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Chapter 1

Spacetime Algebra

The geometric algebra of spacetime is called the spacetime algebra or STA. This forms
the basis for most of the remainder of this course, where we will deal mainly with
applications of geometric algebra to relativistic physics and gravitation. The algebra is
constructed from four basis vectors, three spatial and one timelike. The spacelike and
timelike vectors have opposite signs for their squares. Rotors in this algebra provide
the simplest means of performing Lorentz transformations.

1.1 An Algebra for Spacetime

Special relativity is often introduced with the postulate that the speed of light is
constant for all observers. From this one deduces the Lorentz transformation law before,
finally, the concept of unifying space and time into a single spacetime is introduced.
This partly mirrors the historical development of relativity. We will not follow this
order. Instead, we jump straight to spacetime as the appropriate arena for relativistic
physics. Our aim then is to construct the geometric algebra of spacetime. We start by
recalling that the invariant interval of special relativity is

P = —xt -y - 77, (1.1)

where ¢ is the time and x, y, and z are spatial (Cartesian) coordinates in some inertial
frame. We adopt the ‘particle physics’ choice of signature. General relativists often
flip all the signs. We work throughout in units where ¢ = 1. It is clear that we must
build our algebra from four vectors {eg, ¢;},7 = 1...3 with the following properties:

602 == 1, €or€; = 0, € €; = _52',7'- (12)
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These are summarised as

€u €y =Ny, M, =0...3,

= diag(+ — — —) . (1.3)

1.1.1 The Bivector Algebra

There are 4 x 3/2 = 6 bivectors in our algebra. These fall into two classes; those that
contain a timelike component (e.g. e;Aeg), and those that do not (e.g. e;Ae;). For any
pair of vectors @ and b with a-b = 0 we have

(aAb)? = abab = —abba = —a*b’. (1.4)

The two types of bivectors therefore have different signs of their squares. First, we
have

(62'/\6'7‘)2 = —62'26'7‘2 = —1, (15)

which is the familiar result for Euclidean bivectors. Each of these generate rotations
in a plane. For bivectors containing a timelike component, however, we have

(eiNeg)? = —ele” = +1. (1.6)

Bivectors with positive square have a number of new properties. One immediate result
we notice, for example, is that
a? o

ea6160 — 1—|—Oz€1€0—|—§—|—?€1€0—|—"'

= ch(a) 4 sh(a)erep. (1.7)

This shows us that we are dealing with hyperbolic geometry. This will prove crucial
to our treatment of Lorentz transformations. We have started to employ the useful
abbreviations

ch(a) = cosh a, sh(a) = sinh a, th(a) = tanh . (1.8)

1.1.2 The Pseudoscalar

We define the (grade 4) pseudoscalar [ by
I = €p€1€3€3. (19)

This defines a handedness for our algebra. The reason for this choice will emerge
shortly. We still assume that ey, s, €3 form a right-handed orthonormal set, as usual
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Figure 1.1: A Spacetime Diagram. Spacetime diagrams traditionally have the ¢-axis
vertical, so the right-handed bivector for the plane is ¢e;eq.

for a 3D Cartesian frame. Traditionally, spacetime diagrams are drawn with the time
axis vertical (see Figure 1.1). For these diagrams the right-handed bivector is, for
example, e;eq.

Since [ is grade 4, it has )
I = €3€2€1€0 — 1. (110)

This makes it easy to compute the square of I :
[2 = [j = (60616263)(63626160) = —1. (111)

Multiplication of a bivector by [ results in a multivector of grade 4 — 2 = 2, so re-
turns another bivector. This provides a map between the positive and negative square
bivectors, e.q.

lejeg = eregl = ejepgepereses = —eqes. (1.12)

If we define B; = ¢;eq then the bivector algebra can be written
BZ' X B]‘ = Gk [Bk
([BZ)X([B7) = —€k [Bk (113)
([BZ)XB7 = _Gi,jkBk-

As well as the four vectors, we also have four trivectors in our algebra. These are
interchanged by a duality transformation,

€1€9€3 = €p€p€t1€r€3 = 60[ = —160. (114)

The pseudoscalar I anticommutes with vectors and trivectors, as we are in a space of
even dimensions. As always, I commutes with all even-grade multivectors.

1.1.3 The Spacetime algebra

In many applications we are interested in physics in a single preferred orthonormal
frame. We denote this frame by {~,}. Putting the preceding together, we arrive at an
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algebra with 16 terms:
1 fwd o wAnd em 1 (1.15)

1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar

This is the spacetime algebra or STA. We also introduce the following notation for the
bivectors:

oO; = Y:%. (116)
In the literature the symbol 7 is often used for the pseudoscalar. We have departed from
this practice to avoid confusion with the 7 of quantum theory. Using the latter symbol

presents a potential problem because of the fact that the pseudoscalar anticommutes
with vectors. Occasionally we need to employ the reciprocal frame {~*}. These have

7" =0 and y' = —¥;.
The vector generators of the STA satisfy

Yo Y + Vo Vu = 20 - (1-17)

These are the defining relations of the Dirac matrix algebra, though without an identity
matrix on the right-hand side. It follows that the Dirac matrices define a representation
of the STA. This also explains our notation of writing {v,} for an orthonormal frame.
But it must be remembered that the {~,} are basis vectors, not a set of matrices in
‘isospace’.

1.2 Frames and Trajectories

Suppose that x(A) describes a curve in spacetime, representing the worldline of some
particle. The tangent vector to the curve is

, de())
= =< (1.1)

X

There are two important cases to consider:

Timelike, ' > 0

These are the trajectories of massive particles. In this case we introduce the preferred
parameter along the curve, 7, defined so that

v=0.x =1, v? = 1. (1.2)

The parameter 7 is the proper time for the curve, and an observer moving along the
curve measures this time. The unit timelike vector v then defines the four-velocity of
the particle, and the associated instantaneous rest frame.
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Null, 2> =0

This defines a null trajectory, which are the paths taken by photons and other massless
particles. We can no longer parameterise the curve in terms of proper time since this
does not increase along the null curve. Photons do still carry an intrinsic clock, encoded
in their phase, but this can tick at an arbitrary rate along a given null trajectory.

1.2.1 Relative Vectors

Now suppose that we are an observer at rest in some inertial frame. Our four-velocity
is v. The inertial frame is generated by the unit timelike vector v, and a frame of rest
vectors {e;} perpendicular to v. It is convenient to define ¢g = v. Then a general event
x can be decomposed in this frame as

x = leg+ 'e;, (1.3)
where the time coordinate is
t=x-¢=2a-v (1.4)
and spatial coordinates are ' '
' =x-e. (1.5)

Suppose now that the event is a point on the worldline of an object at rest in our
frame. The 3-d vector to this object is

zle; =xele, —r-eg=x— vV ="TAVW. (1.6)

Wedging with v projects onto the components of the vector = in the rest frame of v.
The key quantity is the spacetime bivector x Av. We call this the relative vector and
write

x = zAv. (1.7)
With these definitions we have

rw=xv4+rAv=1t+ea. (1.8)
The invariant distance now decomposes as

2? = zvvzr = (z-v 4+ 2 Av)(z-v+ vAT)

—(tte)(l—)=1 2 (1.9)

recovering the usual result. This is built into the definition of the STA.
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1.2.2 The Even Subalgebra

Each inertial frame defines a set of relative vectors, which we model as spacetime
bivectors. What algebraic properties do these have? To simplify things, we take the
timelike velocity vector to be 7 so that the relative vectors are given by o; = ~;70.
These satisfy

o0 = (v + Vivorive) = 2=y — i) = 8y (1.10)

These act as vector generators for a 3-d algebra. This is the geometric algebra of the
3-d relative space in the rest frame defined by ~y. Furthermore, the volume element of
this 3-space is

010,03 = (717)(7270)(13%) = —71Y0Y273 = Yo y2ys = 1, (1.11)

so the algebra of relative space shares the same pseudoscalar as spacetime. This was
the reason for our earlier definition of I. Of course, we still have

(o0 —0,0) = e loy, (1.12)

so that both relative vectors and relative bivectors are spacetime bivectors. We have
projected everything onto the even subalgebra of the STA.

i 4—d

{Afﬂ},“\ {0-27[0-2} \”‘{]A"“}

AN
N\
N\

| (o) (loy 1 3_d

The 6 spacetime bivectors get split into relative vectors and relative bivectors. This
split is observer dependent.

