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Chapter 1

Introduction to Geometric Algebra

The ideas and concepts of physics are best expressed in the language of mathematics.
But this language is far from unique. Many different algebraic systems exist and are
in use today, all with their own advantages and disadvantages. In this course we will
study the most powerful available mathematical system developed to date — Clifford’s
geometric algebra. This will be presented as a new tool to add to your existing base as
either a theoretician or experimentalist. The aim will be to introduce new techniques
via their applications, rather than as purely formal mathematics. These applications
will be diverse, emphasising the generality and portability of geometric algebra. This
will help to promote a more inter-disciplinary understanding of science.

This course is divided into 3 sections, looking at the applications of geometric alge-
bra (GA) to non-relativistic physics, relativistic physics and gravitation respectively.
During this course we will discover a new, powerful technique for handling rotations in
arbitrary dimensions, and analyse the insights this brings to the mathematics of special
and general relativity. We will also uncover the links between rotations, bivectors and
the structure of the Lie groups which underpin much of modern physics.

In a separate development we will learn how to extend the concept of a complex analytic
function in 2-d (i.e. a function satisfying the Cauchy-Riemann equations) to arbitrary
dimensions, and show how this is applied in quantum theory and electromagnetism.
This will enable us to unite all four Maxwell equations into a single equation (VF# = J),
and develop new techniques for solving it. In the final section of the course we will
combine these ideas to construct a gauge theory of gravitation in (flat) Minkowski
spacetime, which is still consistent with General Relativity. Our new understanding of
gravitation will enable us to quickly reach advanced applications such as black holes and
cosmology. Throughout, the emphasis will be placed on the unity of the mathematics
underpinning each of these topics.
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Figure 1.1: A geometric picture of vector addition. The result of a + b is formed by
adding the tail of b to the head of a. Asis shown, the resultant vector a+bis the same as
b+a. This finds an algebraic expression in the statement that addition is commutative.
In the right-hand diagram the vector a + b 4 ¢ is constructed two different ways, as
a+ (b+ c¢)and as (a4 b) + ¢. The fact that the results are the same is the geometric
expression of the associativity of vector addition.

1.1 Vector Spaces

We begin with a quick revision of the mathematical properties of vectors and the
products that can be formed between them. This leads naturally to Clifford’s geometric
product, which forms the basis for most of this course. We should all be familiar with
the basic idea of a vector space. These consist of a set of objects a, b, (the vectors) and
a rule for adding them which is commutative

a+b=>b+a, (1.1)

and associative;

a+(b+c)=(a+b)+ec (1.2)

This latter property enables us to write expressions such as a4+ b+ ¢ without ambiguity.
Vectors can often be visualised as directed line segments, and for these each of the two
preceding properties have a clear geometric equivalent (see Fig. 1.1).

Vector spaces also contain a multiplication operation which allows vectors to be mul-
tiplied by scalars. For this course we will restrict entirely to real scalars, as complex
structures will be seen to emerge geometrically. The following further properties hold
for any scalars A, ¢ and vectors a and b:

L. Aa+b) = da+ Ab;
2. (A4 p)a = da + pa;

3. (Aw)a = Mpa);
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4. Tf 1A = X for all scalars A then 1a = a for all vectors a.

These rules define a vector space completely. Note that the + operation connecting
scalars is different from the + operation connecting the vectors. There is no ambiguity,
however, in using the same symbol for both.

All (finite) vector spaces have an associated dimension, and a set of linearly independent
vectors of this number are said to form a basis. Any vector in the space can be
written uniquely as a sum of these basis vectors multiplied by scalar coefficients (the
components). One can proceed to prove a surprising wealth of geometric results with
just these axioms alone, but it is clear that they lack a key structure — a rule for
multiplying vectors. In the following sections we look at various familiar products for
vectors, prior to introducing Clifford’s geometric product.

1.2 The Scalar Product

A vector space as defined above is currently insufficient for Euclidean geometry as it
lacks the concepts of distance and angle. Without these we cannot define circles, or
perpendicular lines. Both distances and angles can be defined through the introduction
of a scalar product for vectors. This is usually written as a-b and returns a scalar. In
Euclidean space the scalar product is positive definite,

a*=aa>0 Ya # 0. (1.3)

This enables us to define the length of a vector |a| as

la = V(a-a). (1.4)

From this definition we recover the Schwarz inequality

(a+Mb)2 > 0 2
4 20ab+ A2 > 0 V) (1.5)
— (@b < |af P

This to used to define the cosine of the angle between a and b via

a-b=la||b| cos(8). (1.6)

Two vectors whose scalar product vanishes are said to be orthogonal. It is usually
convenient to work with basis sets of vectors which are mutually orthogonal, and where
all of the basis vectors have been normalised to 1. In spaces which are not positive
definite, such as Minkowski spacetime, we can still construct an orthonormal frame, but
now some vectors have square 4+1 and some have square —1. The Schwarz inequality
does not necessarily hold, unless the vectors in question inhabit a subspace which is
positive definite.
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Figure 1.2: The Argand Diagram. Complex numbers can be used to represent vectors
in 2-d, as well the operations of rotation and dilation applied to vectors.

1.3 Complex Numbers

The next product for vectors to consider is defined by complex numbers. Recall that
any complex number can be taken as defining a point in the Argand diagram (Fig. 1.2).
The product of two complex numbers can therefore be viewed as a way of multiplying

2 we see that the real term

together two vectors in 2-d. If we let z = & + 1y and form z
here does not have the desired form in terms of the square of the length. Instead a

more useful product is defined by
22" = (v +iy)(z —iy) =« + 7, (1.7)

which does return the square of the length of the vector. A product of two vectors in
a plane, z and w = u + v7, can therefore be constructed as

zw™ = (x4 1y)(u—iv) = zu 4+ vy + 1(uy — va). (1.8)

The real part of the right-hand side is simply the scalar product back again. To
understand the imaginary term consider the polar representation

z = |Z|ei6, w = |w|ei¢ (1.9)

so that '
2w = |z||w] '@ =9 (1.10)

The imaginary term is ¢|z||w|sin(0 — @), where 6§ — ¢ is the angle between the two
vectors. The magnitude of this term is therefore the area of the parallelogram defined
by z and w. The sign of the term conveys information about the handedness of the
area element swept out by the two vectors. This will be defined more carefully later.

We have a satisfactory interpretation for both the real and imaginary parts of the
product zw*. The surprising feature is that these are still both parts of a complex
number. We thus have a second interpretation for complex addition, as a sum between
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Figure 1.3: William Rowan Hamilton 1805-1865. Inventor of quaternions, and one of
the key scientific figures of the 19th century.

scalar objects and objects representing plane segments. The advantages of adding these
together are precisely the advantages of working with complex numbers as opposed to
pairs of real numbers. This is a theme which runs throughout geometric algebra. But
before defining this we need a brief detour through the quaternions and Grassmann’s
algebra, which provide the missing concept of an antisymmetric product.

1.4 Quaternions

A central problem being tackled in the first part of the 19th Century was how best
to represent 3-d rotations. W.R. Hamilton (Fig. 1.3) worked on this for many years,
looking for a way to generalise complex arithmetic to 3-d space, and in 1844 he finally
produced his quaternions. These are indeed excellent for representing rotations, but the
final algebra contains 4 objects, {1,¢,7,k}, instead of the expected 3. The quaternion
algebra is defined by the relations

=3’ =k=1jk = —1, (1.11)

which can be seen to define a closed algebra. The quaternions also form a division
algebra, which means that every element has a unique inverse. Hamilton thought that
this was important, but in fact it is not a defining property of a geometric algebra.
(The quaternions are one of only four division algebras: the real numbers, complex
numbers, quaternions and octonions).
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The revolutionary new idea of the quaternion algebra is that the basis elements anti-
commute. To check this we form

ij = —ijkk =k, (1.12)

and
Jji = —juigk = —k = —13. (1.13)
The remaining products between the z, 3 and k all follow this pattern. The idea of

non-commuting products was only beginning to emerge during the 19th Century as
mathematicians started to uncover the properties of matrices and groups.

The fact that the quaternion algebra contained 4 elements, whereas only 3 were needed
to describe a vector in 3-d, caused considerable confusion. Hamilton’s solution was to
define a ‘pure’ quaternion as one containing no real part, and to treat these as vectors.
This is clearly sensible, and is the origin of the traditional use of 2z, 7, k for unit vectors
in 3-d. However, the negative norm was thought by some to be undesirable, and the
correct way to rotate these vectors was unclear. We return to this topic in Section 2.5
when we rediscover the quaternion algebra in terms of the geometric algebra of 3-d
space.

One feature of the quaternions which was immediately adopted by mathematicians and
physicists is seen if we multiply together 2 pure quaternions (i.e. vectors). We set

a = Cll’i—|—a2j—|—a3k, b= bli—|—bgj—|—bgk, (114)

and write their product as

ab = ¢y + c. (1.15)

The scalar term ¢y is minus the familiar scalar product of two vectors. The vector term
is more interesting as it is given by

C = (a263 — bgag)i + (Clgbl — bgal)j + (a162 — blaz)k. (116)

The components of ¢ are those of the cross product of @ and b. The cross product
only exists in 3-d space and has the properties that a x b is perpendicular to the
plane defined by @ and b, with magnitude absin(#) and such that a, b and a x b form
a right-handed set. (These geometric rules are sufficient to define the cross product
uniquely).

The cross product was immediately recognised as being very useful in subjects such as
mechanics and electromagnetic theory. Gibbs, for example, advocated forgetting about
quaternions altogether and just keeping the separate scalar and cross products. From
the modern perspective this is an extremely narrow viewpoint, but in the 19th Century
this was an acceptable solution to the quaternion muddle and was widely adopted.
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Figure 1.4: Hermann Gunther Grassmann (1809-1877). German mathematician and
schoolteacher, famous for inventing the algebra which now bears his name.

1.5 The Outer Product

The cross product has one major failing — it only exists in 3 dimensions. In 2-d there
is nowhere else to go, whereas in 4-d the concept of a vector orthogonal to a pair of
vectors is not unique. To see this, consider 4 orthonormal vectors e; ...e4. If we take
the pair e; and ey and attempt to find a vector perpendicular to both of these, we see
that any combination of e3 and e4 will do.

