and keep everything real.

4 Pseudoclassical Mechanics
Pseudoclassical mechanics [2, 3, 30] was originally introduced as the classical
analogue of quantum spin one-half (i.e. for particles obeying Fermi statistics).
Recent work based on classical Lagrangians with spinor variables [31] has now
provided alternative models for classical spin one-half, so it is interesting to return
to the original models, and analyse them from the perspective of geometric algebra.
We will concentrate on the simplest non-trivial 3-dimensional model, and analyse its
equations of motion. It can be seen that this system is ultimately straightforward
and, after quantization, is very similar to those derived from classical Lagrangians
with spinor variables. Some interesting new concepts will be presented, however,
including a new method of generating super-Lie algebras, which could form the
basis for an alternative approach to their representation theory.

4.1 A Model Lagrangian and its Equations of Motion
The Lagrangian studied here was introduced by Berezin and Marinov [2], and
has become the standard example of non-relativistic pseudoclassical mechanics [3,
Chapter 11]. With a slight change of notation, and dropping the irrelevant factors
of i, the Lagrangian can be written as

L = 1
2ζiζ̇i −

1
2εijkωiζjζk, (4.1)

where ωi are a set of three scalar constants. We immediately translate this to

L = 1
2ei∧ėi − ω, (4.2)

where
ω = ω1(e2∧e3) + ω2(e3∧e1) + ω3(e1∧e2). (4.3)

It is worth re-emphasising that our translation has taken what was originally
thought of as a single vector with Grassmann entries, and replaced it by three
ordinary vectors in Euclidean 3-space. Thus, as promised, we lose the need for
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additional Grassmann dimensions.
A possible surprise is that our Lagrangian is no longer a scalar, but a bivector-

valued object. This raises interesting questions; in particular, which of the many
techniques applied to scalar Lagrangians remain applicable when the Lagrangian
becomes multivector-valued. Many of these questions are answered in [8], where a
general theory for analysing multivector Lagrangians, and studying their symmetries,
is outlined. In fact, multivector Lagrangians are straightforward generalisations
of scalar Lagrangians, allowing large numbers of coupled variables to be handled
simultaneously (there are nine independent parameters in (4.2)), and the variational
principle, symmetry properties and Noether’s theorem all extend naturally. However,
there is an important restriction on the type of multivector Lagrangian which can be
allowed. If we expand the resulting multivector action in a basis, then stationarity
of each scalar coefficient alone determines a classical motion for the system, since
we can derive Euler-Lagrange equations from that coefficient, via the usual scalar
methods. The crucial requirement is that the equations derived from each basis
element should be mutually consistent, so that the whole multivector action,

∫
dt L,

can be genuinely stationary for the classical motion. How the present system meets
this requirement is discussed at the end of this sub-section.

In [8] the variational principle is formalised using the ‘multivector derivative’
[14], and a general expression of the Euler-Lagrange equations for a multivector
Lagrangian is derived. Here we adopt a less formal approach and simply vary the
{ei} vectors independently, keeping their end-points fixed3. If we consider varying
e1, say, we find

δS =
∫
dt δe1∧(ė1 + ω2e3 − ω3e2). (4.4)

Setting this equal to zero, and repeating for e2 and e3, yields the equations of
motion,

ė1 = −ω2e3 + ω3e2

ė2 = −ω3e1 + ω1e3

ė3 = −ω1e2 + ω2e1. (4.5)

We now have a set of three coupled first-order vector equations, which, in terms of
components, is a set of nine equations for the nine unknowns. These equations can

3This provides another motivation for not fixing the inner product of our frame vectors. Had
we enforced, say, the ‘quantum’ condition that the vectors were orthonormal, this would have
been inconsistent with the variational principle. This situation is analogous to the problems
encountered in quantising constrained systems.



22

be neatly combined into a single equation by introducing the reciprocal frame {ei}
and writing

ėi = ei ·ω, (4.6)

which demonstrates some interesting geometry at work, relating the equations of
motion of a frame to its reciprocal. Furthermore, feeding (4.5) into (4.3), we see
that

ω̇ = 0, (4.7)

so that the ω plane is constant.
Geometric algebra now allows us to develop this system further than previously

possible with pseudoclassical mechanics, by both solving the equations of motion
and studying their symmetries. Although some of the equations we derive do have
Grassmann analogues, it is clear that the system defined by (4.5) is richer when
studied in geometric algebra.