1.2.3 Conventions

Spacetime bivectors which are also used as relative vectors are written in bold. This
conforms with our earlier usage of a bold face for 3-d vectors in the first half of this

course.

There is a potential ambiguity here — how are we to interpret the expression aAb?
Our convention is that if all of the terms in an expression are bold, the dot and wedge
symbols drop down to their 3-d meaning, otherwise they take their spacetime definition.
This works pretty well in practice, though we will try to draw attention to the fact
that this convention is in use.
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1.2.4 Examples
i. Velocity

Suppose that an observer with constant velocity v measures the relative velocity of a
particle with proper velocity u(7), u* = 1. We have

wv = O [z(T)v] = 0, (t + @), (1.13)
so that
Ot =u-v, (1.14)
and
0. = ulv. (1.15)

The relative velocity is therefore

B oz B Jxe 0t  uhv

Sl Tl T (1.16)
If we form the Lorentz factor v using
7_2 =1 —u?
=14 (u-v)*[(uv — u-v)(vu — v-u)] = (u-v)7? (1.17)
we find that v = u-v = 0,t. It follows that we can decompose the velocity as
u=wuvv = (u-v+ uiv)v =51 + u)v, (1.18)

which shows a neat split into a part yuv in the rest space of v, and a part yv along v.

ii. Momentum and Wave Vectors

Now suppose we observe a particle with mass m and velocity u. The energy-momentum
vector is p = mu. The energy of the particle in the v-frame is £ = ym, which can be
written as £ = p-v. The relative momentum is p = ymu, so that p = pAv. It follows
that

pv =p-v+pAv=F+p. (1.19)

From this we recover the invariant,
m* = p* = povp = (E + p)(E — p) = E* — p. (1.20)
Similarly, for a photon with wave-vector & we have

kv=Fkwv+kAv=w+k, (1.21)
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where w is the frequency in the v-frame, and k is the relative wave-vector. For photons
in empty space k% = 0 so

0 = kvvk = (w + k)(w — k) = w* — k°. (1.22)
This recovers the dispersion relation |k| = w, which holds in all frames.
This idea of projecting onto the even subalgebra to study physics in a rest frame is a

very powerful technique. Our next task is to study Lorentz transformations to see how
different observers see the same physics.

1.3 Lorentz Transformations

Lorentz Transformations are usually expressed in the form of a coordinate transforma-
tion, e.g. for relative motion along the x-axis

x'=~v(x — ft) t'=~(t — px)
X = V(X/ + ﬁt/) ;= ’y(t’ + ﬁX’) (1.1)

where v = (1 — 82)~'/2 and 3 is the scalar velocity between the two frames in units
of ¢. The y and z coordinates are unchanged. Our first task is to manipulate these
relations into a transformation law for vectors. The vector x has been decomposed in

two frames, {e,} and {¢/ }, so that
r=ate, = a"e). (1.2)

We then have, for example
t=¢2, t'=¢e" 2. (1.3)
Concentrating on the 0 and 1 components we have
teg + xe; = t'el, + x'e], (1.4)
and from this we derive the vector relations
o = Y(eo + Ber), € =v(er + Beo). (1.5)

These define the new frame in terms of the old (¢}, = e; and €} = e3).

1.3.1 Rotor Form of a Lorentz Transformation

We saw earlier that bivectors with positive square lead to hyperbolic geometry. This
suggests that we introduce an ‘angle’ a with

tanha = 3, (B<1), (1.6)
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so that
v = (1 — tanh?a)™¥? = cosha. (1.7)

The vector €] is now

e, = ch(a)eg+sh(a)e

[Ch(a) + Sh(oz)eleo]eo = e®€1€0 €0,

(1.8)

where we have expressed the scalar + bivector as an exponential. Similarly, we have
e; = ch(a)e; + sh(a)eg = e 10 ¢, (1.9)

Now recall that these are just two of four frame vectors, with the other pair untouched.
Since ejeq anticommutes with eg and ey, but commutes with e; and ez, we can express
the relationship between the two frames as

¢, = Reuﬁf, " = Re"R, R= e eico/2 (1.10)

The same rotor prescription works for boosts as well as rotations! Now we really are
treating spacetime as a unified entity.

1.3.2 The Restricted Lorentz Group

The transformation a — RaR, with R a rotor, preserves causal ordering as well as
parity. Transformations of this type are called ‘proper orthochronous’ transformations,
and are elements of the restricted Lorentz group. (The full Lorentz group allows for the
inclusion of reflections and inversions.) We can prove that rotor driven transformations
are proper orthochronous by starting with the velocity 49 and transforming it to v =
RyoR. We need the 7o component of v to be positive if causal ordering is to be
preserved, that is

Yo-v = (yoRyo k) > 0. (1.11)
Decomposing in the yg-frame we can write

R=a+a+1b+1p (1.12)

and we find that )
(voRywR) =’ +a* +b*+3*>0 (1.13)

as required. Of the elements of the full Lorentz group, the proper orthochronous
transformations are the most physically relevant.
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Vo

Figure 1.2: Photon Emission and Absorption. A photon is emitted by particle 1 and
received by particle 2.

1.3.3 Examples

i. Addition of Velocities

As a simple example, suppose that we are in a frame with basis vectors {egp,e;}. We
observe two objects flying apart with 4-velocities

v; = e ¢p vy, = e 2fLC0 ¢ (1.14)
What is the relative velocity they see for each other? We form

v AUy <e(0‘1 +az)eren )2 sinh(ag 4 ag)ereg

= = ) 1.15
v+ Vs <e(a1 + az)ereg Yo cosh(ay + az) ( )
Both observers therefore measure a relative velocity of
tanh tanh
tanh(aq + ay) = anhay + tanhay (1.16)

1 — tanhay tanhas

Addition of velocities is achieved by adding hyperbolic angles, which recovers the fa-
miliar formula.

ii. Photons and Redshifts

Often in studying the properties of electromagnetic waves we use the geometric optics
approximation and work directly with null wave-vectors k. This provides for simple
formulae for Doppler shifts and aberration. Suppose that two particles follow different
worldlines and that particle 1 emits a photon which is received by particle 2 (see
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Fig. 1.2). The frequency seen by particle 1 is wy = vy-k, and by particle 2 is wy = vy-k.
The ratio of these describes the Doppler effect, often expressed as a redshift, z:

142 =w/w;. (1.17)

This can be applied in many ways. For example, suppose that the emitter is receding
in the e; direction, and vy = ¢5. We have

k = wq(eo + €1), vy = cosha ¢y — sinha ey, (1.18)
so that )
4 sm wa(cosha + sinhea) _ o (1.19)
o)

The velocity of the emitter in the ey frame is tanha, and it is easy to check that

1 4+ tanhao 1/2
= 1.20
¢ (1 — tanha) ’ (1.20)

recovering the standard expression for the relativistic Doppler effect. Aberration for-
mulae can be obtained in the same way.
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Chapter 2

Spacetime Dynamics

Lorentz transformations which preserve parity and causal structure can be described
with rotors, and these provide the simplest way to gain insight into the structure of
the Lorentz group. They quickly show, for example, that all transformations have two
points on the celestial sphere which remain fixed. Dynamics in spacetime is tradition-
ally viewed as a hard subject. This need not be the case, however. By parameterising
the motion in terms of rotors many equations are considerably simplified, and can be
solved in new ways. We illustrate this with a new formulation of the Lorentz force
law, from which we obtain the general solution for the motion of a point particle in a
constant electromagnetic field.