What we need is a means of encoding a plane geometrically, without relying on the
notion of a vector perpendicular to it. This was the problem solved by H.G. Grass-
mann (Fig. 1.4) in his Ausdehnungslehre. This was published in 1844, the same year
that Hamilton introduced his quaternion algebra. Grassmann introduced an outer or
exterior product for vectors, which we now write as a Ab or ‘a wedge b’. Unlike the
cross product, this results in a new algebraic object — a bivector — with the geomet-
ric interpretation of a plane. This is the directed area swept out by ¢ and b and can
be visualised as the parallelogram obtained by sweeping one vector along the other
(Fig. 1.5). Changing the order of the vectors reverses the orientation of the plane. The
plane has area |a||b|sin(8), which is defined to be the magnitude of aAb.

The outer product of two vectors has the following properties:

1. The outer product of two vectors is antisymmetric,

aNb= —bAa, (1.17)
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Figure 1.5: The Quter Product. The outer or wedge product of ¢ and b returns a
directed area element of area |a||b|sin(6).

which follows from the geometric definition. It follows that a A a = 0.

2. Bivectors form a linear space, the same way that vectors do. In 3-d the addition
of bivectors is easy to visualise (see Fig. 1.6). In higher dimensions this addition
is not always so easy to visualise, because two planes need not share a common
line. This can have some interesting consequences.

3. The outer product is distributive
aN(b+c) =aNb+ aAc. (1.18)

This helps to visualise the addition of bivectors.

It is traditional to represent bivectors with parallelograms, but it is important to realise
that bivectors do not specify a shape. This is clear from the fact that, if ' = a + Ab,
we still have

a’'Nb = aAb+ MbAb = aNb. (1.19)

So, given a A b, there is no unique way to recover the vectors a and b. All that the
bivector encodes is the plane itself, together with an area and a handedness. For this
reason 1t is sometimes better to replace the directed parallelogram with a directed
circle.

To understand the outer product of two vectors @ and b further it is useful to introduce
a pair of basis vectors for the plane defined by the vectors. If we denote these e; and
€9 we can write

a4 = di1€q + az€9, b= 6161 + 6262. (120)
The outer product of these is

(a161 —|— ageg)/\(blel —|— 6262) = Cllbg 61/\62 —|— Clzbl 62/\61
= (a1by — asby)es Aes. (1.21)
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Figure 1.6: Bivector Addition. In 3-d bivector addition can be visualised like vector
addition. The ‘tail’ of one bivector is added to the ‘head’ of the other.

The component of the bivector is precisely that found for the imaginary term in the
complex product zw*.

In general, the components of aAb are a;b;) where the [] denotes antisymmetrisation.
Grassmann extended the definition of the exterior product to arbitrary numbers of
vectors, which results in a very general algebraic tool. His work was largely ignored
during his lifetime, due in part to his status and also to his writing style. His choice of
notation and naming conventions was particularly awkward. Since his death, however,
his work has given rise to the influential and fashionable areas of differential forms and
Grassmann (anticommuting) variables. The latter are fundamental to the foundation
of much of modern supersymmetry and superstring theory. We will not follow this
development here, and will instead recover the properties of the outer product in terms
of Clifford’s geometric product.

1.6 The Geometric Product

The next key step in our story was made in 1878 by the mathematician W.K. Clifford
(Fig. 1.7). He appears to have been one of the select group of mathematicians at the
time who had read and understood Grassmann’s work. Like Hamilton, Clifford was
looking for an algebra of vectors which would extend the power of complex analysis
to arbitrary dimensions. The key is the correct identification of the roles of the terms
in the complex product zw*. The scalar term is simply the scalar product of the
vectors specified by z and w. The imaginary coefficient is the same as that of the outer
product so, with a suitable interpretation, the imaginary term can be treated as the
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Figure 1.7: William Kingdon Clifford 1845-1879. Mathematician and philosopher. He
died tragically young at the age of only 33, though he did have enough time to grow
his prodigious beard.

outer product. What the complex arithmetic is telling us to do then is to combine
these two terms into a single product. Clifford’s idea was simply to define a product
with precisely these properties. This is the geometric product, written simply as ab,
and satisfying

ab=a-b+ aNb. (1.22)

The right-hand side is a sum of two distinct objects — a scalar and a bivector. This
looks strange, but should be thought of in precisely the way we think of a complex
number, formed from the sum of real and imaginary parts. These are carried round in
a single entity, which provides for many mathematical simplifications.

From the symmetry and antisymmetry of the scalar (or inner) and outer products
respectively, we see that

ba =b-a+bAa=a-b— aNb. (1.23)
It follows that
a-b= %(ab—l—ba) alhb = %(ab—ba). (1.24)

We can thus define both the inner and outer products in terms of the geometric product.
This suggests that we should treat the geometric product as the primitive one for the
axiomatic development of the subject, which is what Clifford did. He extended the

geometric product to arbitrary numbers of vectors with the following rules:

1. The geometric product is associative,

a(be) = (ab)e = abe. (1.25)
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2. The geometric product is distributive over addition

a(b+ ¢) = ab + ac. (1.26)

3. The symmetric part of the geometric product of two vectors is a scalar. An
alternative way to say this is that the square of any vector is a scalar. To see
why, consider the expansion

(a+0)?* = (a+0b)(a+D)

= a®>+ b%>+ ab + ba. (1.27)

It follows that
ab+ba = (a+b)* — a* — b*. (1.28)

So, if the left-hand side is a scalar then so is the right-hand side, and vice-versa.

1.7 History of Clifford Algebra

The algebra formed by a set of vectors multiplied by the geometric product is called
a geometric algebra, often also called a Clifford algebra. The product is associative,
like Grassmann’s outer product, but has the crucial extra feature of being invertible,
like Hamilton’s quaternion product. Indeed, Clifford’s original motivation was to unite
Grassmann’s and Hamilton’s algebras into a single structure. In Clifford’s geometric
algebra an equation of the type ab = C had the solution b = a1C. Neither the scalar
or exterior products are capable of this inversion on their own.

Clifford’s system combined all of the advantages of quaternions with those of vector
geometry, so geometric algebra should have then gone forward as the main system
for mathematical physics. However, two events conspired against this. The first was
Clifford’s untimely death at the age of just 33 and at the height of his powers. The
second was (Fibbs’ advocation of the familiar vector calculus. This was well suited to
the theory of electromagnetism as it stood at the end of the 19th century, and Gibbs’
considerable reputation meant that this system eclipsed Clifford and Grassmann’s work.
By the time special relativity arrived, and physicists realised that they needed a system
capable of handling 4-d space, the crucial insights of Grassmann and Clifford had been
lost to a generation.

In the 1920’s Clifford algebra resurfaced as the algebra underlying quantum spin. In
particular the algebra of the Pauli and Dirac spin matrices became indispensable in
quantum theory. However, these were treated just as algebras — the geometrical
meaning was lost. For this reason we still employ the term ‘Clifford algebras’ when the
algebra is used solely for its formal algebraic properties. When applied in its proper,
geometric setting however, we prefer to use Clifford’s own name of geometric algebra.
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Figure 1.8: David Orlin Hestenes. Inventor of geometric calculus and first to draw
attention to the universal nature of geometric algebra. He wrote the influential Space-
time Algebra in 1966, and followed this with a fully developed formalism in Clifford
Algebra to Geometric Caleulus (D. Hestenes & G. Sobczyk, 1984). This was followed
by the (much easier!) New Foundations for Classical Mechanics in 1986.

This neatly avoids the minor historical point that Grassmann in his later work was
actually the first to write down a geometric (Clifford) product!

The situation remained largely unchanged until the 1960’s, when David Hestenes
(Fig. 1.8) started to recover the geometrical meaning underlying the Pauli and Dirac
algebras. His original motivation was to gain some insight into the nature of quantum
mechanics, but he soon realised that, properly applied, Clifford’s system was nothing
less than a universal language for mathematics, physics and engineering! It has taken
Hestenes many years to convince people of this fact, but interest is now gathering
pace. Part of the original reluctance to accept geometric algebra was the prevailing
view amongst physicists that there is something intrinsically ‘quantum mechanical’ in
the algebra. This is quite wrong, as witnessed by the fact that Clifford predated quan-
tum theory by 50 years, but it has taken a long time for this to be widely appreciated.

In Cambridge today, we routinely apply geometric algebra to topics as diverse as black
holes and cosmology, quantum tunnelling and quantum field theory, beam dynamics
and buckling, robotics and computer vision. Exactly the same algebraic system is used
throughout, making it possible for the same people to understand and contribute to
all of these different fields.
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1.8 Geometric Algebra in 2-d

The easiest way to understand the geometric product is by example, so consider a 2-d
space (a plane) spanned by 2 orthonormal vectors ey, e;. These basis vectors satisfy

e’ =e’ =1, e -e; = 0. (1.29)
We have now reverted to writing vectors in a bold face. We will use this convention
from now on when working specifically in 2-d or 3-d. When working in larger spaces, or
arbitrary dimensions, it is generally more convenient to drop this convention (otherwise
one can end up with almost every term in a long expression written in bold face).

The final entity present in the 2-d algebra is the bivector e; A e;. This is the highest
grade element in the algebra, which is often called the pseudoscalar. This name is more
convenient than the technically more correct directed volume element. The pseudoscalar
is by convention chosen to be right-handed, so that e; sweeps onto e, in a right-handed
sense (when viewed from above). We use the symbol [ for the pseudoscalar of a
geometric algebra so in 2-d we write

I = 61/\62. (130)

The full algebra is spanned by

1 {61, 62} € A €9
1 scalar 2 vectors 1 bivector.

(1.31)

We denote this algebra by G,. To study the properties of the bivector e; A ey we first
note that
ee, =eq-ey + 61/\62 = 61/\62. (132)
That is, for orthogonal vectors the geometric product is a pure bivector. Also note
that
€o€1 = 62/\61 = —61/\62 (133)
from the antisymmetry of the exterior product. Another way of saying this is that

orthogonal vectors anticommute.

We can now form products when eje; = I multiplies vectors from the left and the
right. First from the left,

[61 = (—6261)61 = —€2€1€1 = —€9
[62 = (6162)62 = €1€9€9 = €.

(1.34)

We see that left multiplication by the bivector rotates vectors 90° clockwise (i.e. in a
negative sense). Similarly, acting from the right

61(6162) = €9 62(6162) = —e€;. (135)
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So right multiplication by [ rotates 90° anticlockwise — a positive sense.