We now give an alternative derivation of the equations of motion which shows
that our bivector Lagrangian is admissable in the sense mentioned above. To
derive an equation from a single scalar coefficient, we contract L with an arbitrary
bivector B to form a new Lagrangian L′ = 〈LB〉. The equations of motion formed
from this (scalar) Lagrangian are found via simple variations of the ei, or via the
multivector derivative again, and are

ėi ·B = (ei ·ω)·B. (4.8)

Because B was arbitrary, this equation directly implies the equations of motion
(4.6). It also means that the three equations of motion obtained separately from
(4.8) by letting B range over an independent set of basis bivectors are consistent,
and we see that the bivector action based upon the Lagrangian (4.2) is indeed
capable of simultaneous extremization in each coefficient. Although this equivalent
derivation uses a set of scalar Lagrangians, the equations only make sense in the
context of their derivation from a full multivector Lagrangian. This follows from
the observation that restricting B in (4.8) to a single basis bivector only gives part
of the full equations of motion. Thus, the bivector Lagrangian is a vital part of the
formulation of this system, and is central to establishing and understanding the
conserved quantities, as we show in Section 4.3.
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4.2 General Solution and some Constants of Motion
The first step in solving equations (4.5) is finding the equivalent equations for the
reciprocal frame, as defined by (2.32),

e1 = e2∧e3E
−1
n etc, (4.9)

where here n = 3. We first observe that equations (4.5) imply that

Ėn = 0, (4.10)

which is important, as it shows that if the {ei} frame initially spans 3-dimensional
space, then it will do so for all time. Equation (4.9) now gives

ė1 = −ω2e
3 + ω3e

2, (4.11)

so that, defining the reciprocal bivector

ω∗ = g−1(ω)
= ω1(e2∧e3) + ω2(e3∧e1) + ω3(e1∧e2), (4.12)

we have

ėi = ei ·ω∗

= ei ·g−1(ω)
= g−1(ei ·ω), (4.13)

where (2.27) has been used. Now, using (4.6), we have

g(ėi) = ėi = d

dt
g(ei) (4.14)

⇒ ġ = 0, (4.15)

so the metric tensor is constant, even though its matrix coefficients are varying.
The variation of the coefficients of the metric tensor is, therefore, purely the result
of the time variation of the frame, and is not a property of the frame-independent
tensor. This implies that the fiducial tensor is also constant, and suggests that we
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should look at the equations of motion for the fiducial frame σi = h−1(ei),

σ̇i = h−1(ėi)
= h−1(h−1(σi)·ω)
= σi ·h−1(ω). (4.16)

If we define the bivector

Ω = h−1(ω) = ω1σ2σ3 + ω2σ3σ1 + ω3σ1σ2 (4.17)

(which must be constant, since both h and ω are), we have

σ̇i = σi ·Ω, (4.18)

so that the underlying fiducial frame simply rotates at a constant frequency in
the Ω plane. If σi(0) is the fiducial frame specified by the initial setup of the {ei}
frame, then the solution to (4.18) is

σi(t) = e−Ωt/2σi(0)eΩt/2, (4.19)

and the general solution for the {ei} frame is

ei(t) = h(e−Ωt/2σi(0)eΩt/2)
ei(t) = h−1(e−Ωt/2σi(0)eΩt/2). (4.20)

We recognise that, ultimately, we are simply looking at a rotating orthonormal
frame viewed through a constant (symmetric) distortion. The {ei} frame and its
reciprocal represent the same thing viewed through the distortion and its inverse.
It follows that there is only one frequency in this system, ν, which is found via

ν2 = −Ω2

= ω1
2 + ω2

2 + ω3
2. (4.21)

It is now simple to derive some further conserved quantities in addition to ω,
En and their reciprocals ω∗ and En. Since

Ω = i(ω1σ1 + ω2σ2 + ω3σ3), (4.22)
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the vectors
u ≡ ω1e1 + ω2e2 + ω3e3, (4.23)

and
u∗ = g−1(u), (4.24)

are conserved. This follows from

u = Enω∗ (4.25)
u∗ = Enω. (4.26)

Furthermore,

eiei = h(σi)h(σi)
= σig(σi)
= Tr(g) (4.27)

must also be time-independent (as can be verified from the equations of motion).
The reciprocal quantity eiei = Tr(g−1) is also conserved. We thus have the set of
four standard rotational invariants, σiσi, the axis, the plane of rotation and the
volume scale-factor, each viewed through the pair of distortions h, h−1, giving a
large set of related conserved quantities.

Despite the original intentions for pseudoclassical mechanics, it has not proved
possible to identify the motion of (4.20) with any physical system, except in the
simple case where h = 1 (see Section 5).