2.1 Spacetime Rotors

We saw in Section 1.3 that a restricted Lorentz transformation is generated by a rotor
R, with RR = 1, in the usual way as a — RaR. Every rotor in spacetime can be
written in terms of a bivector as

R=+eb/?, (2.1)

(The minus sign is rarely required, and does not affect the vector transformation law.)
We can understand many of the features of spacetime transformations and rotors
through the properties of the bivector B.

13
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2.1.1 Invariant Decomposition

The rotor R can be decomposed in a Lorentz invariant way by first writing
B = (B + (B = pel® (22)

and we will assume that p # 0. (The case of a null bivector is treated slightly differ-
ently.) We now define

B=p2e 102, (2.3)
which is a unit timelike bivector since
B=plte 1B =1. (2.4)
With this we can now write
B=p"2!%2p = aB + BIB, (2.5)

which decomposes B into a pair of bivector blades aB and 6[3 Since
B(IB)=(IB)B =1, (2.6)

the separate bivector blades commute, which is possible now that we are in 4 dimen-
sions. The rotor R now decomposes into

R— «2B/2 BIB/2 _ BIB/2 aB/? (2.7)

A~

exhibiting an invariant split into a boost and a rotation. The boost is generated by B
and the rotation by /B.

2.1.2 Fixed Points

For every timelike bivector E, B? = 1. we can construct a pair of null vectors n4
satisfying
B-ni == :|:n:|:. (28)

These are necessarily null, since

N

(B-ng)ng =0==4ni. (2.9)
The two null vectors can also be chosen so that

nyAn_ = 2B, (2.10)

~

so that they form a null basis for the timelike plane defined by B (see Fig. 2.1).
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Figure 2.1: A timelike plane. Any timelike plane B, B? =1 contains two null vectors
ny and n_. These can be normalised so that ny An_ = 2B.

Taking the wedge product of Eq. (2.8) with B gives BAng = 0, so the null vectors
n4 anticommute with B and therefore commute with I B. The effect of the Lorentz
transformation on n4 is therefore

RnyR = eO‘B/Q N4 e_O‘B/Q = eO‘B N4
= ch(a)ny + sh(a)B-ny = e ny. (2.11)

The two null vectors are therefore just scaled — their direction is unchanged. It follows
that every Lorentz transformation has two invariant null directions. For the case where
the bivector generator itself is null, B? = 0, there is a single invariant null vector n
which is the unique (up to scaling) null solution of B-n = 0.

2.1.3 The Celestial Sphere

One way to visualise the effect of Lorentz transformations is through their effect on
the past light cone (see Fig. 2.2). Each null vector on the past light cone maps to a
point on the sphere S~ — the celestial sphere for the observer. Suppose then that light
is received along the null vector n, with the observer’s velocity chosen to be ~y. The
relative vector in the vy frame is nA~vy. This has magnitude

(nA%0)* = (n-70)* — n*y5 = (n-70)" (2.12)
We therefore define the unit relative vector i by the projective formula

n = A0 (2.13)

%

Different observers passing through the same point see different celestial spheres. If
a second observer has velocity v = Ry R, the unit relative vectors in this observer’s
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Yo

Figure 2.2: The Celestial Sphere. Each observer sees events in their past light cone,
which can be viewed as defining a sphere.

frame are formed from nAv/n-v. These can be brought to the v frame for comparison
by forming

o — E)n/\vR _ n' Avo

n-v n’' 7o

(2.14)

where n’ = RnR. The effects of Lorentz transformations can be visualised simply
by moving around points on the celestial sphere with the map n — RnR. We know
immediately, then, that two points remain invariant so are the same for both observers.

2.1.4 Pure Boosts and Observer Splits

Suppose we are travelling with velocity v and want to boost to velocity v. We seek the
rotor for this which contains no additional rotational factors. We have

v = Lul (2.15)
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with La, L = a, for any vector outside the uAv plane. It is clear that the appropriate
bivector for the rotor is uAwv, and as this anticommutes with v and v we have

v=Lul = L*u — L’ =u (2.16)
The solution to this is
1 +vu a vAu
I = _ . 2.17
21t w0z P (2 |v/\u|> (2.17)

where the angle « is defined by cosh(a) = u-v.

Now suppose that we start in the 4o frame and some arbitrary rotor R takes this to
v = RygR. We know that the pure boost for this transformation is

14+ vy (a vAYo )
L= =exp| = , 2.18
2 o007 P\ 2fons 21

where v-yy = ch(a). Now define the further rotor U by

U=LR, UU=LRRL=1. (2.19)
This satisfies ) ) ) X

UroU = Lol = LLyoLL = 5o, (2.20)
so U~yo = vU. We must therefore have U = er/Q, where Ib is a relative bivector,

and U generates a pure rotation in the vy frame. We now have
R=LU (2.21)

which decomposes R into a relative rotation and boost. Unlike earlier, this decompo-
sition is frame dependent, and in general L and U do not commute.

2.2 Spacetime Rotor Equations

A spacetime trajectory x(7) has a future-pointing velocity vector & = v, where the
overdots denote ;. The velocity is normalised to v? = 1 by parameterising the curve
in terms of the proper time. This suggests an analogy with rigid body dynamics. We
write

v = RyR, (2.1)

which keeps v future-pointing and normalised. This moves all of the dynamics into the
rotor R = R(7), and this is the key idea which simplifies much of relativistic dynamics.
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2.2.1 The Proper Acceleration

The first quantity we need to find is the acceleration
0= &(R’yo]%) = R’yofx’ + R’yo]éx’. (2.2)
But we know that RR = —R]% is a bivector, so we have
b = RRRyoR+ Ry RRR = Rito — vRE = 2(RR)-v. (2.3)
This equation is consistent with the fact that v-© = 0, which follows from v? = 1.

We now have

bo =2(RR)-vwv. (2.4)

The bivector vv is the acceleration seen in the instantaneous rest frame. We call this
object vv the acceleration bivector. Eq. (2.4) determines the projection of RR parallel
to v in terms of the kinematics of v. The remaining freedom in RR corresponds to an
additional rotation in R which does not change v. For the purposes of determining the
velocity and trajectory of the particle the component of RR perpendicular to v is of
no relevance. However, in some applications it is useful to attach physical significance
to the rotated vectors {e;} = Ry; R, i = 1...3 which span the instantaneous rest space
of v. In this case, the dynamics of the ¢; can be used to determine the component of
RR which is not fixed by v alone.