The final product in the algebra to consider is the square of the bivector e; Aes,
[2 = (61 /\62)2 = €1€9€1€9 = —E€1€1€2€9 = —1. (136)

From purely geometric considerations, we have discovered a quantity which squares to
—1. This fits with the fact that 2 successive left (or right) multiplications of a vector
by eje; rotates the vector through 180°, which is equivalent to multiplying by —1.

1.8.1 Multiplying Multivectors

Suppose that we have two completely arbitrary elements of the Gy algebra, A and B.
We can decompose these in terms of our {e;, ey} frame as follows:

A = ap+ arer + azey + aze Ney (1.37)
B = by+biey + bies + bsei Nes. '
The product of these two elements can be written
AB = po + pie1 + p2€2 + pser Aea. (1.38)
We find that
po = aobo + a1by + azby — asbs
p1 = aoby + aibo + asby — azbs (1.39)
p2 = aobs + azby + a1bs — asby '
ps = aobs + asby + a1by — asb;.

This multiplication law is easy to represent as part of a computer language (we often
use Maple). The basis vectors can also be represented with matrices, though these can
hide the geometry of the algebra. If we introduce the symbol {(AB) to denote the scalar
term in the product, we see that

po = (AB) = (BA). (1.40)
In general, however, AB # BA.

1.8.2 Complex Numbers and G,

It is clear that there is a close relationship between GA in 2-d, and the algebra of
complex numbers. The unit bivector squares to —1 and generates rotations through
90°. The combination of a scalar and a bivector, which is formed naturally via the
geometric product, can therefore be viewed as a complex number. We can write

z=x+yee; =z + ly. (1.41)
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Figure 1.9: A Rotation in the Complex Plane. The overall effect is to replace 6 by
0 =0+¢

Complex numbers serve a dual purpose in 2-d. They generate rotations and dilations
through their polar decomposition rexp(i), and they also represent vectors as points
on the Argand diagram (Fig. 1.2). But in G5 our vectors are grade-1 objects,

r = ze; + ye,. (1.42)

Is there a natural map between this and the complex number 2?7 The answer is simple
— pre-multiply by e,
ex =xv+yee,=x+Ily=-=z. (1.43)

That is all there is to it! The role of the preferred vector e, is clear — it is the real
axis. Using this product vectors can be interchanged with complex numbers in 2-d in
a natural manner.

1.8.3 Rotations

Since we know how to rotate complex numbers, we can use this to find a formula for
rotating vectors in 2-d. We know that a positive rotation through an angle ¢ for a
complex number z is achieved by

2 elfz, (1.44)

where we continue to use [ for the imaginary (see Fig. 1.9). The exponential of a

multivector is defined by power series in the normal way. We can now apply this to

the vector transformation @ +— @’ as follows
r=ez—x =¢e

w/:61 GI¢Z: e_I¢e1ZZ e—I¢w‘ (145)
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We therefore arrive at the formulae
g =e 0z =gel?. (1.46)

As expected, multiplication from the right by I generates a positive rotation in the [
plane. Note the importance of the fact that I anticommutes with vectors. We do not
get behaviour like this with complex numbers alone.

The GA treatment shows us how complex numbers are able to play two roles, as
rotations/dilations, and as position vectors. GA separates these roles, which is crucial
to understanding how to generalise complex algebra to higher dimensions. In particular,
these considerations generalise to a new and powerful way to handle arbitrary rotations.



Chapter 2

Geometric Algebra of 3-d Space

The geometric algebra (GA) of 3-d space is a remarkably powerful tool for solving prob-
lems in geometry and classical mechanics. It describes vectors, planes and volumes in a
single algebra, which contains all of the familiar vector operations for 3-d space. These
include the vector cross product, which is revealed as a disguised form of bivector. The
algebra provides a very clear and compact method for encoding rotations, which is con-
siderably more powerful than working with matrices. This reveals the true significance
of Hamilton’s quaternions, and resolves many of the historical difficulties encountered
with their use.

2.1 Geometric Algebra in 3-d

In Chapter 1 we constructed the geometric algebra of a 2-d plane. We now add a third
vector e3 to our 2-d set {e;, ey }. All three vectors are assumed to be orthonormal, so
they all anticommute and square to +1. From these 3 basis vectors we can generate 3
independent bivectors:

ee;, eses, and ese;. (2.1)

Each of these encodes a distinct plane, and there are 3 of them to match the 3 inde-
pendent planes in 3-d space.

As well as the 3 bivectors our expanded algebra gives us one new product to consider.
This is the product of 3 orthogonal vectors, resulting in

(6162)63 = €1€5€3. (22)

This corresponds to sweeping the bivector e;e, along the vector es. The result is a
3-dimensional volume element and is called a trivector. This is said to have grade-3,

17
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€3

€ e

Figure 2.1: Handedness. The two frames shown are, by convention, assigned a right-
handed orientation. Both e;e; and ejeses give rise to right-handed pseudoscalars for
their respective algebras.

where the word ‘grade’ refers to the number of independent vectors forming the object.
So vectors are grade-1, bivectors are grade-2, and so on. The term ‘grade’ is preferred
to ‘dimension’ as the latter is reserved for the size of a linear space.

In 3-d the maximum number of independent vectors is 3, so the trivector is the highest
grade object, or multivector, in the algebra. This trivector is unique up to scale (i.e.
volume) and handedness (see below). As in the 2-d case the unit highest-grade multi-
vector is called the pseudoscalar, or directed volume element. The latter name is more
accurate, but the former is seen more often. (Though be careful with this usage —
pseudoscalar can mean different things in different contexts). To simplify, we introduce
the symbol I,

I = eeses. (2.3)

Our 3-d algebra is therefore spanned by

1 {e:} {e;ne;} [ =eeses (2.4)
1 scalar 3 vectors 3 bivectors 1 trivector ’
These define a linear space of dimension 8 = 23, We call this algebra G3. Notice that
the dimensions of each subspace are given by the binomial coefficients.

As in 2-d, the pseudoscalar is, by convention, chosen to be right-handed. This is
equivalent to saying that the generating frame {e, e, es} is right-handed. If a left-
handed set of orthonormal vectors is multiplied together the result is —I. There is no
intrinsic definition of handedness — it is a convention adopted to make our life easier
for 2-d and 3-d. In 2-d the set {e;, ey} are right-handed if, viewed from above, e;
rotates onto ey in a right-handed sense. Note that this definition involves a notion
of above and below, so is not intrinsic to the surface. In 3-d the usual right-handed
rule is adopted. Align the thumb along the es direction. Then the grip of your right
hand specifies the direction in which ey rotates onto ey (Fig. 2.1). The handedness of
a frame changes sign if the positions of any two vectors are swapped.
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2.2 Products in G

Any two vectors in the algebra, a and b say, can be multiplied with the geometric
product, and we still have

ab=a-b+ aNlbd. (2.5)

Now the bivector aAb belongs to a 3-d space, spanned by the {e;Ae;}. If we expand

out in a basis,
3

3
a = Z a;€e;, b= Z biei, (26)
1=1

=1

we find that the components of the outer product are given by
aAb = (a263 — Clgbg)ez/\eg + (Clgbl — albg)eg/\el + (a162 — agbl)el/\eg. (27)

The components are the same as those of the cross product, but the result is a bivector
rather than a vector. To understand the relationship between these we first need to
establish the properties of some of the new products provided by our 3-d algebra.

2.2.1 Vectors and Bivectors

The three basis bivectors share the properties of the 2-d bivector studied in Chapter 1.
In particular.

(e1€2)* = (eqe3)” = (eze1)* = —1 (2.8)

and each bivector generates 90° rotations in its own plane. So, for example, we recall
that
61(61/\62) = 61(6162) = €9, (29)

which returns a vector. The geometric product for vectors extends to all objects in the
algebra, so we can form expressions such as aB, where B is a general bivector. But
we have now seen that ej(e;Aes) is a trivector, so the result of the product aB can
clearly contain both vector and trivector terms. To help understand the properties of
the product aB we first decompose a into terms in and out of the plane,

a=a|+a, (2.10)
(see Fig. 2.2). We can now write aB = (a) + a.)B. Suppose that we also write
B = ayAb (2.11)
where b is orthogonal to @) in the B plane (Fig. 2.2). We see that

a)B = a)(a \b) = aj(a)b) = (a))*b (2.12)
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a:aH—I—aL

%)

Figure 2.2: A wvector and a plane. The vector a is decomposed into a sum of two
vectors, one lying in the plane and the other perpendicular to it.

which is a vector in the b direction. On the other hand
a,B=a,(aNb)=a,ab (2.13)

is the geometric product of 3 orthogonal vectors, and so is a trivector. As expected,
the geometric product of the vector @ and the bivector B has resulted in two terms, a
vector and a trivector. We therefore write

aB=a-B+aAB (2.14)

where the dot is generalised to mean the lowest grade part of the result, while the
wedge means the highest grade part of the result.

2.2.2 Inner Product a-B

From Eq. (2.12) we see that the a-B = a)- B term projects onto the component of @ in
the plane, and then rotates this through 90° and dilates by the magnitude of B. We

also see that

a-B= a||2b = —(CLHb)aH = —B-a, (2.15)

so the dot product between a vector and a bivector is antisymmetric. We use this to
define the inner product of a vector and a bivector as

a-B=i(aB— Ba). (2.16)

To see that this always returns a vector, consider the inner product a-(bAc). Following
the rules for the geometric product we form:

a(bAc) =ia(bc — cb)
=(a-b)c — (a-c)b — L(bac — cab)
=2(a-b)c — 2(a-¢)b + 3(bc — cb)a
=2(a-b)c — 2(a-c)b+ (bAc)a, (2.17)

o O
+ +
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where we have made repeated use of the rearrangement
ba = 2a-b— ab. (2.18)
It follows immediately that
a-(bAc) = i(a(bArc)— (bAc)a) = (a-b)c — (a-c)b, (2.19)

which is indeed a pure vector. This is one of the most useful results in geometric
algebra and is worth memorising.