4.3 Lagrangian Symmetries and Conserved Currents
Although we have solved the equations of motion exactly, it is instructive to
derive some of their consequences directly from the Lagrangian. A more complete
formalism for constructing conserved quantities from multivector Lagrangians,
utilising the multivector derivative, is described in [8], but for the present paper we
just quote the necessary results. Before listing the symmetries contained in (4.2),
we note one symmetry it does not contain — time reversal. This is a consequence
of the first-order nature of the equations, which therefore sets this system apart
from many others studied in physics. Of course, under time reversal the system
simply rotates in the other direction, and the Lagrangian is invariant under the
combined operations of time reversal and ωi → −ωi.
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Of the symmetries of interest, most are parameterized by a scalar, and can be
written as

e′i = f(ei, α), (4.28)

where α is the controlling scalar. If we define L′ = L(e′i, ė′i), then, for the L of
equation (4.2), the main result that we need from [8] is

∂αL
′ = d

dt

(
1
2e
′
i∧(∂αe′i)

)
. (4.29)

Hence, if L′ is independent of α, the quantity

1
2e
′
i∧(∂αe′i) (4.30)

is conserved. In most cases it is convenient to set α = 0 in (4.29), so that

∂αL
′|α=0 = d

dt

(
1
2e
′
i∧(∂αe′i)

)∣∣∣∣∣
α=0

. (4.31)

In writing this we are explicitly making use of the equations of motion, and so are
finding ‘on-shell’ symmetries. The Lagrangian could be modified to extend these
symmetries off-shell, but we will not consider this here.

The first example we consider is dilation symmetry:

e′i = eαei. (4.32)

Applying (4.31) gives
2L = d

dt

(
1
2ei∧ei

)
= 0, (4.33)

so dilation symmetry implies that the Lagrangian vanishes along a classical path.
This is quite common for first-order systems (cf. the Dirac equation), and is
important in deriving other conserved quantities.

The next symmetry is rotation,

e′i = eαB/2eie
−αB/2. (4.34)

Equation (4.31) now gives

B×L = d

dt

(
1
2ei∧(B ·ei)

)
, (4.35)
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where ×, known as the commutator product, is one-half of the actual commutator.
Since L = 0 when the equations of motion are satisfied, the left hand side of (4.35)
vanishes, and we find the conserved bivector

1
2ei∧(B ·ei). (4.36)

If our Lagrangian were a scalar, we would derive a scalar-valued function of B at
this point, from which we could read off a single conserved bivector — the angular
momentum. Here our Lagrangian is a bivector, so we get a conserved bivector
function of a bivector — a set of 3×3 = 9 conserved quantities. However, as (4.36)
is a symmetric function of B, this reduces to 6 independently conserved quantities.
To see what these are, re-write (4.36) as

1
2(eiBei −Beiei) = eiei∧B −Beiei, (4.37)

and introduce the dual vector b = iB, leading to the conserved vector function

ei ·bei − beiei = g(b)− bTr(g). (4.38)

Since this is conserved for all b, we can take the b derivative and observe that
−2Tr(g) is constant, as found in Section 4.2. It follows that g(b) is constant for all
b, so rotational symmetry implies conservation of the metric tensor — a total of 6
quantities, as expected.

The final ‘classical’ symmetry we consider is time translation,

e′i = ei(t+ α), (4.39)

for which (4.31) gives
dL

dt
= d

dt

(
1
2ei∧ėi

)
. (4.40)

From this we define the constant Hamiltonian as

H = 1
2ei∧ėi − L = ω. (4.41)

Since the Lagrangian is a bivector, the Hamiltonian must be also. This has
interesting implications for quantum mechanics, which are discussed in Section 5.

Now that we have derived conservation of g and ω, all the remaining conserved
quantities follow. For example, En = det(g)

1
2 i shows that En is constant. However,
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there is one interesting scalar-controlled symmetry which remains, namely

e′i = ei + αωia, (4.42)

where a is an arbitrary constant vector (in the same space). In this case (4.31)
gives

1
2a∧u̇ = d

dt

(
1
2ei∧(ωia)

)
(4.43)

⇒ a∧u̇ = 0, (4.44)

which gives us conservation of u directly. The symmetry (4.42) bears a striking
resemblance to the transformation law for the fermionic sector of a fully supersym-
metric theory [32], a fact which provides a promising start to the incorporation of
supersymmetric Lagrangians into our scheme. The geometry behind (4.42) is not
fully understood, though it is interesting to note that the pseudoscalar transforms
as

E ′n = En + αa∧ω, (4.45)

and is therefore not invariant.
Finally we consider a symmetry which cannot be parameterised by a scalar

— reflection symmetry. In this case equation (4.31) must be modified so that it
contains a multivector derivative, as described in [8]. If we define

e′i = nein
−1 (4.46)

where n is an arbitrary vector, so that L′ = nLn−1 vanishes, we obtain a conserved
vector-valued function of a vector. Using the formulae given in [8], this function is

eiein
−1 + ei ·nnein−1 = n(Tr(g)n−1 + g(n−1))n−1, (4.47)

which shows that the symmetric function Tr(g)a+ g(a) is conserved. This can also
be used to prove conservation of g. Since rotations are even products of reflections,
we expect to derive the same conserved quantities when considering rotations and
reflections separately. The fact that we can derive conserved currents from discrete
symmetries illustrates the power of the multivector approach to the analysis of
Lagrangians.
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4.4 Poisson Brackets and the Hamiltonian Formalism
We can re-derive many of the preceding results from a Hamiltonian approach which,
as a by-product, reveals a new, and remarkably compact formula for a super-Lie
bracket.