2.2.2 Fermi Transport

The vectors {¢;} are carried along the trajectory by the rotor R, so that e;;v = 0. They
are sald to be Fermi transported if their transformation from one instance to the next
is a pure boost in the v frame. One can think of this as the vectors {¢;} remaining as
constant as possible, subject to the constraint ¢;-v = 0. The direction defined by the
angular momentum of an inertial guidance gyroscope (supported at its centre of mass
so there are no torques) is Fermi transported along the path of the gyroscope through
spacetime.

To ensure Fermi transport of Rv; R we need to ensure that the rotor we work with
correctly describes pure boosts from one instance to the next (see Fig. 2.3). To first
order we have

v(t 4+ d71) =v(7) + T 0. (2.5)
The pure boost between v(7) and v(7 + d7) is represented by the rotor

L+o(r+dr)v(r)

L= R(L+v(r +or)-v(r))]/2

=1+ %57’ v, (2.6)
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Figure 2.3: The Proper Boost. The change in velocity from 7 to 7 + 47 should be
described by a rotor solely in the v Av plane.

to first order in d7. But since
R(7 +67) = R(7) 4+ 67R(r) = (1 + sTRR)R(7), (2.7)

The additional rotation that takes our frame {e;} from 7 to 7 + 67 is described by the
rotor 1 4+ é7RR to first-order. Equating this to the pure boost L, we find that the
correct expression to ensure Fermi transport of the {e;} is

RR = Liv, (2.8)

which is sensible. The bivector describing the change in the rotor is simply the accel-
eration bivector.

Under Fermi transport the {e;} frame vectors satisfy

¢ = 2(RR)-e; = —e;-(0v). (2.9)
This gives rise to the definition of the Fermi derivative
D
D—z = a+a-(ov). (2.10)

The Fermi derivative of a vector vanishes if the vector is Fermi transported along the
worldline. The derivative preserves both the magnitude a? and a -v. The former holds
because

%(az) = —2a-(a-(vAv)) = 0. (2.11)

Conservation of a - v is also straightforward to check:

d ) )
E(a-v) = —(a-(vv))-v + a0

=—a-v+avov+av=0. (2.12)
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It follows that if a starts perpendicular to v it remains so. In the case where a-v = 0
the Fermi derivative takes on the simple form

Da

E:d—l—a-bv:d—d-vv:d/\vv. (2.13)

This is the projection of @ perpendicular to v, as expected. In Section 2.3.4 we show
how Thomas precession comes about from the idea of Fermi transport.

2.3 The Lorentz Force Law

We are all familiar with the non-relativistic form of the Lorentz force law,

dp

— = q(E +vxB), (2.1)

with all relative vectors expressed in the 4o frame. The bold cross symbol here denotes
the vector cross product. We seek a relativistic version of this law. The quantity p
on the left-hand side is the relative vector pA~y. Since dt = ~vdr, we must multiply
through by v = v-99 to convert the derivative into one with respect to proper time.
The first term on the right-hand side then becomes

vy F = i(E(U’)/o + Yov) + (vy0 + ’ym})E)
= i((Ev —vE)y — vo(Ev — vE))
= (E-v)A\v. (2.2)

Recall at this point that FE is a spacetime bivector and is built from the o = viv0, so
FE anticommutes with 4. The magnetic term is

—v-yv-(IB) = —(vAy)x(IB)
([ (vy0 — Yov) — (VY0 — ’ym))]B)
(({Bv —vIB)y — vo(IBv — vIB))

(IB)-v) Mo, (2.3)

and here we use the fact that vg commutes with the combination I B.

AN R A

We can now write Eq. (2.1) in the form

dp .
L = A% = ql(B + IB)-v] Ao (2.4)

We now define the Faraday bivector F' by

F=E+IB. (2.5)
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This is the covariant form of the electromagnetic field strength. It unites the electric
and magnetic fields into a single spacetime structure. We study this in greater detail
in Chapter 3. Our equation is now

PAYo = q(F-v) Avo. (2.6)
The rate of working on the particle is ¢FE-v, so
dpo
—— — gE-v. 2.
TR (2.7)

Here, po = p-o 1s the particle’s energy in the ~g frame. Multiplying through by v-~o,
we find

P70 = qE-(v/A0) = ¢(F-v)-70. (2.8)
In the final step we have used (IB)-(vAv) = 0. Adding this equation to Eq. (2.6),
and multiplying on the right by ~o, we find

p=qF-v. (2.9)
Recalling that p = mv, we arrive at the relativistic form of the Lorentz force law,
mv = qF-v. (2.10)

This is manifestly Lorentz covariant, because no particular frame is picked out. The
acceleration bivector is

w=LFyy= i(F-v)/\v: 1E, (2.11)

where F, is the relative electric field in the v frame. A charged point particle only
responds to the electric field in its instantaneous frame.

2.3.1 Rotor Form of the Lorentz Force Law

Now suppose that we parameterise the velocity with a rotor. We have
o=2RR)yv="LFw. (2.12)
m

The simplest form of the rotor equation comes from equating the projected terms to
get
R=-LFR (2.13)

2m
This is not the most general possibility as we could include an extra multiple of FAv v.
The rotor determined by Eq. (2.13) will not, in general, describe Fermi transport of the
R~ R vectors. However, Eq. (2.13) is sufficient to determine the velocity of the particle,
and 1s certainly the simplest form of rotor equation to work with. How does this help
us solve the equations of motion? One immediate advantage is that the equations are
now first order:

i =v= Rk, omR = qFR, (2.14)

(we usually take vg = 79). These are numerically very robust.
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2.3.2 Example — Constant Field

This is very easy now! We can immediately integrate the rotor equation to give
R = exp(iFr). (2.15)
2m

To proceed and recover the trajectory we form the invariant decomposition of F'. We
first write

F2 = (F?)g+ (F?)y = pell (2.16)

so that
F=p"2elBl2 fr = oF + 18F (2.17)

where F2 = 1. (If F'is null a slightly different procedure is followed.) We now have
= enf Lol L 157
R = eXp(QmozFT) eXp(leﬁFT). (2.18)

Next we decompose the initial velocity vy into components in and out of the Ia plane,

UOZszozFF‘UO‘I‘FF/\UO:UOH‘I‘UOJ_. (219)
Now vg = I F-vo anticommutes with F, and vy, commutes with F, SO
. q9 r q -
& = exp(—al'7)vy + exp(—=18FT)voL. (2.20)
m m

This integrates immediately to give the particle history

qoF'r/m 1. gBIFT/m 1 .
e T e )-v (2.21)
q m

The first term gives linear acceleration and the second is periodic and drives rotational
motion. This is as expected, because in the vq) frame, F' is an electric field, and in the

r — Xg = qa/m

vy frame, I is a magnetic field.

2.3.3 The Gyromagnetic Moment

For a particle with spin, the gyromagnetic ratio ¢ is determined in non-relativistic
physics by the precession of the relative spin vector s in a magnetic field B:

5= g%st = g%([B)-s. (2.22)

We want to extend this definition of ¢ to relativistic scenarios. We start by introducing
the spin vector of the particle s, which is perpendicular to the velocity v. For a particle
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at rest in the +y frame we have s = svy. The particle’s spin will interact with the
magnetic field only in the instantaneous rest frame, so we should regard Eq. (2.22) as
referring to this frame.