2.2.3 Outer Product aAB

From Eq. (2.13), the a A B term projects onto the component perpendicular to the
plane, and returns a trivector. This term is symmetric

aNB =a,ab=aba, = BAa. (2.20)
We therefore define the outer product of a vector and a bivector as
a\B = i(aB + Ba). (2.21)

Various arguments can be used to show that this is a pure trivector (see later). We now
have a definition of the outer product of three vectors, aA(bAe). This is the grade-3
part of the geometric product. We denote the operation of projecting onto the terms
of a given grade with the (), symbol, where r is the required grade. Using this we can
write
aN(bAc) = (a(bAe))s = (a(bec — b-¢))s. (2.22)
But in the final term a(b-¢) is a vector (grade-1) so does not contribute. It follows
that
aN(bAc) = (a(bc))s = (abc)s, (2.23)

where we have used the fact that the geometric product is associative to remove the
brackets. It follows from this simple derivation that the outer product is also associa-
tive,

(aAb)Ac = aN(bAe) = anbAc. (2.24)

This is true in general.

The trivector aAbAc can be pictured as the parallelepiped formed by sweeping aAb
along ¢ (see Fig. 2.3). The same result is obtained by sweeping b A ¢ along a, which is
the geometric way of picturing the associativity of the outer product. The other main
property of the outer product is that it is antisymmetric on every pair of vectors,

aANbAe = —bhaNc =cAhahb, elc. (2.25)

This expresses the geometric result that swapping any two vectors reverses the orien-
tation (handedness) of the product.



22 Physical Applications of Geometric Algebra

Figure 2.3: The Trivector. The result of sweeping aAb along c is a directed volume,
or trivector. The same trivector is obtained by sweeping bAc along a.

2.2.4 The Bivector Algebra

Our three independent bivectors also give us a further new product to consider. When
multiplying two bivectors we find, for example, that

(61/\62)(62/\63) — €1€ze2e3 — € €3, (226)
resulting in a third bivector. We also find that
(62/\63)(61/\62) — €3€2€2€] — €3€; — —€1€3, (227)

so the product is antisymmetric. The symmetric contribution vanishes because the two
planes are perpendicular. If we introduce the following labelling for the basis bivectors:

Bl = €3€3, B2 = €3€q, B3 = €1€9 (228)
we find that the commutator satisfies
BZB7 — B7BZ == —262"7‘kBk. (229)

This algebra is closely linked to 3-d rotations, and will be familiar from the quantum
theory of angular momentum.

It is useful to introduce a symbol for one-half the commutator of 2 bivectors. We call
this the commutator product and denote it with a cross, so

Ax B =YAB - BA). (2.30)

The commutator product of two bivectors always results in a third bivector (or zero).
We will learn more about this later.

The basis bivectors all square to —1, and all anticommute. These are the properties of
the generators of the quaternion algebra (see Section 1.4). This observation helps to



3-d Geometric Algebra 23

sort out some of the problems encountered with the quaternions. Hamilton attempted
to identify pure quaternions (null scalar part) with vectors, but we now see that they
are actually bivectors. This has an important consequence when we look at their
behaviour under reflections. Hamilton also imposed the condition 27k = —1 on his
unit quaternions, whereas we have

BleBg = €3€3€3€1€1€9 = —|—1 (231)
To set up a direct map we must flip a sign somewhere, for example in the y component:
'L.HBl, jH—BQ, kHBg (232)

This shows us that the quaternions were left-handed, even though the ¢, 7,k were
interpreted as a right-handed set of vectors. Not surprisingly, this was a source of
some confusion!

2.2.5 Products Involving the Pseudoscalar

The pseudoscalar [ = ejezes is the unique right-handed unit trivector in the algebra.
This gives us a number of new products to consider. We start by forming the product
of I with the vector e;.

[61 = €1€9€3E1] = —E€1€2€1€3 = €3€3. (233)

The result is a bivector — the plane perpendicular to the original vector (see Fig. 2.4).
The product of a grade-1 vector with the grade-3 pseudoscalar is therefore a grade-2
bivector. Reversing the order we find that

61[ = €1€1€2€E3 = €3€3. (234)

The result is therefore independent of order — the pseudoscalar commutes with all
vectors in 3-d,

la=al, foralla. (2.35)

It follows that I commutes with all elements in the algebra. This is always the case
for the pseudoscalar in spaces of odd dimension. In even dimensions, the pseudoscalar
anticommutes with all vectors, as we have already seen in 2-d. We can now express
each of our basis bivectors as the product of the pseudoscalar and a dual vector,

€1€y = [63, €9€3 = [61, €3] = [62. (236)
This operation of multiplying by the pseudoscalar is called a duality transformation.
We next form the square of the pseudoscalar

[2 = €1€9€3E1€2€E3 — €1€2€e1€9 = —1. (237)
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€1

Figure 2.4: The product of a vector and a trivector. The diagram shows the result of
the pI’OdUCt 61[ = 61(616263) = €2€3

So the pseudoscalar commutes with all elements and squares to —1. It is therefore a
further candidate for a unit imaginary. In some physical applications this is the correct
one to use, whereas for others it is one of the bivectors. These different possibilities
provide us with a very rich geometric language.

Finally, we consider the product of a bivector and the pseudoscalar:
[(61/\62) = [61626363 = [[63 = —eE€s. (238)

So the result of the product of I with the bivector formed from e; and e, is —e3, that
is, minus the vector perpendicular to the e; Aey plane. This affords a definition of the
vector cross product in 3-d as

axb=—I(and). (2.39)

The bold x symbol should not be confused with the x symbol for the commutator
product. The latter is extremely useful, whereas the vector cross product is largely
redundant now that we have the outer product available. Equation (2.39) shows how
the cross product is a bivector in disguise, the bivector being mapped to a vector by
a duality operation. It is also now clear why the product only exists in 3-d — this is
the only space for which the dual of a bivector is a vector. We will have little further
use for the cross product and will rarely employ it from now on. This means we can
also do away with the awkward distinction between axial and polar vectors. Instead
we just talk of vectors and bivectors.

The duality operation in 3-d provides an alternative way to understand the geometric
product aB of a vector and a bivector. We write B = Ib in terms of its dual vector b,
so that we now have

aB = 1lab=1(a-b+ anb). (2.40)

This demonstrates that the symmetric part of the product generates the trivector

aAB = I(a-b) = 1(aB + Ba), (2.41)
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whereas the antisymmetric part returns a vector
a-B = 1(anb) = i(aB — Ba). (2.42)

This justifies the definition of the inner and outer products between a vector and
bivector. As with pairs of vectors, these combine to return the geometric product,

aB=a-B+aAB. (2.43)

2.3 Further Definitions

An important operation in GA is that of reversing the order of vectors in any product.
This is denoted with a tilde, A. Scalars and vectors are invariant under reversion, but
bivectors change sign,

(e1e2)™ = eze; = —eje;. (2.44)

Similarly, we see that
[ = eseqre; = ejesey = —ejeqe5 = —1. (2.45)
A general multivector in 3-d can be written
M=a+a+ B+j3I. (2.46)

From the above we see that

M=a+a—B—3l. (2.47)

It is also useful to adopt the operator ordering convention that, in the absence of
brackets, inner and outer products are performed before geometric products. This cleans
up expressions by enabling us to remove unnecessary brackets. For example, on the
right-hand side of Eq. (2.39) we can now write

axb = —1aANb. (2.48)

We have already introduced the (), notation for projecting onto the terms of grade-r.
For the operation of projecting onto the scalar component we usually drop the subscript
0 and write

(AB) = (AB)o (2.49)

for the scalar part of the product of two arbitrary multivectors. The scalar product is
always symmetric

(AB) = (BA). (2.50)
It follows that
(A---BC)=(CA---B). (2.51)

This cyclic reordering property is very useful in practice.
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a=a;+a a’
a' =a; —q

a|

Hyperplane

Figure 2.5: A reflection in the plane perpendicular to m.

2.4 Reflections

Suppose that we reflect the vector @ in the (hyper)plane orthogonal to some unit

vector m (m? = 1). The component of a parallel to m changes sign, whereas the

perpendicular component is unchanged. The parallel component is the projection onto
m:
a|=a-mm. (2.52)

(NB operator ordering convention in force here.) The perpendicular component is the
remainder
a, =a—amm=(am—am)m=amm. (2.53)

This shows how the wedge product projects onto the components perpendicular to a
vector. The result of the reflection is therefore

a’:aL—aH =—amm-+amm

=—(m-a+mAa)m = —mam. (2.54)

This remarkably compact formula only arises in geometric algebra. We can start to
see now that geometric products arise naturally when operating on vectors.

It is simple to check that our formula has the required properties. For any vector Am
in the m direction we have

—m(Am)m = —Ammm = —\m (2.55)
and so Am is reflected. Similarly, for any vector n perpendicular to m we have

—m(n)m=-—-mnm=nmm=mn (2.56)
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and so m is unaffected. We can also give a simple proof that inner products are
unchanged by reflections,

a' b = (—mam)-(—mbm) = (mammbm)
= (mabm) = (mmab) = a-b. (2.57)

We next construct the transformation law for the bivector @ A b under reflection of

both a and b. We obtain

a’'\b' = (—mam)A(—mbm) = I(mammbm — mbmmam)
im(ab —ba)m = marbm. (2.58)

We recover essentially the same law, but with a crucial sign difference. Bivectors do not
transform as vectors under reflections. This is the reason for the confusing distinction
between polar and axial vectors in 3-d. Axial vectors invariably arise as the result
of the cross product. They are really bivectors and should be treated as such. This
also explains why 19th century mathematicians were confused by the transformation
properties of the quaternions. They were expected to transform as vectors under
reflections, but actually transform as bivectors (i.e. with the opposite sign).

2.5 Rotations

In Section 1.8.3 we saw that in 2-d a vector can be rotated through 8 in the e;e, plane
by
a — a' = exp(—ejezl)a = aexp(eiezf). (2.59)

We now want to find a version of this formula appropriate for 3-d, a problem with
which Hamilton struggled for many years. The key to finding the correct formula is to
use that result that a rotation in the plane generated by two unit vectors m and n is
achieved by successive reflections in the (hyper)planes perpendicular to m and m. This
is illustrated in Fig. 2.6. It is clear that any component of a outside the m An plane
is untouched. It is also a simple exercise in trigonometry to confirm that the angle
between the initial vector @ and the final vector a” is twice the angle between m and
n. (This is left as an exercise.) The result of the successive reflections is therefore to
rotate through 26 in the mAn plane, where m-n = cos(9).

So how does this look in GA?
a = —mam (2.60)

a”" = —na'n = —n(—mam)n = nmamn (2.61)

This is beginning to look very simple! We define the rotor R by
R =nm. (2.62)
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"

mAn

Figure 2.6: A Rotation from 2 Reflections. a’ is the result of reflecting a@ in the plane
perpendicular to m. a” is the result of reflecting @’ in the plane perpendicular to n.