We have already shown that the Hamiltonian for (4.2) is ω, so we next need a
translation for the Poisson bracket, introduced in [2]. Dropping the i and adjusting
some signs, this is

{a(ζ), b(ζ)}PB = a

←−
∂

∂ζk

∂

∂ζk
b, (4.48)

which translates to
{A,B}PB = (A·ek)∧(ek ·B). (4.49)

Utilising the fiducial tensor, and (2.27), this can be written as

(A·h−1(σk))∧(h−1(σk)·B) = h(h−1(A)·σk)∧h(σk ·h−1(B))
= h

(
(h−1(A)·σk)∧(σk ·h−1(B))

)
. (4.50)

If we assume that A and B are homogeneous, we can use (2.38) to get this into
the form

{Ar, Bs}PB = h〈h−1(Ar)h−1(Bs)〉r+s−2, (4.51)

which is a wonderfully compact representation of the super-Poisson bracket. The
combination rule is simple, since the h always sits outside everything:

{Ar, {Bs, Ct}PB}PB = h
〈
h−1(Ar)〈h−1(Bs)h−1(Ct)〉s+t−2

〉
r+s+t−4

. (4.52)

Since Clifford multiplication is associative, and

〈ArBs〉r+s−2 = −(−1)rs〈BsAr〉r+s−2, (4.53)

it follows that (4.51) generates a super-Lie algebra, as it is well known that a graded
associative algebra satisfying the graded commutator relation (4.53) satisfies the
super-Jacobi identity [33, 34].

There has been considerable work on how various Lie algebras can be realised by
multivectors within Clifford algebras [13, 14, 35, 36]. For example, all Lie algebras
can be represented as bivector algebras under the commutator product [13]. We
can see that the bivector commutator is a special case of (4.51), where all the
elements are grade 2, and h = 1 (setting h 6= 1 enforces a type of deformation). The
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bracket (4.51) should now allow for this work to be extended to super-Lie algebras,
where we can expect to find many improvements over the traditional matrix-based
approach4. In particular, the abstract algebraic generators of a super-Lie algebra
can be replaced by mixed-grade multivectors (directed lines, planes etc.), thus
providing a concrete geometrical picture.

We can now derive the equations of motion from the Poisson bracket for our
system as follows,

ėi = {ei, H}PB
= h(σi ·Ω)
= ei ·ω. (4.54)

Similarly, some conservation laws can be checked, for example,

{En, H}PB = h〈iΩ〉3 = 0, (4.55)

and
{ω,H}PB = h〈ΩΩ〉2 = 0. (4.56)

However, this bracket gives zero for any scalar-valued functions, so is no help in
deriving conservation of eiei; furthermore, it only gives the correct equations of
motion for the {ei} frame, since these are the genuine dynamical variables.

It is conventional to define the spin operators (again dropping an i)

Si = 1
2εijkζjζk ↔ 1

2εijkej∧ek = h(iσi), (4.57)

so that
{Si, Sj}PB = h〈iσiiσj〉2. (4.58)

This gives the commutation relations for orthogonal bivectors in the Pauli algebra,
as viewed through the h tensor. These bivectors are well known to generate the su(2)
Lie algebra, a fact that is usually interpreted as showing that (4.1) describes the
pseudoclassical mechanics of spin. However, since the Pauli algebra is as applicable
to classical mechanics as to quantum mechanics [20], the immediate identification
of the su(2) algebra relations with quantum spin is unjustified. Indeed, the su(2)
algebra expressed by (4.58) is nothing more than an expression of the behaviour of
orthonormal vectors under the vector cross product.

4An attempt to study super-Lie algebras within Clifford algebras was carried out in [37],
though their approach was very different.
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Finally, we consider the density function, which is Grassmann-odd, and trans-
lates to the odd multivector

ρ = c+ En, (4.59)

(c is a vector). This is used to define the expectation of an operator by

‖f‖ =
∫
f(ζ)ρd3ζ ↔ 〈FρEn〉, (4.60)

and ρ is normalised such that ‖1‖ = 1. ρ must satisfy the Liouville equation, which
is

∂ρ

∂t
+ {ρ,H}PB = 0. (4.61)