Recalling that IB = (F + v9F70)/2, we find that

(IB)-s = 5 ((F +F0)s7% — s70(F + 70F0))

(Fs—sF)y —70(Fs—sF))

<FS’)/0—’}/0 FS))

= (F-s)Avo- (2.23)

|= =

- NN

So, for a particle at rest in the v frame, equation (2.22) can be written

ds

= L(F.s)/\% o (2.24)

- ng

To write down an equation which is valid for arbitrary velocity we must replace the
two factors of 49 on the right-hand side with the velocity v. On the left-hand side
we need the derivative of s which preserves s - v = 0. This is the Fermi derivative of
Section 2.2.2, which tells us that the relativistic form of the spin precession equation is

§+s-(vv) = g%(F'S)/\U v. (2.25)

This equation tells us how much the spin vector rotates, relative to a Fermi-transported
frame, which is physically sensible. We can eliminate the acceleration bivector vv by
using the relativistic Lorentz force law to find

é:gQ—(F 3)/\1}1}——3 (F-vwv)

= %@(F-s)/\v + 2(F-3)-v>v

_qp.
= mF s+ (g 2)2777 (F-s)Avwv. (2.26)
This is called the Bargmann-Michel-Telegdi (BMT) equation.

For the value ¢ = 2, we find the very simple equation

s=2Lp.s, (2.27)
m

which has the same form as the Lorentz force law, Eq. (2.10). In this sense, g = 2
is the most natural value of the gyromagnetic ratio of a point particle in relativistic
physics. Ignoring quantum corrections, this is indeed found to be the value for an
electron. Quantum corrections tell us that for an electron g = 2(1 4+ o/27 +...). The
corrections are due to the fact that the electron is never truly isolated and constantly
interacts with virtual particles from the quantum vacuum.
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o

Y1

Figure 2.4: Thomas Precession. The particle follows a helical worldline, rotating at a

constant rate in the vy frame.

Given a velocity v and a spin vector s, v-s = 0, we can always find a rotor such that
v=RyR, s=RyR. (2.28)

For these we have

b =2(RR)-v, &=2(RR)-s. (2.29)

For a particle with ¢ = 2, this pair of equations reduces to the single rotor equation
of (2.13). The simple form of this equation also justifies the claim that g = 2 is the
natural, relativistic value of the gyromagnetic ration. This also means that once we
have solved the rotor equation, we have simultaneously solved for the trajectory and
precession of a classical relativistic particle with ¢ = 2.

2.3.4 Worked Example — Thomas Precession

As an application of the rotor formulation of spacetime dynamics, we derive the Thomas
precession of a particle moving in a circular orbit (Fig. 2.4). You may already have
met Thomas precession in the context of spin-orbit coupling in the Hydrogen atom.

The worldline of a particle describing a circle of radius a at angular frequency w is
z(7T) = (7)o + af[cos(wt)yy + sin(wt)ys], (2.30)
and the velocity is

v = 0,0 =1 (70 + aw[—sin(wt)y; + cos(wt)ys]). (2.31)
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(Throughout we use dots to denote differentiation with respect to proper time 7). The
relative velocity v = vAqg/v v has magnitude |v| = aw. We therefore introduce the
hyperbolic angle «, with

tanha = aw, { = cosha. (2.32)
The velocity is now
v = ch(a)yo + sh(a)[— sin(wl)y + cos(wt)yz] = /2 yy e~/ (2.33)
where
n = —sin(wt)o + cos(wt)o,. (2.34)

This form of time-dependence in the rotor is inconvenient to work with. To simplify,
we write

n=e“1% 6, = Ro,R, (2.35)
where R, = exp(—wtlo3/2). We now have
eOm/2 exp(aRwagfx’w/Z) =R, e02/2 R, = R, R, R, (2.36)
where R, = exp(ao,/2). The velocity is now given by
v = R,RoRvoR, Ry Ry = RuRovoRo R, (2.37)
where the final expression follows because R, commutes with 7.

We can now see that the rotor for the motion must have the form
R=R,R,®, (2.38)

where ® is a rotor that commutes with ~y. We want R to describe Fermi transport of
the { Rv; R}, so we must have 0v = 2RR. We begin by forming the acceleration bivector
vv. We can simplify this derivation by writing v = vaa]%w, where v, = Ra’yo];’a. We
then get

oo = Ru[2(R,R,) va va] Ry = —w ch(a)zazw[([frg)-va va] Ro

= wsh(a)ch(a)R,[—ch(a)o, + sh(a)los) R, (2.39)
We also form the rotor equivalent 2RR, which is
2RR = 2R,R, + 2R, R,®OR, .,
= —wch(a)los + 2R, R, OOR, R, (2.40)
Equating these we find that

200 = weh?(a) R, [—sh(a)oy + ch(a)los) R,
= ch*(a)wlos. (2.41)
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The solution with ® =1 at ¢t = 0 is ¢ = exp[ch(a)witlos/2], so the full rotor is

R = o—wilos/2 jao3/2 ch(a)wtlos/2 (2.42)

This form of the rotor ensures that the ¢; = Ry R are Fermi transported. At a given
point on the circle we can compare the {e;} from one period to the next. We find that
e3 = 73 is constant during the motion, but e; and ey precess. Forming e, at ¢t = 27 /w,

we find
61(27T/w) _ eaoz/Q e?ﬂ'ch(oz)[og - e—aoz/Q‘ (2‘43)

Dotting this with the initial vector e;(0) we see that the vector has precessed through
an angle

0 = 27(cosha — 1). (2.44)
This shows that the effect is of order |v|?/c%.



Chapter 3

Electromagnetism

The spacetime vector derivative and the geometric product enable us to unite all four of
Maxwell’s equations into a single equation. This is one of the most impressive results
in geometric algebra. Unlike the separate gradient and curl operators, the vector
derivative is invertible and this leads to a number of simplifications. As an application,
we look at the derivation of the fields due to a point source. We also derive expressions
for the field energy and the Poynting vector, and introduce the important idea of the
field stress-energy tensor.

3.1 Maxwell’s Equations

The four Maxwell equations (in natural units ¢ = ¢g = pg = 1) are

VxE=-9,B VxB=J+,E (3.1)

where as usual we employ the symbol x for the vector cross product. The 3D vector
derivative operator here is

0
vV = O-Za—x? = 0'282 (32)
The fact that we now have the geometric product available for the o; vectors suggests
that we should consider uniting pairs of equations. This will lead us to a manifestly
covariant expression of the equations. First we take the two equations for E and write

these (in the 3D geometric algebra) as
V-E=p, VAE=-0,([B). (3.3)
These combine to give the single equation

VE =p—d,IB). (3.4)

27
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Unlike the separate divergence and curl operations, the vector derivative operator in
V FE has an inverse. That is, there is a Green’s function associated directly with V.
This is outside the scope of this course, but if you look back over your electromagnetism
notes you should be able to spot the form of this Green’s function.

A similar manipulation combines the B-field equations into
VB=I(J+dF). (3.5)
If we multiply both sides of this equation by I we arrive at the equation
V(IB)=-J - 0,FE. (3.6)

This is a combination of a (spatial) bivector and pseudoscalar equation, whereas
Eq. (3.4) contains only scalar and vector parts. It follows that we can combine all
of these equations into the single multivector equation

V(E+IB)+d(E+IB)=p—J, (3.7)

which is beginning to look pretty good! We have not lost any information in writing
this, since each of the separate Maxwell equations can be recovered by picking out
terms of a given grade.