Note the geometric product here! We can now write a rotation as
a — RaR (2.63)

Incredibly, this formula works for any grade of multivector, in any dimension, of any
signature! To make contact with the 2-d result we first expand R as

R=nm=n-m+nAm = cos(f) + n\m. (2.64)
So what is the magnitude of the bivector nAm?

(nAm)-(nAm) = (nAmnAm)
= (nmn/Am)
=n-m-(nAm)]
=mn-(mcos(f) — n)

= cos*(0) — 1 = —sin*(0). (2.65)

We therefore define a unit bivector in the mAmn plane by

A

B=mAn/sin(d), B?=-1. (2.66)

This choice of orientation (mAmn rather than nAm) ensures that the bivector has the
same orientation as the rotation, as can be seen in Fig. 2.6.
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In terms of the bivector B we now have
R = cos(0) — Bsin(0). (2.67)

Look familiar? This is nothing else than the polar decomposition of a complex number,
with the unit imaginary replaced by the unit bivector B. We can therefore write

A~

R = exp(—B9). (2.68)

The exponential here is defined in terms of its power series in the normal way. It is
possible to show that this series is absolutely convergent for any multivector argument.
(Exponentiating a multivector is essentially the same as exponentiating a matrix).

Now recall that our formula was for a rotation through 26. If we want to rotate through
0, the appropriate rotor is

R = exp{—B0/2} (2.69)

which gives us the final formula
ars B2 g B2 (2.70)

This describes a rotation through # in the B plane, with orientation specified by B.
The GA description forces us to think of rotations taking place in a plane as opposed
to about an axis. The latter is an entirely 3-d concept, whereas the concept of a plane
is quite general.

Rotors are one of the fundamental concepts in geometric algebra, and we will return to
their properties many times throughout this course. Since the rotor R is a geometric
product of two unit vectors, we see immediately that

RR =nm(nm)” =nmmn =1= RR. (2.71)

This provides a quick proof that our formula has the correct property of preserving
lengths and angles,

a'-b' = (RaR)-(RbR) = (RaRRbR) = (RabR) = a-b. (2.72)

Now suppose that the two vectors forming the bivector B = aAb are both rotated.
What is the expression for the resulting bivector? To find this we form

B'=a'Ab = (a'b —bd') = L(RaRRbR — RbRRaR)
= L(Rabk — RbaR) = L R(ab — ba)R = RaAbR = RBR. (2.73)
Bivectors are rotated using precisely the same formula as vectors! The same turns out

to be true for all geometric objects represented by multivectors. This is one of the
most attractive features of geometric algebra.
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Returning to the earlier 2-d result we see that we can write

a— a' = exp(—ejexf)a = aexp(ejezld)
= exp(—ejexf/2)aexp(eiez8/2), (2.74)

which recovers the double-sided, half-angle formula. This has a surprising consequence.
We are used to thinking of the unit imaginary as a generator for 90° rotations, which
is the result of a single-sided application. Applied double-sidedly, however, the unit
imaginary generates 180° rotations, by just changing sign. In 2-d we have a choice of
how to work, but in higher dimensions it is only the double-sided formula that works.
If we try to rotate e in the eje, plane with a single-sided formula the result is

_61629 63 = [COS(G) — Sin(0)6162]63

= cos(f)es — sin(0)1, (2.75)

[§

which is wrong. In 3-d we therefore have to interpret the basis unit bivectors as gen-
erators of 180° rotations, in which case their algebraic relations are sensible. Hamilton
and his followers wanted to maintain a single-sided transformation law and interpret
the quaternions as generators of 90° rotations. This was a major mistake which held
back the subject for many years.



Chapter 3

Classical Mechanics

We are now ready to see how geometric algebra (GA) is applied in practical physical
problems. In this Chapter we concentrate on classical mechanics, looking at central
force problems and rigid body mechanics. The purpose here is to highlight the areas
where GA offers something new, either in understanding or in solution strategies. This
is done here in a setting which allows you to see how GA techniques are applied to
familiar problems. Later in this course we will move onto less familiar territory, and
look at areas of quantum physics, relativity and gravitation.

3.1 Force and Angular Momentum

In classical mechanics a point particle follows a trajectory (), where @ is the position
vector relative to some origin, and the time ¢ is taken as some absolute ‘Newtonian’
standard on which all observers agree. The particle has velocity v = & where the
overdot denotes differentiation with respect to time t. The momentum p is given by
mwv, and Newton’s second law states that p = f, where the vector f is the force acting
on the particle. We assume here that the mass m is constant, so we recover f = ma,
where a is the acceleration a = v.

These definitions should be (extremely) familiar. Our first departure from traditional
methods comes with the treatment of angular momentum. This is usually defined in

terms of the cross product,
l =xxp. (3.1)

But it is clear that the concept of angular momentum should encode the rate at which
area is swept out by a particle as it moves relative to some origin (see Figure 3.1).
Areas are encoded by bivectors, as we saw in Chapter 2. We also saw there that the
cross product is really a disguised form of bivector, mapped back to a vector by a

31
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Figure 3.1: Angular momentum. The particle sweeps out the plane L. = & Ap. The
angular momentum should be directly related to the area swept out (ec.f. Kepler’s
second law), so is naturally encoded as a bivector.

duality operation. We will therefore dispense with the traditional definition of angular
momentum as an axial vector, and replace it with a bivector L. defined by
L =aAp. (3.2)

The steps involved in computing L are essentially the same as taken to compute I, but
the freedom now to make use of the geometric product can speed up many derivations.

If we differentiate I. we obtain
L=vA(mv)+xA(p)=axAF. (3.3)
We define the torque N about the origin as the bivector
N=aAf, (3.4)
so that the torque and angular momentum are related by
L=N. (3.5)

The idea that the torque is represented by a bivector is also natural, as torques act
over a plane. The plane in question is defined by the vector f and the chosen origin,
so both L and N depend on the origin. Recall also that bivectors are additive, much
like vectors, so the result of applying two torques is found by adding the respective
bivectors.

The angular momentum bivector can be written in an alternative way by first defining
r = || and writing

r=r, (3.6)

where 2% = 1. We therefore have

x=—(re)=rz+ ri, (3.7)
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so that _ _ _
L=maA(r& +r2) =mrgA(r& +re) = mr’ e 2. (3.8)

. ~ 2
But since £2° = 1 we must have

d

(&%) = 2&-2. (3.9)
We can therefore eliminate the outer product in (3.8) and write
L =mriee = —mriai, (3.10)

which is useful in a number of problems.

3.2 Two-Body Central Force Interactions

Suppose that two particles have positions &; and @,, and masses m; and m,. Newton’s
second law for the central force problem takes the form

mlzle = f, mgiig == —f, (311)

where f is the inter-particle force. This system is reduced to an equivalent single-
body problem by introducing the centre of mass vector X and the relative separation
vector @,

X = M(mlwl + maws), T =o — &y, (3.12)

where M is the total mass my + mq. The force equations now become

px = f, and X = 0, (3.13)
where i is the reduced mass mymq/M.
The angular momentum about the centre of mass X is given by

L= ml(X —;131)/\(X —ii?l) —|-m2(X —5132)/\(X _d32)

= uxrhe. (3.14)
For central forces f is directed along @, i.e. f = f@. In this case it is simple to see that
L is conserved, so the motion of the particles is confined to the L plane. The trajectory

of & must also sweep out area at a constant rate, since this is how L is defined. (For
planetary motion this is Kepler’s second law.) The magnitude of L is defined by

? = |LI? = (LL) = p*r*{&eaa) = p*ra? (3.15)
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so that [ = /,Lr2|§3|. One of the factors of L is reversed to ensure that the scalar part of
the product is positive.

The force is conservative and can be written as (minus) the gradient of a potential
V(r):
dv

= T = —— 1
f=re f e (3.16)
The total energy is given by
22 2
ur )
E=— 1
5 + e + V(r) (3.17)

and, since the force is conservative, I is constant.

3.2.1 Inverse Square Forces

For an inverse square force we have f = —k/r? (k positive for attractive forces). The
basic equation to solve is
. kK
pE = -5k = — . (3.18)

This is a second-order vector differential equation, so we expect there to be two constant
vectors in the solution — one for the initial position and one for the velocity. One of
the conserved quantities is L. To find the other we form

k . .
Lo = ——2sz3 = —kxxx = k. (3.19)
ur
It follows that J
E(Lv — k&) = 0. (3.20)

The motion is therefore described by the simple equation
Lv =k(x +e), (3.21)

where the eccentricity vector e is a second vector constant of motion. This vector is
also known in various contexts as the Laplace vector and as the Runge-Lenz vector.
From its definition we can see that e must lie in the L plane.

To find a direct equation for the trajectory we first write
1 .
Lve = Llv-e+vAe)=—LL+v-al=Fk(r+ex). (3.22)
[
The scalar part of this equation gives
l2
ku(l+e-@)

T =

(3.23)
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This equation specifies a conic surface in three dimensions with symmetry axis e. The
surface is formed by rotating a two-dimensional conic about this axis. Since the motion
takes place entirely within the L plane the motion is described by a conic.

3.2.2 Gravitational Perturbations

The eccentricity vector e turns out to be extremely useful in celestial perturbation
theory. This is a complex and difficult subject which has driven many important
mathematical developments. Here we will briefly outline one calculation, which is the
precession induced by general relativistic corrections to the inverse square law. General
relativity modifies the force law so that it reads

2
&= —G{y (1 ;2 ) &. (3.24)

7 M202r2

(A subtlety is that the derivatives are now with respect to proper time, but this does
not effect our reasoning.) The force is still central, so the angular momentum L is still
conserved. However, the eccentricity vector is no longer constant, but instead satisfies

3012

Tr.
M202T2

e =

(3.25)

For bound orbits this gives rise to a precession of the major axis (see Fig. 3.2). The
quantity of most interest is the amount e changes in one orbit. To get an approximate
result for this we assume that the orbit is precisely elliptical and write

T l2 X l2 T A~
Ae :/ = L/ =, (3.26)
0 0 r

M202r2 /,LSCQ

where T' is the orbital period. Orbital averages such as these can be found tabulated
in a number of books, and an exercise goes over the basic steps. The final result is that

6rGM ~
Ae=————e-L 3.27
a(l —e?)c? ’ ( )
where L = L/, a is the semi-major axis and e = |e| is the eccentricity. This gives a
precession of e with the orientation of L, which corresponds to an advance (Fig. 3.2).
For Mercury this gives rise to an advance in the perihelion of 43 arc seconds per century,
which was famously explained by general relativity.