The spin operators (4.57) now have the property

‖Sj‖ = 〈h(iσj)ρEn〉
= 〈h−1(σj)cEnEn〉
= ej ·c, (4.62)

which is usually identified as finding the expectation of the Sj operator, but in
geometric algebra is seen merely to pick out the components of the c vector in the
{ej} frame (a similar point of view arises in the full quantum theory of spin [7, 10]).
The components cj are constrained to be constant, so for c to satisfy (4.61), it must
have

cjej ·ω = εijkωic
jek = 0 (4.63)

⇒ cj = λωj (4.64)
⇒ c = λu, (4.65)

so c is a constant multiple of u.
This is about as far as this simple model can be taken. We have demonstrated

that analysing its properties in geometric algebra sheds new light on the geometry
behind the model. Furthermore, geometric algebra has enabled us to develop
a richer theory, in which the usual concepts introduced for scalar Lagrangians
generalise naturally. It is to be hoped that further applications of this approach
can be found, utilising the true power of geometric algebra.
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5 Quantization
The quantization of the system arising from (4.2) is carried out in standard
treatments in two ways, via the path-integral and canonical routes. The path
integral will be discussed in Section 5.2, where a preliminary sketch of a new
approach is presented, but first we consider the canonical approach.

5.1 Canonical Quantization
The Poisson bracket of Section 4.4 is defined such that

{ei, ej}PB = δij. (5.1)

The canonical quantization procedure therefore replaces the ei by operators σ̂i
satisfying the Clifford-algebra generating relation

σ̂iσ̂j + σ̂jσ̂i = 2δij. (5.2)

These operators generate the 3-dimensional Euclidean Clifford algebra — the Pauli
algebra (Section 2.2). The presence of the Pauli algebra is usually taken as evidence
that we have arrived at a quantum system, but in fact this need not be the case.
We have already shown in Section 2.2 that the generators of the Pauli algebra can
be viewed as vectors, and (5.2) amounts to no more than the condition that these
vectors are orthonormal. It is therefore natural to identify the σ̂i with the fiducial
frame σi, in which case the quantum condition amounts to

h→ 1. (5.3)

This equation cannot be enforced at the level of the Lagrangian (4.2), as this is
inconsistent with the variational principle, which requires each of the vectors to
be varied independently. Hence (5.3) can only be applied after the equations of
motion, or in this case their solutions, have been found.

A further aspect of quantization is that the σ̂i operators are now Clifford-
multiplied everywhere, rather than exterior-multiplied. In terms of the σi vectors
this makes little difference, for two reasons. The first is that orthonormality of the
σi implies that

σi∧σj = σiσj (i 6= j). (5.4)
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The second is that, for a rotating orthonormal frame [38],

σiσ̇i = σi∧σ̇i. (5.5)

Consequently, almost all of the calculations of Section 4 go through unchanged if
the vectors are chosen orthonormal, and the wedges are dropped.

After (5.2) is applied, all that remains is a simple rotating orthonormal frame,
with the rotation in the fixed plane orthogonal to the ωiσi axis. This is an entirely
classical system, though it is possible to make contact with one aspect of quantum
electron behaviour. If Ω is chosen to be eB/m, where B a constant magnetic field
bivector, and the 3-axis is identified with the spin axis s, then

ṡ = e

m
s·B. (5.6)

This is the correct equation for a particle with gyromagnetic ratio two, though in
this non-relativistic theory the g-factor has been put in by hand. In the relativistic
pseudoclassical theory [2], however, the magnetic bivector B is replaced by the full
electromagnetic field bivector F [38], and a g-factor of 2 is derived by demanding
consistency with the Lorentz force law. This result was viewed as another success
of the pseudoclassical program, but again this claim does not look so convincing
when formulated in geometric algebra. The calculations are in fact very similar to
those carried out by Rohrlich [39] and Hestenes [38], who showed that g = 2 is the
natural value for a classical relativistic point particle. The equations used in [38]
to demonstrate this are precisely those for a rotating orthonormal frame, with (5.6)
obtaining in the non-relativistic limit. The point is not that the pseudoclassical
mechanics is wrong, but that it is more classical than was previously realised.

Contact can now be made with a second approach to the classical mechanics of
spin, in which particle Lagrangians are written down containing spinor variables
[31]. Details of how to translate these into geometric algebra are given in [10, 11],
but the essence is as follows. An arbitrary orthonormal frame can be written as

σi = Rσi(0)R̃, (5.7)

where R is a time-dependent ‘rotor’, satisfying RR̃ = 1 (Section 2.3). Lagrangians
with spinor variables then turn out to give equations for the rotor R, rather than
the σi frame [8, 11, 10]. Typically, after translating into geometric algebra, we find
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an equation of motion of the type

Ṙ = − e

2mBR. (5.8)

With the spin defined by
s = Rσ3(0)R̃, (5.9)

we find that ṡ satisfies (5.6), and the two models lead to the same motion. This
is a good illustration of how formulating apparently different systems in a single,
unified language can reveal unexpected parallels.