Recalling the derivation of the relativistic form of the Lorentz force law from Section 2.3,
we define the electromagnetic field strength I’ by

F=F+IB. (3.8)
This is a spacetime bivector. In terms of this we have
VF+0F=p—J. (3.9)
To convert this to covariant form, we introduce the spacetime current ./, which has
p=J 7, J = JAv. (3.10)

It follows that
p—J = J+v%ANS =] (3.11)

We now pre-multiply Eq. (3.9) by v to assemble the equation
Yo(0p + V) = J. (3.12)
The differential operator on the left-hand side is (recalling that 4° = 4o and 7* = —~;)

Y00 + Y0Yi700 = 10 + 4'0; = 49, = V. (3.13)
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This defines the spacetime vector derivative
V =~"0,, 0y = —. (3.14)
The spacetime split of the vector derivative is
Vo = (%0 +4'0)v0 = 0 — 030; = 9, — V. (3.15)

The minus sign here is in contrast to xvo =t + @ and is due to the Lorentzian metric.
One has to take care to remember this. It becomes obvious when forming

Va=4=~Vay =%Vl + ) (3.16)
which tells us that we must have 40V = d; + V. Hence V5 = (V)™ = 0; — V.

In terms of the spacetime vector derivative, all 4 Maxwell equations can be united in
the single, manifestly covariant equation

VF =] (3.17)
These can be separated into 2 spacetime equations for the vector and trivector parts,
V-F=J, VAF=0. (3.18)

In tensor language, these correspond to the pair of spacetime equations
o, F* = Jv, P70, F,, = 0. (3.19)

This is as compact a formulation of the Maxwell equations as tensor algebra can achieve.
(The same is also true of the popular language of differential forms.) Only geometric
algebra enables us to combine the pair of covariant equations (3.18) into the single
equation VF = J. This is more than a mere cosmetic trick — this unified equation
offers a number of significant improvements. In particular, the V operator (like the ¥V
operator) is invertible — there is a Green’s function for it. This simplifies diffraction
theory and directly encodes Huygen’s principle (outside this course). In addition,
first order equations are numerically more robust than second order equations, so are
preferable for numerical computation.

The wave theory of electromagnetism is recovered by introducing the vector potential
A, defined so that
F=VAA. (3.20)

It then follows automatically that

0% A
VAF =VANANA)=~*AY"A =0 3.21
(V)= (5 ) = (3.21)
which holds due to the antisymmetry of the exterior product. We have some gauge
freedom in the choice of A, as we can always add the gradient of a scalar field to it. The
most natural way to soak up this freedom is to impose the Lorentz condition V-A =0,
so that F' = VA. We then recover the familiar wave equation

VA =J. (3.22)
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3.2 The Electromagnetic Field Strength

The spacetime bivector ' = E + I B is the electromagnetic field strength, also called
the Faraday bivector. It is a covariant spacetime bivector. Its components in the {y*}
frame give rise to the tensor

PR =" (4 F) = (7" AYY) - F (3.1)

These are the components of a rank-2 antisymmetric tensor which, written out as a
maftrix, has entries

0 -E, —-E, —FL,
E, 0 —B. B,
E, B, 0 —B.
E. -B, B, 0

= (3.2)

This form is often presented in textbooks on relativistic electrodynamics. The big
disadvantage of this matrix form is that the the natural complex structure is hidden.

Writing F' = E + I B decomposes F' into the sum of a relative vector E and a relative
bivector I B. The separate E and I B fields are recovered from

FE =
IB =

(F' =0 l"0)
(F' + ~ol"0). (3.3)

= N

This shows clearly how the split into E and I B fields depends on the observer velocity
(70 here). Observers in relative motion see different fields. For example, suppose a
second observer has velocity v = RygR and constructs the rest frame basis vectors

7. = By R. (3.4)
This observer measures components of an electric field to be
E! = (¥4})-F = (RoiR)-F = o;-(RFR). (3.5)

The effect of a Lorentz transformation can therefore be seen by taking /' to RF' R. The
fact that bivectors are subject to the same rotor transformation law as vectors make it
easy to recover the standard formulae.

3.2.1 Observers in Relative Motion

Suppose that in the vy frame some stationary charge configuration sets up the field

F=EFE=EFE,0,+E,0,. (3.6)
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A second observer has velocity tanh(«) in the 47 direction, so
R = /2, (3.7)
This observer measures the o; components of
RFR= e /2 Fet0/2 — | g + B, e " g, (3.8)

which gives

E! =E,, E =ch(a)E,, B.=—sh(a)k,. (3.9)

Y

This approach is much simpler than working with tensors.

3.2.2 Invariants

A further useful result for the [ field is to construct its Lorentz invariant terms. We
form the quantity
F2:<FF>—|—<FF>4:oz—|—M3. (3.10)

But if we also form

(RFR)(RFR)= RFFR= o+ 18, (3.11)

we see that the result is invariant. So both the scalar and pseudoscalar terms are
Lorentz invariant — that is, independent of the frame in which they are measured. In
the ~o frame these are

a={(E+IB)(E+IB))=E* - B? (3.12)

and

3=—(I(E+ IB)(E + IB)) = 2E-B. (3.13)

The former yields the Lagrangian density for the electromagnetic field. The latter is
seen less often, and at first it is quite surprising to learn that E-B is a full Lorentz
invariant, rather than just being invariant under rotations.

3.3 Fields from a Point Charge

As an application of the power of the STA formulation of electromagnetism, we now
give a compact formula for the fields of an arbitrarily moving charge. A charge ¢ moves
along a world-line zo(7) (see Fig. 3.1). An observer at spacetime position x receives
an electromagnetic influence from the point where the charge’s worldline intersects the
observer’s past light-cone. The vector

X =a — ao(7) (3.1)
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Figure 3.1: Field from a moving point charge. The charge follows the trajectory zo(T).
X = & — 2o(7) is the null vector connecting the point x to the worldline. The time 7
can be viewed as a scalar field with each value of 7 extended out over the forward null

cone.

is the separation vector down the light-cone, joining the observer to this intersection
point. This vector must be null, X? = 0. For every spacetime position z there is
a unique value of the proper time along the charge’s world-line for which the vector
connecting x to the world-line is null. We can write 7 = 7(x), and treat 7 as a scalar

field.

The Liénard-Wiechert potential for the retarded field from the charge is

_ 49 v
4r X’

(3.2)
where v = @ is the velocity of the charge at the retarded position z(7), and X is the

null vector connecting 4(7) to the observer’s position x. It is not difficult to check
that the field of Eq. (3.2) reproduces the Coulomb potential for a charge at rest.

3.3.1 The Field Strength

We now differentiate the potential of Eq. (3.2) to find the Faraday bivector. First, we
differentiate the equation X? = 0 to obtain

YO X) X =" (v, — 0um0r20)- X = X — V7 (v-X) = 0. (3.3)
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It follows that
X

X
The gradient of 7 points in the direction of constant 7! This is a peculiarity of null

vt (3.4)

surfaces and is one reason why one has to be careful when defining the normal vec-
tor to a surface in mixed signature spaces. In finding an expression for V7 we have
demonstrated how the particle proper time can be treated as a spacetime scalar field.
Feynman and Wheeler call this an adjunct field. It carries information, but does not
exist in any physical sense.

To differentiate A we need V(X -v). Using the results already established we have

V(X-0)=+0,X) v+ V7 X-(0,v) =v—-V7+V7r X0 (3.5)
where v = d-v. We now evaluate VA as follows:
qg [ Vv 1
A= — — X-
v A (X-v (X-v)zv( U)U>
_q X0 1 (X X-o—X)w
CAn \(Xv)2 (X -v)? (X-v)3

q ( XAv X/\v—X-bX/\v) (3.6)

S\ T T (NP

The bracketed term is a pure bivector, so V-A = 0 and the A field of Eq. (3.2) is in
the Lorentz gauge.