3.3 Rotating Frames and Angular Velocity

As a preliminary to an investigation of rigid body dynamics, we now study the use
of rotors in describing rotating systems. Suppose that the frame of vectors {f,} is
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Figure 3.2: Orbital precession. The plot shows a modified orbit as predicted by general
relativity. The ellipse precesses round in the same direction as the orbital motion. The
parameters have been chosen to exaggerate the precession effect.

rotating in space. These can be related to a fixed orthonormal frame {e,} by the
time-dependent rotor R(t):

F.(1) = R(t)epR(t). (3.28)
The angular velocity vector w is traditionally defined by the formula

We can write this as the inner product between a vector and a bivector as follows:

wxfp=—3l(wf, - fro) = 3(frlw —lwf,) = f-(Iw). (3.30)

Since angular momentum is now viewed as a bivector, we must expect the same to be
true for angular velocity. We therefore define the angular velocity bivector by

Q= lw. (3.31)

This choice ensures that the rotation has the orientation implied by €.

3.3.1 The Rotor Equation

To see how {2 is related to the rotor R we start by differentiating equation (3.28),
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From the normalisation equation RR = 1 we see that

d - c o 2
RR) = R+ RR, (3.33)

and since differentiation and reversion are interchangeable operations we have
RR =—RR = —(RR)~. (3.34)

The quantity RR is equal to minus its own reverse and has even grade, so must be a
pure bivector. The equation for f, now becomes

fk = le{fk - fkRE) = (QRE))fk (3.35)

Comparing with equation (3.30) and equation (3.31) we see that 22 R must equal minus
the angular velocity bivector €, so

2RR = —Q. (3.36)
The dynamics is therefore contained in the single rotor equation

k=-10R. (3.37)
The reversed form of this is also useful,

R =1RQ. (3.38)

Equations of this type are surprisingly ubiquitous in physics. In the more general
setting, rotors are viewed as elements of a Lie group, and the bivectors form their Lie
algebra.

The rotor equation can be expressed in terms of either the ‘space’ ) or ‘body’ Qp
angular velocities. The body angular velocity is the bivector € rotated back to the
fixed reference frame. The two are related by

Q = ROBR. (3.39)
In terms of these we have

R=-10R=—1R0s and R=10sR. (3.40)

3.3.2 Constant ()

For the case of constant ) equation (3.37) integrates immediately to give

R=eW2p, (3.41)
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€3=f3

Figure 3.3: Orientation of the angular velocity bivector. ) has the orientation of f1/\f1.
It must therefore have orientation +e;Ae; when w = wes.

which is the rotor for a constant frequency rotation in the positive sense in the ) plane.
The frame rotates according to

Fult) = e U2 Roey Ry /2 (3.42)

The constant term Ry describes the orientation of the frame at ¢ = 0, relative to the
{ey} frame.

As an example, consider the case of motion about the es axis (Figure 3.3). We have
O =wle; =we;e,, (3.43)
and for convenience we set Ry = 1. The motion is described by
fi.(t)= exp(—%elegwt>ek exp(%elezwt>, (3.44)
so that the f, axis rotates as
f1=eiexp(ereqwt) = cos(wt)ey + sin(wt)es. (3.45)

This defines a right-handed (anticlockwise) rotation in the eje, plane, as prescribed by
the orientation of €.

3.4 Rigid Body Dynamics

A rigid body can be viewed as a system of particles moving subject to the constraint
that all inter-particle distances are fixed. Such a system can be described by two vector
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Figure 3.4: Description of a rigid body. The vector @y(t) specifies the position of the
centre of mass, relative to the origin. The rotor R(t) defines the orientation of the body,
relative to a fixed copy imagined placed at the origin. @ is a vector in the reference
body, and y is the vector in space of the equivalent point on the moving body.

variables, one for position of the centre of mass, and one for the vector from the centre
of mass to the point in the body. The latter can be encoded in terms of a rotation
from a fixed ‘reference’ body onto the body in space (Figure 3.4). We let @y denote
the position of the centre of mass and y,(¢) denote the position (in space) of a point
in the body. These are related by

y(t) = RO, R(1) + zolt), (3.46)

where @; is a fixed constant vector in the reference copy of the body. In this manner
we have placed all of the rotational motion in the time-dependent rotor R(t).

The velocity of the point y = ReR + @ is
v(l) = ReR + ReR + 2
= —%RQBGIHE{ + %RwQfo’ + v
= Rz-Og R+ vy (3.47)

where vy is the velocity of the centre of mass. Note that we have suppressed unnecessary
brackets to write Ra-Qp R in place of R(x-Qp)R. We have also chosen to work in
terms of the ‘body’ angular velocity g, for reasons which will emerge shortly.

To simplify calculations we employ a continuum approximation and introduce a density
p = p(x). The position vector & is taken relative to the centre of mass, so we have

/d?’:z;p =M, and /d3:1; px = 0. (3.48)

The momentum of the rigid body is simply
/d3:1; pU = /d3:1; p(Re-Qp R+ vo) = Moy, (3.49)

so is specified entirely by the motion of the centre of mass.
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3.4.1 The Inertia Tensor

The next quantity we require is the angular momentum bivector L for the body about
its centre of mass. We therefore form

L= /dep(y — @p)Av

= /dep(Ra:fx’)/\(Rw-QB R+ vp)

- R(/d3x,owA(a;-QB)>1%. (3.50)

The integral inside the brackets refers only to the fixed copy and so defines a time-
independent function of Qg. This is the reason for working with Qp instead of the
space angular velocity . We define the inertia tensor Z(B) by

I(B) = / d’r pe ANz B). (3.51)

This is a linear function mapping bivectors to bivectors. This type of notation for linear
functions is the natural extension of the index-free approach followed throughout this
course. The inertia tensor has following two properties, holding for any bivectors A
and B:

Linearity: Z(AA+ pB) = I(A)+ pZ(B)

Symmetry: (AZ(B)) = (Z(A)B). (3.52)

Verifying these properties is left as an exercise.

The fact that the inertia tensor maps bivectors to bivectors, rather than vectors to
vectors, is a further break from tradition. Since both vectors and bivectors belong to
a three-dimensional linear space, there is no additional complexity introduced in this
new picture. To understand the effect of the inertia tensor, suppose that as input it
receives the bivector B. We imagine what would happen if the body were to rotate
about the centre of mass in the B plane. The point & would move with velocity ®-B.
and the momentum density at this point would be pax- B, as shown in Figure 3.5. The
angular momentum density bivector would therefore be & A(px - B), and integrating
this over the entire body returns the total angular momentum bivector for rotation in
the B plane. In general, the result of this process will not lie in the same plane as the
input bivector B. As the motion proceeds the angular velocity €2 is back-rotated to
the body system, and Qp = RQR is fed into the (fixed) inertia tensor. The result of
this, Z(€2p), is then rotated onto the space angular momentum L.
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Figure 3.5: The Inertia Tensor. The inertia tensor Z(B) is a linear function mapping
its bivector argument B onto a bivector. It returns the total angular momentum about
the centre of mass for rotation in the B plane.

3.4.2 Equations of Motion

The inertia tensor is constructed from the point of view of the fixed body. From
equation (3.50) we see that the angular momentum in space is obtained by rotating
the body angular momentum Z(g) onto the space configuration, that is

L =RI(Qp)R. (3.53)

The equations of motion are L= N, where N is the external torque. The inertia tensor
is time-independent since it only refers to the static ‘reference’ copy of the the rigid
body, so we find that
[ = RT(Q5)R + RT(08)R + RI(Q5)R
= RIZ() — $05T(p) + T(0p)02p] R
= R[Z(QB) — Qs xI(QB)]R. (3.54)
(Recall that the commutator of the bivectors Qp and Z(Qp) must result in a third

bivector.)

The equations are more commonly seen in component form. To recover these we
introduce a set of principal axes {e;}. These satisfy

I(leg) =ixle, no sum, (3.55)

where the iy are the 3 principal moments of inertia. The symmetry of Z(B) ensures
that it is always possible to find a set of principal axes. In terms of these we write

3 3
Q= wlf, Q=) wley, (3.56)
k=1 k=1
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and
3 3
L= iwwxlfy, N=)_ NiFf,. (3.57)
k=1 k=1

Expanding out in terms of components we recover the Euler equations of motion for a
rigid body (exercise)

1wy — w2w3(i2 - i3) =N
Z.QU'JQ — W3wl(i3 - Zl) = N2 (358)
Z.3(4'J3 — wlwg(il — ZQ) = Ng.
3.4.3 Torque-free motion
The torque-free equation L = 0 reduces to
I(Op) — QpxI(Qp) = 0. (3.59)

This is a first-order constant coefficient differential equation for the bivector 25. Closed
form solutions exist, but can be messy. Useful insights are obtained by considering the
conserved quantities in the problem. The first of these is the angular momentum L. A
second is provided by the rotational component of the kinetic energy, which is

T=1 /d3:z; p(Re-Qp k) =1 /d3:1; p(z-0p)2. (3.60)
If we now employ the rearrangement
(2-Qp)° = (- QpxQp) = —Qp- (xA(z-Qp)) (3.61)
we see that the rotational energy is
T =105 -I(0p) = 105-7(0p). (3.62)
It is not hard to show that this is also conserved.
We now introduce the components Ly = txwy, so that

L= Z Lil fy. (3.63)

k=1

The Ly, are the components of L in the rotating f, frame. So, even though L is constant,

the components are time-dependent. In terms of these components the magnitude of
L is
LL=1Li+L;+ L3 (3.64)
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€1

Figure 3.6: Angular momentum Orbits. The point described by the vector I simulta-
neously lies on the surface of a sphere and an ellipse. The figure shows possible paths
on the sphere for I in the case of i1 < 15 < 13, with the 3-axis vertical.

and the kinetic energy is
_ L L L
20y 24y 203

Both |L| and T are constants of motion, which imposes two constraints on the three

T (3.65)

components Lg. A useful way to visualise this is to think in terms of a vector I with
components Ly,

3
1= Lie,=—IRLR. (3.66)

k=1

This is the vector perpendicular to RLR — a rotating vector in the fixed reference body.
Conservation of |L| means that { is constrained to lie on a sphere, and conservation of
T restricts I to the surface of an ellipsoid. Possible paths for I for a given rigid body are
therefore defined by the intersections of a sphere with a family of ellipsoids (governed
by T). For the case of unequal principal moments these orbits are non-degenerate.
Examples of these orbits are shown in figure 3.6. This figure shows that orbits around
the axes with the smallest and largest principal moments are stable, whereas around
the middle axis the orbits are unstable. Any small change in the energy of the body
will tend to throw it into a very different orbit if the orbit of I takes it near e,.