Looking now at the Hamiltonian formalism, setting h = 1 means that the
Poisson bracket takes on the simple form

{Ar, Bs}PB = 〈ArBs〉r+s−2. (5.10)

This is the form of the Poisson bracket most applicable to the study of super-Lie
algebras within geometric algebra. Hamilton’s equations now become

Ṁ = 1
2 [M,H], (5.11)

so time derivatives are determined by one-half the commutator with the (bivector)
Hamiltonian. Furthermore, the rotor (spinor) equation (5.8) can be viewed as the
‘Schrödinger representation’ equivalent of (5.11), with the same bivector-valued
Hamiltonian. This analogy with quantum mechanics is remarkable, and it is
interesting to see how far the idea of a bivector Hamiltonian can be pushed. In
particular, in the real geometric algebra formalism of the Dirac equation, in which
the rôle of the unit imaginary is played by a bivector, the operator iĤ is also a
bivector. Another reason for pursuing this idea is provided by the path integral, to
which we now turn.

5.2 Path-Integral Quantization
The path integral over Grassmann variables plays an important rôle in many
areas of field theory, for example for fermionic systems and Faddeev-Popov ghost
fields in quantum field theory. A path-integral quantization of the system arising
from (4.1) is carried out in [2], and similar calculations have been performed in
greater detail in [23]. Elsewhere a Grassmann path integration of a supersymmetric
model has been used to derive the Dirac propagator [40]. These calculations all
involve Berezin integrals, which (as we showed in Section 3.1) can be replaced by
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algebraic contractions. These integrals can therefore be simply incorporated into
our framework, though our formalism will suggest an entirely new approach to
Grassmann-type path integrals, in which Berezin integrals are replaced by Riemann
integrals.

Grassmann path integrals make repeated use of the ‘Grauss’ integral of Sec-
tion 3.2. This calls for a space of even dimension, which is enforced in [2] by adopting
a phase-space approach analogous to that of standard quantum-mechanical path
integration [41]5. This phase-space formalism translates via introduction of a
second set of vectors {fi}, so that the set {ei, fi} span a 6-dimensional space. The
phase-space action functional translates as

S =
∫ T

0
dt
(
fi∧ėi − 1

2ei∧ėi −H(f)
)
, (5.12)

where H(f) is the Hamiltonian, expressed as a function of the fi. For the Hamilto-
nian of (4.2), the equations of motion turn out to be

ḟi = ėi (5.13)
ėi = −1

2εijkωjfk (5.14)
⇒ ḟi = f i ·ω(f), (5.15)

where ω(f) is the bivector of (4.3) expressed in terms of the fi. If equation (5.13)
is integrated with the boundary conditions chosen so that ei = fi, we then recover
the ei equations of motion (4.5). To carry out the path integral, the action integral
(5.12) is replaced by the sum

S ∼=
N∑
k=1

fi(k)∧(ei(k+1)−ei(k))− 1
2ei(k)∧ei(k+1)− 1

2εijkωi∆Tfj(k)∧fk(k), (5.16)

whereN∆t = T , and ei(k) is an abbreviation for ei(k∆t). The final term ei(N+1) =
ei is the remaining frame of which the resultant propagator is a function. It is
also required that each time-slice frame {fi(k), ei(k)} be viewed as an independent
(anticommuting) set of variables, so the path integral can be written as

G(ei, T ) = lim
N→∞

〈
N∏
k=1

En(k)F n(k)S
n

n! 〉0,2. (5.17)

5de Witt [23] attempts to carry out path integrals in two dimensions without using a phase-
space approach. This results in oscillatory behaviour, with the value of the integral depending on
whether an even or odd number of steps are taken.
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This limit is well-defined, but from our point of view the formalism looks unsatisfac-
tory for a number of reasons. The introduction of a new frame for each time-slice
is unattractive, and the propagator derived is only a function of one endpoint, ei,
rather than the start and end-points of a trajectory in phase space.

This leads us to propose an alternative approach to the path-integral quantiza-
tion of (5.12), which again has no couterpart in Grassmann calculus. The idea is
to utilise two properties of bivectors in Euclidean spaces: first, they naturally have
negative square, thus precluding the need for a unit imaginary; second, they have
a well-defined parameter space associated with them, so we can replace Berezin
integrals by Riemann integrals over these parameters. This enables us to consider
integrals of the type

∫
. . . exp(S), where S is the bivector action, and this can then

have the same oscillatory and classical path properties as the usual path integral
of iS ′, where S ′ is some scalar action. We are now considering exp(S) as a Clifford
bivector exponential, and so are relinquishing all ties with the original Grassmann
algebra.