We can gain some insight into the expression for F' by writing

Xv XAt — X0 XAv=—XAX (6Av)] = LX6AvX, (3.7)

-2
which uses the fact that X? = 0. Writing €, = 9 Av for the acceleration bivector of
the particle, we arrive at the compact formula

g XNA\v+ %XQUX
~ Anm (X-v)3

(3.8)

This displays a clean split into a velocity term proportional to 1/(distance)? and a long-
range radiation term proportional to 1/(distance). (The distance here is X -v. This is
just the distance between the events x and z4(7) as measured in the rest frame of the
charge at its retarded position.) The first term in Eq. (3.8) is exactly the Coulomb
field in the rest frame of the charge, and the radiation term,
1
Fraa = —5———+ 3.9

d 47_[_ (X"U)S Y ( )
is proportional to the rest-frame acceleration projected down the null-vector X. One
can go on now to show that, away from the worldline, F' satisfies the free-field equation
VF = 0. The details are left as a (voluntary) exercise.
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3.3.2 Uniformly Moving Charge

A charge with constant velocity v has trajectory
xo(T) = v, (3.10)

where we have chosen an origin so that the particle passes through this point at 7 = 0.
The intersection of z¢(7) with the past lightcone through x is determined by

(x—vr)?P=0 = r=vz—[(va)?-z}V (3.11)

We have chosen the earlier root to ensure that the intersection is on the past lightcone.
We now form X -v to find

Xov=(z—vr)v=|[(va)? -z (3.12)
which we can write as |z Av| since
lzAv]? = z-[v-(zAv)] = (z-0)* — 2% (3.13)

The acceleration bivector vanishes since v is constant, and XAv = xAv. It follows that

the Faraday bivector is simply
_q zAv

CAm|zAv]

(3.14)

The Faraday bivector decomposes in the o frame into electric and magnetic fields.
Using
AV = (29070)2 = Y{((t + &)(1 —v))s = v(® — vt) — yxAv, (3.15)

where v is the relative velocity, we have

E = 47rd3(w — vt) (3.16)
B= 4?(;3[:13/\1). (3.17)

Here, the effective distance d is
d* = (vt —v-z/|v])? +2° - (x-v)* /v’ (3.18)

Note that the electric field points towards the actual position of the charge at time ¢,
and not its retarded position at time 7.
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3.3.3 Circular Orbits — Non-Examinable

For a particle moving in a circle in the lo3 plane,
zo(7) = ch(a)Tvo + a[cos(wT)y1 + sin(wT)72]. (3.19)

The angular velocity w is measured with respect to proper time 7. The speed of the
particle is |v| = tanh o, where sh(a) = aw. The velocity of the particle is

v = ch(a) + sh(a)[— sin(wT)y; + cos(wT)V2], (3.20)
and the acceleration bivector is
Q, = —wsh(a){ch(a)[cos(wT)o1 + sin(wT)oy] — sh(a)los}. (3.21)
The null condition (& — 20)2 = 0 gives
t = rch(a) + {&* + a* — 2a[x cos(wT) + y sin(wT)]}, (3.22)

where ® = xo1 + yo, + zo;. Eq. (3.22) is an implicit equation for 7, and is simple
to solve numerically. With 7 determined, one can use the expressions for the retarded
velocity and acceleration to plot field lines for various values of the angular velocity.
These are shown in Figures 3.2 and 3.3 in the [o3 plane. They display many interesting
features, some of which are described in the figure captions.

3.4 Field Momentum and the Stress-Energy Tensor

The energy density contained in an electromagnetic field is
& =YE*+ B, (3.1)
and the momentum density is just the Poynting vector
P=FExB=—-E-(IB). (3.2)

For free fields (J = 0), the integrals of these quantities over space ought to be the
components of a spacetime 4-vector P. This suggests forming the density

(E+ P)yo = L(E*+ B)y+ L(IBE — EIB)v,
— YE+IB)(E - IB)y
= LF(—v0F"0)% = —3F % F. (3.3)

Integrating over space we have

1
Ptot = —5 /|d3[1/'| FW")/OFW7 (34)
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y coordinate

y coordinate

x coordinate

Figure 3.2: Field lines of a rotating charge. The top diagram has o = 0.1 and the
particle velocity tanh(«) is low. A gentle wavy pattern of field lines is produced,
characteristic of electromagnetic waves. At intermediate velocities (bottom diagram,
with o = 0.4) a complicated structure emerges as the field lines start to concentrate
together.



Electromagnetism 37
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Figure 3.3: Synchrotron Radiation. By a = 1 the field lines concentrate into pure
synchrotron pulses as the radiation is focussed into the direction of motion of the
particle.

which we can also write as

Ptot = —% /dAFnF, (35)

where the integral is over the spacelike hypersurface ¢ = constant. The scalar measure
dA = |d®| and n = ~q is the normal vector to the surface. The total 4-momentum P
is independent of the hypersurface over which the integral in Eq. (3.5) is performed
provided the fields fall off sufficiently rapidly at spatial infinity: P,o is a covariant (non-
local) property of the field configuration. To see this, consider comparing P;.; computed
on two spacelike hypersurfaces. For localised fields, we can join these hypersurfaces
at infinity with timelike hypersurfaces and extend the domain of integration over the
entire closed surface, dy. The difference in P, now takes the form

1
APtot = ——/ dA FnkF. (36)
2 Jov
For each component of AP, we have
1 1
Yo (APiot) = ——/ dA (v, FnF) = ——/ dAn-(Fv,F). (3.7)
2 Jov 2 Jov

The divergence theorem enables us to convert the surface integral to an integral over
the enclosed volume V' to get

Y (APot) = —%/V|d4:z;|V-(FWF). (3.8)
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To complete the proof we use
Ve (Fy, ) = (VEy ) = (Fy,(VE)7) (3.9)

and since VI = 0 in vacuum, we have AF,,; = 0. This establishes the result that P,
is independent of the hypersurface.

The construction —%FCLF is the stress-energy tensor of the electromagnetic field. We
write this as

T(a) = —1FaF. (3.10)

The stress-energy tensor T(a) returns the flux of 4-momentum across the hypersurface
perpendicular to a. We continue to use a component-free formulation of linear func-
tions, preferring to encode what happens directly to the input vector a. T(a) is the
relativistic extension of the stress tensor, and it is as fundamental to fields as momen-
tum is to point particles. It is instructive to contrast the neat STA form of Eq. (3.10)
with the tensor formula

T, = 468 F* P Fop + F*F.,. (3.11)

There is little doubt which form best captures the geometric content of the tensor!

All relativistic fields, classical or quantum, have a stress-energy tensor which contains
information about the distribution of energy in the fields (and acts as a source of
gravity). We can illustrate some general properties of these using electromagnetism as
an example. The first property is that the stress-energy tensor is (usually) symmetric.
For example, we have

a-T(b) = —%<anF> = —%<Fan> = T(a)-b. (3.12)

The stress-energy tensor can have a non-symmetric contribution in the presence of
quantum spin.