3.4.4 Example — The Symmetric Top

If the body has a single symmetry axis, the solution for torque-free motion is quite
straightforward in the rotor framework. In this case the body has two equal moments
of inertia, 7; = 7, and the third principal moment 5 is assumed to be different. With
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this assignment es is the symmetry axis of the body. The action of the inertia tensor
on g is

Z(0p) = t1wieses + 11wre3eq + izwseey

= iIQB + (13 — il)W3[€3, (367)

and the final Euler equation in (3.58) tells us that that ws is a constant. Rotating both
sides of this equation with R now yields

T P N
O =ROpR=—L+ 2" Rlesk. (3.68)
11 1
Our rotor equation therefore becomes
. 1
(2

The right-hand side of this equation involves two constant bivectors, one multiplying
R to the left and the other to the right. We therefore define the two bivectors

) .

U==L, = Q=w—

(2 (2

les, (3.70)

so that the rotor equation becomes
R=—-10R - L1RO,. (3.71)
This equation integrates immediately to give
R(t) = exp(—%ﬂlt)]i’o exp(—%ﬂrt). (3.72)

This fully describes the motion of a symmetric top. It shows that there is an ‘internal’
rotation in the eje; plane (the symmetry plane of the body). This is responsible for
the precession of a symmetric top. The constant rotor Ry defines the attitude of the
rigid body at ¢t = 0 and can be set to 1. The resultant body is then rotated in the
plane of its angular momentum to obtain the final attitude in space.



Chapter 4

Quantum Mechanics

The first major application of a geometric algebra in physics was in the theory of
quantum spin. The Pauli matrix algebra forms a 2 x 2 representation of the geometric
algebra of 3-d space. (We usually refer to such a matrix algebra as a Clifford algebra.)
It is no surprise then that much of quantum theory finds a natural expression within
geometric algebra. To see this, however, one must reconsider the standard interpre-
tation of the quantum spin operators. Like much discussion of the interpretation of
quantum theory, the issues raised here are controversial. There is no question about
the validity of this new algebraic approach, however, and little doubt about its advan-
tages. Whether the algebraic simplifications obtained here are indicative of a deeper
structure embedded in quantum mechanics is an open question.

4.1 Non-Relativistic Quantum Spin

The Stern-Gerlach experiment was the first to demonstrate the quantum nature of the
magnetic moment. In these experiments, a beam of particles passes through a non-
uniform magnetic field B. Classically, one would expect the force on each particle to

be governed by the equation
f=uvB. (4.1)

where g is the magnetic moment. This would give rise to a continuous distribution
after passing through the field. Instead, what is observed is a number of evenly-spaced
discrete bands (Fig. 4.1). The magnetic moment is quantised in the same way as the
angular momentum.

When silver atoms are used to make up the beam there is a further surprise: only two
beams emerge on the far side. Silver atoms contain a single electron in their outermost
shell, so it looks as if electrons have an intrinsic angular momentum which can take only

45
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/

Spin up

Spin down

/

Figure 4.1: A Stern-Gerlach Frperiment. A particle beam is sent through a highly
non-uniform B-field. What emerges is a set of discrete, evenly spaced beams.

two values. This is known as its spin, though no classical picture should be inferred
from this name. The double-valued nature of the spin suggests that the electron’s
wavefunction should contain two terms, representing a superposition of the possible
spin states,

) =l 1) + 8l 1), (4.2)

where o and  are complex numbers. Such a state can be represented in matrix form

0= (5)- (43)

If we align the z-axis with the spin-up direction, then the operator returning the spin

5= (é _01> (4.4)

where A is to be determined. The spin is added to the orbital angular momentum
to give a conserved total angular momentum operator 3 = I + §. For this to make
sense the spin operators should have the same commutation relations as the angular

as the spinor

along the z-axis must be

momentum operators [;,
li = —ihepa;Ok, [l 1] = iheijily. (4.5)

An exercise shows how to find the remaining operators. The result is that the spin
operators are given by

S = Lhoy, (4.6)

where the &1 are the Pault matrices

. 0 1 . 0 —2 . 1 0
01 = (1 0) , O3 = (Z 0Z> , O3 = (0 _1> . (47)
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The Pauli matrices satisfy the commutation relations,
(64, 6j] = 2i€ijpO. (4.8)
They also have the property that two different matrices anticommudte,
G109 + 0901 =0, etc., (4.9)

and all of the matrices square to the identity matrix,

62 =63 =62=1. (4.10)
These are the defining relations for a set of orthonormal basis vectors in the geometric
algebra ¢3! The Pauli matrices are a matriz representation of the algebra. Any multi-
vector in G5 can be written as a 2 x 2 complex matrix. Scalars are replaced by multiples
of the identity matrix, and the pseudoscalar [ is replaced by ¢ times the identity. The
set of 2 x 2 complex matrices is a linear space of real dimension 8, the same as the di-
mension of Gz. Any multivector product can be computed by first constructing matrix
equivalents for the multivectors and multiplying the matrices. (Matrix multiplication
is associative, like the geometric product.) But, while matrix representations can be
useful, most manipulations in geometric algebra are more efficiently performed without

their introduction.

4.2 Spinors and Multivectors

Given that the Pauli matrices are a representation of Gs, can we give a more geometric
picture to the act of forming spinor observables? The answer is yes, but first we need
to represent the spinor (4.3) within the geometric algebra of space. To find a natural
way to do this we consider the observables of a spinor. These are the eigenvalues
of Hermitian operators and, for 2 state systems, the relevant operators are the Pauli
matrices. We therefore form the three observables

A

Sk

S = %hnk = <77/)

"y (4.11)

These are the components of a single vector in the quantum theory of spin. The factor
of h/2 is irrelevant and we focus attention on the components

ny = (Y|o1[h) = af” +a*f
ny = (Y[Galth) = 1(af” —a™B) (4.12)
na = (Y|63)h) = aa™ — 347
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The magnitude of the vector with components ny, is

n* = (af" + a”B) — (af” — a”B)* + (aa™ — B37)"
= (laf* + [81)* = ([)". (4.13)

So, provided the state is normalised to 1, the vector n must have unit length. We can
therefore introduce polar coordinates and write

ny = sin(0) cos(¢)
ny = sin(0) sin(¢)
nz = cos(f). (4.14)

Comparing with Eq. (4.13) we see that we must have
o = cos(0/2) e [ =sin(0/2) eid (4.15)

where § — v = ¢. It follows that the spinor can be written in terms of the polar
coordinates of the vector observable as

Cos e_i¢/2 ;
W) = <sm((00//22)) cit)2 ) SRR (4.16)

The overall phase factor can be ignored, and what remains is a description in terms of
half angles. This suggests a strong analogy with rotors. To investigate this analogy,
we recall that the polar coordinates can be viewed as part of an instruction to rotate
the 3-axis onto the chosen vector. To expose this we write the vector n as

n = sin(f)(cos(¢)o1 + sin(@)oz) + cos(f)os, (4.17)

where we use {o} as our orthonormal frame. These are the vector equivalents of the
Pauli matrix operators. We now write

n = sin(f) e~ 0los/2 5 (blos/2 cos(f)o3
— o %lo3/2 (COS(@)O’g + sin(0)0'1> ePlos/2
— e—¢[0’3/2 6—910'2/2 0_36910'2/2 eqf)[0'3/2

= RosR (4.18)

where

R = e 0l03/2 o~0lo2/2 (4.19)

This suggests that there should be a natural map between the normalised spinor (4.16)
and the rotor K. Both belong to vector spaces of real dimension 4 and both are
normalised. Expanding out the rotor R the following one-to-one map suggests itself:

|¢>: ( a0+ia3> o ¢:a0+ak[0'k- (4‘20)

—a? +ial
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This map will enable us to perform all operations involving spinors without leaving the
geometric algebra of space. This removes one of the conceptual gaps between classical
and quantum theories. On this scheme the spin-up and spin-down basis states | ) and
| }) become

[T <1 L) & —los. (4.21)

One can immediately see for these that the vectors of observables have components

(0,0,+£1), as required.

4.2.1 Pauli Operators

The representation of (4.20) can only be useful if the action of the quantum operators
{6} has a sensible analog. To see what this is consider, for example

A

01

20
) = ( @ ) & —a’+d'los — a’loy + d’lo. (4.22)

a® 4 ia®
It is not hard to show that the right-hand side is equal to
o(a’ +a'loy + d’loy + d’los)os = oo, (4.23)
The same is true for the remaining matrices and we can establish the map
o) & ooy (k=1,2,3). (4.24)

The o5 on the right-hand side ensures that the multivector remains in the even subal-
gebra. The choice of vector here reflects the choice of matrix representation, and does
not break rotational invariance.

Now that we have a translation for the action of the Pauli matrices, we can find the
equivalent of multiplying by the unit imaginary 7. To find this we note that

Ao a 0
010203 = (6 Z) 5 (425)

so multiplication of both components of |¢)) by ¢ can be achieved by multiplying by
the product of the three matrix operators. We therefore arrive at the translation

Z|77Z)> — 0'10'20'3¢(0'3)3 = ¢103 (426)

So on this scheme the unit imaginary of quantum theory is replaced by right multipli-
cation by the bivector Ios. This is very suggestive, though it should be borne in mind
that this conclusion is a feature of our chosen representation. The appearance of the
bivector Ios is to be expected, since the vector of observables was formed by rotating
the o3 vector. This vector is unchanged by rotations in the /o3 plane, which provides
a geometric picture of phase invariance.
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4.2.2 Pauli Observables

We next need to establish the quantum inner product for our multivector forms of
spinors. We first note that the Hermitian adjoint operation has &Z = 0y, and reverses
the order of all products. This is precisely the same as the reversion operation for

multivectors, and the two can be used interchangeably:
Mt =M. (4.27)

The reason why we did not use the dagger symbol for reversion from the outset is
that this is incompatible with current usage in relativistic quantum theory. There the
Hermitian adjoint is a frame-dependent operation, whereas reversion is independent of
frame.