A further motivation for considering bivector path integrals is provided by the
geometric algebra formalism of the Dirac equation [7, 10]. In this approach wave-
functions of pure states are the exponentials of bivectors, so that the superposition
of wavefunctions corresponding to all paths linking initial and final states also
results in integrals of the type

∫
. . . exp(B). We hope that this new approach will

eventually provide insights into the meaning of conventional path integrals in space
and spacetime, but we resrict ourselves here to 2-dimensional systems, for which
it is possible to exploit the correspondence between the unit bivector I and the
scalar unit imaginary i (Section 2.2). In particular we shall make use of the result∫

d2xex∧a =
∫
dx1dx2e

i(x1a2 − x2a1)

= 2πδ(a1)2πδ(a2)
= (2π)2δ2(a). (5.18)

(A similar result holds for Berezin integration of Grassmann variables [23].)
We now consider the simplest 2-dimensional ‘free-frame’ action,

S0 =
∫ T

0
dt
(
fi∧ėi − 1

2ei∧ėi
)
, (5.19)

where fi and ei (i = 1, 2) are vectors in the same 2-dimensional space. We
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approximate (5.19) by

S0 ∼=
N∑
k=0

fi(k)∧(ei(k + 1)− ei(k))− 1
2ei(k)∧ei(k + 1), (5.20)

with ei(0) and ei(N + 1) = ei(T ) the boundary points. Our approach is now to
integrate out the fi, leaving an effective action for the ei, and then perform the ei
integrals, so that just the boundary points remain. That is,

∫
DfiDeieS0 = lim

N→∞

[
N∏
k=0

d2fi(k)
] [

N∏
k=1

d2ei(k)
(2π)2

]
exp(S0)

= δ2(e1(0)− e1(T ))δ2(e2(0)− e2(T )). (5.21)

This could be interpreted as showing that the system is still constrained to follow
the classical path.

An ‘interaction’ can now be included, so that the action becomes

S =
∫ T

0
dt
(
fi∧ėi − 1

2ei∧ėi − ωf1∧f2
)
, (5.22)

where ω is a scalar constant. This is the 2-dimensional reduction of (5.12). The
path integral is defined in the same way as (5.21) and, on carrying out the {fi}
integrals, we obtain the following effective action,

Seff =
∫ T

0
dt
(
−1

2ei∧ėi + 1
ω
ė1∧ė2

)
. (5.23)

As a check, the equations of motion derived from (5.23) are

ë1 = ωė2

ë2 = −ωė1,
(5.24)

which are the same as would have been derived from (5.22) had the fi been
eliminated. Performing the remaining ei integrals leads to the propagator,

e(ωT/2)2

(2πωT )2 exp
{
−1

2ei(0)∧ei(T ) + 1
ωT

(e1(0)− e1(T ))∧(e2(0)− e2(T ))
}
. (5.25)
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It is reassuring to note that in the free-frame limit ω → 0, we recover (5.21), since

lim
ε→0

1
ε2
ea∧b/ε = (2π)2δ2(a)δ2(b). (5.26)

Extending these results to higher dimensions will require extensions of com-
plex analysis to accomodate non-commuting bivectors. This may not be easy to
implement, but we hope these preliminary results have demonstrated that it is a
worthwhile exercise.

6 Conclusions
We have shown how Grassmann algebra can be naturally embedded within geo-
metric algebra, and how this simplifies many of the manipulations encountered in
applications of Grassmann variables. This has many conceptual advantages through
the association of a natural geometric picture to previously abstract entities, and
this makes many results easier to understand and to interpret.

The 3-dimensional Grassmann oscillator was presented as a detailed application
of this idea, and a number of interesting concepts have emerged — multivector
Lagrangians and their associated symmetries; multivector realisations of the super-
Jacobi identities. The system was then quantised along standard lines. The
canonical approach was shown to result in a classical system, which casts doubt on
some of the claims originally made for the pseudoclassical mechanics. The path-
integral quantization was shown to appear unnatural, and a possible alternative
(based purely on geometric algebra) was outlined.

Throughout, we have emphasised two key points. Grassmann calculus is richer
when formulated within geometric algebra, and Clifford algebras in general (and the
Pauli algebra in particular) are just as relevant to classical as to quantum mechanics.
The boundaries between classical, pseudoclassical and quantum mechanics are
therefore less clearly defined as might have been thought previously, and this was
illustrated by the ‘quantization’ of a pseudoclassical system apparently yielding a
classical system.