The quantum inner product is

(010) = (67.03) (1) = vion -+ v36m, (1.29

where we ignore spatial integrals. For a wide range of problems the spatial and spin
components of the wave function can be separated. If this is not the case then the
quantum inner product should also contain an integral over all space. The result of
the real part (denoted by R) of the inner product is reproduced by

R(¢lg) & ($0), (4.29)

so that, for example,
(B|e) & () = ((a° = @' Io;)(a® + a*lay)) = (a°)7 + a"d". (4.30)

Since
(¥]g) = R{plo) — iR(plig), (4.31)

the full inner product can be written

(¥]6) ¢ (Vo) — (Vplos)los. (4.32)

The right hand side projects out the 1 and lo3 components from the geometric product
¢, The result of this projection on a multivector A is written (A),. For even grade
multivectors in 3-d this projection has the simple form

(A)y = 2(A+ o3A03). (4.33)

If the result of an inner product is used to multiply a second multivector, one has
to remember to keep the terms in [o3 to the right of the multivector. This might
appear a slightly clumsy procedure at first, but it is easy to establish conventions so
that manipulations are just as efficient as in the standard treatment. Furthermore, the
fact that all manipulations are now performed within the geometric algebra framework
offers a number of new ways to simplify the analysis of many problems.
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4.2.3 The Spin Vector

As a check on the consistency of our scheme, we return to the expectation value of the
spin in the k-direction, (¥)|$g|¢)). For this we require

(D64 < (pappas) — (Yo I) o (4.34)

Since Izt reverses to give minus itself, it has zero scalar part and the final term on
the right-hand side vanishes. This is to be expected, as the &, are Hermitian operators.
For the remaining term we note that in 3-d o3t is both odd grade and reverses to
itself, so is a pure vector. We therefore define the spin vector

s = Lhporsi). (4.35)

)
The quantum expectation now reduces to
(Gl3) = Sh(oxbosd) = op-s. (4.36)

This new expression has a rather different interpretation to that usually encountered
in quantum theory. Rather than forming the expectation value of a quantum operator,
we are simply projecting out the kth component of the vector s.

A

Sk

The rotor form defined earlier is recovered by first defining the scalar
p = . (4.37)
The spinor ¢ then decomposes into
b= p2R, (4.38)

where R = p~!/%. The multivector R satisfies RR = 1, so is a rotor. In this approach,
Pauli spinors are simply unnormalised rotors! The spin-vector s can now be written as

s = LhpRo3R, (4.39)
which recovers the form of Eq. (4.18).

The double-sided construction of the expectation value of Eq. (4.34) contains an in-
struction to rotate the fixed o3 axis into the spin direction and dilate it, which is how
the multivector version was established. It might appear here that we are singling out
some preferred direction in space. But in fact all we are doing is borrowing a familiar
idea from rigid-body dynamics. The &3 on the right of ¢ represents a vector in a
‘reference’ frame. All physical vectors, like s, are obtained by rotating this frame onto
the physical value (see Fig. 4.2). There is nothing special about o3 — one can choose
any (constant) reference frame and use the appropriate rotation onto s, in the same
way that there is nothing special about the orientation of the reference configuration
of a rigid body. In rigid-body mechanics this freedom is usually employed to align
the reference configuration with the initial state of the body. In quantum theory the
convention is to work with the z-axis as the reference vector.



52 Physical Applications of Geometric Algebra
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Figure 4.2: The Spin Vector. The normalised spinor ¢ transforms the initial, reference
frame onto the frame {e;}. The vector e is the spin vector. A phase transformation
of ¢ generates a rotation in the e;e; plane. Such a transformation is unobservable, so
the e; and e, vectors are also unobservable.

4.2.4 Rotating Spinors

Suppose that the vector s is to be rotated to a new vector RosRo. The spinor ¢ must
transform according to

¥ = Roy. (4.40)
Now suppose that for Ry we use the rotor Ry,
Ry = exp(—B0/2), (4.41)
where B? = —1 is a constant bivector. The resulting spinor is
W = Rotp = e B2y, (4.42)

We now start to increase § from 0 through to 27, so that § = 27 corresponds to a 360°
rotation, ¢.e. the identity. But under this we see that ¢ transforms to

Y = e_BF;/) = (cosm — Bsin T = —. (4.43)

So spinors change sign under 360° rotations. If a spin vector is rotated through 360°,
the wavefunction does not come back to itself, but instead changes sign. This is the
distinguishing property of spin-1/2 fermions in quantum theory. Once one sees the
rotor derivation of this result, however, it is rather less mysterious. Indeed, there are
classical phenomena involving systems of linked rotations that show precisely the same
property. (Think of the 47 symmetry observed when rotating an arm holding a tray).
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4.3 Application — Magnetic Fields

Particles with non-zero spin also have a magnetic moment which is proportional to the
spin. This is expressed as the operator relation

[l = Y3k, (4.44)

where [i) is the magnetic moment operator, v is the gyromagnetic ratio and 3§ is the
spin operator. The gyromagnetic ratio is usually written in the form

y=g—L (4.45)

2m’

where m is the particle mass, ¢ is the charge and ¢ is the reduced gyromagnetic ratio.
The latter are determined experimentally to be

electron ¢, =2 (actually 2(1 4+ «/27 +...))
proton gy, = H.587
neutron ¢, = —3.826  (use proton charge)

The value for the neutron is negative because its spin and magnetic moment are anti-
parallel. All of the above are spin-1/2 particles for which we have §; = %h&k.

4.3.1 Particle in a Magnetic Field

Now suppose that the particle is placed in a magnetic field, and that all of the spatial
dynamics has been separated out. We introduce the Hamiltonian operator

]:] = —%’ythOA'k == —/:LkBk (446)
The spin state at time ¢ is then written as

(1)) = a(®)[ 1) + B 1), (4.47)

with o and (3 general complex coefficients. The dynamical equation for these coefficients
is given by the time-dependent Schrodinger equation
N d
Hl|y) = th. (4.48)
dt
This is conventionally hard to analyse, because one ends up with a pair of coupled
differential equations in v and (3.
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Now let us see what the Schrodinger equation looks like in our new setup. We first
write the equation in the form
d¢)

"y (4.49)

Now replacing |¢/) by the multivector ¥ we see that the left-hand side is simply ;/},
where the dot denotes the time derivative. The right-hand side involves multiplication
of the spinor [¢) by 6, which we replace by

i0p|) & opos(los) = logi. (4.50)

The Schrodinger equation (4.48) is therefore simply

b = yBylowb = 1y B, (4.51)
where B = Bjoy,. If we now decompose 1 into p'/2R we see that
Yib = 1p+ pRR = LpyIB. (4.52)

The right-hand side is a bivector, so p must be constant. This is to be expected, as
the evolution should be unitary. The dynamics reduces to

R=LyIBR. (4.53)

The quantum theory of a spin-1/2 particle in a magnetic field reduces to a simple
rotor equation! This is very natural, if one thinks about the behaviour of particles in
magnetic fields, and is the main justification for our approach.

Recovering a rotor equation explains the difficulty of the traditional analysis based on
a pair of coupled equations for the components of |¢0). This approach fails to capture
the fact that there is a rotor underlying the dynamics, and so carries along redundant
degrees of freedom in the normalisation. Also, the separation of a rotor into a pair of
components is far from natural. Two examples illustrate this. As a simple example,
consider a constant field B = Byos. The rotor equation integrates immediately to give

p(t) = 1Butlos/2y, (4.54)

The spin vector s therefore just precesses about the 3 axis at a rate wy = vBy. Even
this almost trivial result is substantially more complicated when following traditional
methods.

4.3.2 Magnetic Resonance Imaging

A more interesting example is to include an oscillatory B field ( By cos(wt), By sin(wt), 0)
together with a constant field along the z-axis. This oscillatory field induces transitions
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(spin-flips) between the up and down states, which differ in energy because of the
constant component of the field. This is a very interesting system of great practical
importance. It is the basis of magnetic resonance imaging and Rabi molecular beam
spectroscopy.

To study this system we first write the B field as

Bl(cos(wt)al + Siﬂ(wt)lfg) + B00'3 = G_Wtjo-?’ 310'1 + B00'3
= G_Wtjo-?’/? (310'1 + 300'3) GWtIO.S/Q . (455)

We now define
S = G_Wtjo-?’/? and Bc = 310'1 + B00'3 (456)

so that we can write B = SB.S. The rotor equation can now be written
Sip = 1y1B, S, (4.57)

where we have pre-multiplied by S, and we continue to use ¥ for the normalised rotor.
Now noting that

§ = lwios§ (4.58)
we see that J
W(S;z;) = (yIB. + wlos)St. (4.59)
It is now St that satisfies a rotor equation with a constant field. The solution is
straightforward,
~ 4
Sy (t) = exp (5(71& + uag))%, (4.60)
and we arrive af,
wt t
() = exp<—710'3> exp <§<(w0 +w)los + w110'1>>;/)0, (4.61)

where w; = vB;. There are three separate frequencies in this solution, which contains
a wealth of interesting physics. Needless to say, this derivation is a vast improvement
over standard methods!

To complete our analysis we must relate our solution to the results of experiments.
Suppose that at time ¢ = 0 we switch on the oscillating field. The particle is initially
in a spin-up state, so ¢¥»g = 1, which also ensures that the state is normalised. The
probability that at time ¢ the particle is in the spin-down state is

Py = [(4 (1) (4.62)

We therefore need to form the inner product

(Le(1)) & (loayr)g = (loayy) — los(loaplos) = (loy)) — los{lory).  (4.63)
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To find this inner product we write

D(l) = o—wilos/2 [cos(at/2) + IB sin(at /2)] (4.64)
where
B (wo—|—<,u)0'3—I—u)10'17 and o = \/(w—l—wo)Q—l-wf- (4.65)
o

The only term giving a contribution in the /oy and [, planes is that in wylo/a. We
therefore have

wy sin(at/2)

(Ioy), = e—wtos/? [, (4.66)

and the probability is immediately

a:<ﬂﬂﬁﬂay. (4.67)

(a4

The maximum value is at at = 7, and the probability at this time is maximised by
choosing a as small as possible. This is achieved by setting w = —wo = —yBy. This is
the spin resonance condition.