In future work we will extend these ideas to supersymmetry and twistor theory,
though these are only two of a number of possible applications which were touched on
in the text. We suggest that further elaboration of the ideas developed throughout
this paper will be significant for other applications involving Grassmann algebras.
For example, many of the structures studied in [23] (super-Lie algebras, super-
Hilbert spaces) have natural multivector expressions, and the cyclic cohomology
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groups of Grassmann algebras described in [24] can be formulated in terms of the
multilinear function theory set out in [14]. It is our hope that others will follow
these avenues, and thus implement a critical reappraisal of the status of Grassmann
variables in mathematics and physics.
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A The Grassmann Fourier Transform
In Grassmann algebra one defines Fourier integral transformations between anti-
commuting spaces {ζk} and {ρk} by [2]

G(ζ) =
∫

exp{i∑ ζkρ
k}H(ρ)dρn . . . dρ1

H(ρ) = εn
∫

exp{−i∑ ζkρ
k}G(ζ)dζn . . . dζ1,

(A.1)

where εn = 1 for n even and i for n odd. The factors of i are irrelevant, and can be
dropped, so that (A.1) becomes

G(ζ) =
∫

exp{∑ ζkρ
k}H(ρ)dρn . . . dρ1

H(ρ) = (−1)n
∫

exp{−∑ ζkρ
k}G(ζ)dζn . . . dζ1.

(A.2)

We will first translate this into geometric algebra to find an equivalent expression,
and then show how the geometric algebra expression can be manipulated into a
much clearer form, demonstrating that there is some simple geometry at work. We
introduce a pair of anticommuting copies of the same frame, {ek}, {fk}, so that

ei ·ej = fi ·fj (A.3)
ei ·fj = 0; (A.4)

hence the full set {ek, fk} generate a 2n-dimensional Clifford algebra. The transla-
tion now proceeds by replacing

ζk ↔ ek, ρk ↔ fk, (A.5)

where the {ρk} have been replaced by elements of the reciprocal frame {fk}. This
must satisfy

ei ·ej = f i ·f j. (A.6)

We next define the bivector

J =
∑
i

ei∧f i =
∑
i

ei∧fi, (A.7)
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where the equality of the two expressions for J follows from (A.3). It is now a
simple matter to expand a vector in the {ek, fk} basis, and prove that

J ·(J ·a) = −a, (A.8)

for any vector a in the 2n-dimensional algebra. The bivector J thus clearly plays
the rôle of a complex structure (this in itself is a good reason for ignoring the scalar
i). Equation (A.8) can be extended to give

eJθ/2ae−Jθ/2 = cosθa+ sinθJ ·a, (A.9)

hence eJπ/2 anticommutes with all vectors. Consequently it can only be a multiple
of the pseudoscalar and, since it has unit magnitude, we can define the orientation
such that

eJπ/2 = I. (A.10)

This definition implies that

EnF
n = EnFn = I. (A.11)

Finally, we introduce the notation

Ck = 1
k!〈J

k〉2k. (A.12)

The formulae (A.2) now translate to

G(e) = ∑n
j=0(CjH(f))·Fn

H(f) = (−1)n∑n
j=0(C̃jG(e))·En,

(A.13)

where we adopt the convention that these expressions are zero if the CjH or C̃jG
terms have grade less than n. Since G and H only contain terms constructed from
the {ek} and {fk} respectively, (A.13) can be written as

G(e) = ∑n
j=0(Cn−j∧〈H(f)〉j)·Fn

H(f) = ∑n
j=0(−1)j(〈G(e)〉j∧Cn−j)·En.

(A.14)

So far we have only derived a formula analogous to (A.2), but we can now go
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much further. Using

eJθ = cosn(θ) + cosn−1(θ) sin(θ)C1 + . . .+ sinn(θ)I, (A.15)

to decompose eJ(θ+π/2) = eJθI in two ways, it can be seen that

Cn−r = (−1)rCrI = (−1)rICr, (A.16)

and hence (using some simple duality relations) (A.14) become

G(e) = ∑n
j=0Cj ·HjEn

H(f) = (−1)n∑n
j=0Gj ·CjF n.

(A.17)

Finally, since G and H are pure in the {ek} and {fk} respectively, the effect of
dotting with Ck is simply to interchange these. For vectors this is achieved by
dotting with J , but from (A.9) this can also be achieved by a rotation through
π/2, which extends simply via outermorphism, so that

Cj ·Hj = eJπ/4Hje
−Jπ/4

Gj ·Cj = e−Jπ/4Gje
Jπ/4.

(A.18)

We have now arrived at the following equivalent expressions for (A.13):

G(e) = eJπ/4H(f)e−Jπ/4En
H(f) = (−1)ne−Jπ/4G(e)eJπ/4F n.

(A.19)

Thus, the Grassmann Fourier transformations have been reduced to rotations
through π/2 in the planes specified by J , followed by an (uninteresting) duality
transformation. Proving the ‘inversion’ theorem (i.e. that the above expressions
are consistent), amounts to no more than carrying out a rotation, followed by its
inverse,

G(e) = eJπ/4((−1)ne−Jπ/4G(e)eJπ/4F n)e−Jπ/4En
= G(e)EnEn = G(e), (A.20)

which is far simpler than any proof carried out in Grassmann algebra [1].