The second property is that the energy density v-T(v) is positive for any timelike vector
v. Matter which does not satisfy this property is said to be ‘exotic’. The third main
property of stress-energy tensors is that they give rise to conserved currents:

V-T(7,)=0 pu=0...3. (3.13)

We have already proved this for the electromagnetic case.
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Chapter 4

The Dirac Equation

The relativistic wave equation for a spin-1/2 particle is the Dirac equation. This is a
first order wave equation, which is necessary to achieve an equation which is Lorentz
invariant and which has a future-pointing conserved current. The Dirac matrices which
appear in the wave equation constitute a matrix representation of the basis vectors of
4-d spacetime. Since the algebra of the Dirac matrices is isomorphic to the spacetime
algebra, it is no surprise that Dirac theory finds a natural expression in geometric
algebra. The theory of the Dirac equation is a large subject and we will only touch
briefly on a few of its properties here.

4.1 Relativistic Quantum Spin

The relativistic quantum mechanics of a spin-1/2 particle is described by the Dirac
theory. The Dirac matrix operators are

. (10 (0 =& (0]
70_<0_|>7 Vk_<a.k 0) and 75_<| 0)7 (4'1)

where 45 = —19091727%3 and | is the 2 x 2 identity matrix. These matrices act on Dirac
spinor fields, which have 4 complex components (8 real degrees of freedom) at a point.
We follow an analogous procedure to the Pauli case covered in Chapter 4 of Handout 1,
and map these spinors onto elements of the 8-dimensional even subalgebra of the STA.
Dirac spinors can be visualised as decomposing into ‘upper’ and ‘lower’ components,

) = ( ﬁ; ) (4.2)

where |¢) and |n) are a pair of 2-component spinors. We already know how to represent
these as multivectors ¢ and n, which lie in the space of scalars + relative bivectors.
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Our map from the Dirac spinor onto an element of the full 8-dimensional subalgebra
is simply

N )
) = ( o ) & = 4o, (4.3)

The action of the Dirac matrix operators now becomes,

Fulb) = b (p=0,...3)
i) < Ylos
Yslih) = Yo,

Verifying that this map is consistent is a matter of routine computation. One thing
to note is that we now have two ‘reference’ vectors that can appear on the right-hand
side of ©: v9 and ~3. That is, the relative vector o3 used in the Pauli theory has been
decomposed into a spacelike and timelike direction. Since [o3 and ~y commute,

Hul) < Yubyolos = yuplosyy < i), (4.4)

and our use of right multiplication by [e3 for the complex structure remains consistent.

4.2 The Dirac Equation

The Dirac equation is the quantum mechanical wave equation for spin-1/2 particles.
We need to construct a relativistic wave equation for the spinor field ¢ (z), where
¥ 1s an element of the 8-dimensional even subalgebra of the STA. To write down a
covariant equation, the only objects we can place on the left-hand side of ¢ are scalars,
pseudoscalars, and the vector derivative. The simplest equation we could write down
is therefore

Vi = 0. (4.1)
Remarkably, this equation does describe the behaviour of fermions — it is the wave
equation for a neutrino. Any solution to this decomposes into two separate solutions
by writing
=514 03) + 3l —03) =, + 9, (4.2)
since

Vip=0 = ViyL=0. (43)

The separate solutions ¢, and '_ are the right-handed and left-handed helicity eigen-
states. For neutrinos, nature only appears to make use of the left-handed solutions. A
more complete treatment of this subject involves the electroweak theory.
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4.2.1 Aside — The Cauchy Riemann Equations

We have seen the importance of the vector derivative in space and spacetime. It is
instructive to see the form of this derivative in two dimensions. With e;, e; a pair of
orthonormal vectors we have

vV = 61895 + egay. (44)
If this acts on the ‘complex’ field ¢» = u + e;eyv the result is
Ju  dv Jdv  Ju
Vi = [ o= _ 22 4= ) 4.
4 (8:1; 8y> €1t (8:1; + 8y> ©? (45)

The terms here are those that appear in the Cauchy-Riemann equations. It follows
that in two dimensions the geometric algebra equation

Vi =0 (4.6)

is equivalent to demanding that i satisfies the Cauchy-Riemann equations. But the
theory of complex analytic functions is restricted to two dimensions, whereas we can
write down an equation like (4.6) in any space. It is this equation, therefore, which
generalises the concept of analytic functions to higher dimensions. Remarkably, this
apparently rather mathematical reasoning leads us directly to the spacetime Dirac
equation for a massless fermion!

4.2.2 The Massive Dirac Equation

The formal operator identification of 10, with p, tells us that any wavefunction for a
free massive particle should satisfy V) = —m?). We therefore need to add a term
to the right-hand side of Eq. (4.1) which is linear in the particle mass m and which
generates —m?i on squaring the operator. If we think about plane-wave states with
momentum p, we arrive at an equation of the form

pi = mibag (4.7)

where ag is some multivector to be determined. It is immediately clear that ag must
have odd grade, and must square to +1. The obvious candidate is g, so that ¢’ contains
a rotor to transform v to the velocity p/m. We are therefore led to the equation

or, post-multiplying by los,
Vip = —mapls. (4.9)

This is the Dirac equation in its STA form. The more common matrix/spinor form,

(i’%aﬁt + m)|;/)> =0, (4-10)
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is recovered by converting ¥ back to a column spinor, and writing

Vibyo < 4u0ult) (4.11)

for the vector derivative.

4.2.3 Dirac Observables

Our simple reasoning has led us to a first-order wave equation for the spinor wave-
function . To construct a probabilistic interpretation for the theory we must find a
conserved current, which is future-pointing and timelike. We follow a similar procedure
to that in non-relativistic quantum mechanics. Multiplying the Dirac equation (4.9)
by ~ot» on the right gives

(V)00 = —mp Lo, (4.12)

The object on the right is reverse antisymmetric, so we can eliminate it by adding
Eq. (4.12) to its reverse:

(V)00 + (Vi)™ = 0. (4.13)
Finally, we take the scalar part to find

0 = (Vehyorh + hyo(Ve)™)
= (V(¥y0¢))
= V- (001 (4.14)

The object ¥yo is odd grade and reverse symmetric, and so can only have a vector
part. It is the Dirac current J = ¥~pt0, which we have shown to be conserved: V-J = 0.

To establish the nature of the current J, we first form the quantity )¢ which is even
and reverse symmetric. As it can only contain scalar and pseudoscalar parts, we write

v = pel (4.15)

with p > 0 and [ scalars. For p # 0 (which excludes the massless helicity eigenstates
1) we can define a spacetime rotor R by

R=vyp 2 1P/2  RRE=1. (4.16)
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We have now decomposed the spinor 3 into
77/):,01/26[6/23 (4.17)

which separates out a density p and the rotor RE. The remaining factor of (3 is curious.
It turns out that plane-wave particle states have 3 = 0, whereas antiparticle states
have 3 = m (see Section 4.2.4). The picture for bound state wavefunctions is more
complicated, however.

With this decomposition of 3, the current becomes
J = ot = pe!P? Ry R e = pRyg . (4.18)

So the rotor is now an instruction to rotate vy onto the direction of the current, and the
density p dilates R~y R to return the current. The decomposition J = pR~y R confirms
that J is indeed timelike and future-pointing.

The time component of J in the 7o frame, say, is

Jo = v0-J = (yoy0r) => 0 (4.19)

which is positive definite (see Eq. (1.13)). This is interpreted as a probability density
for locating the electron, and localised wave functions are usually normalised such that

/|d3:z;|J0 = 1. (4.20)

The normalisation condition is preserved in time since the current J is conserved. Ar-
riving at a relativistic theory with a consistent probabilistic interpretation was Dirac’s
original goal.

Another important observable in the Dirac theory is the spin vector s = pRysR.
This vector is orthogonal to the current J, and so may be interpreted as representing
the intrinsic spin of the particle. This form for the spin vector of a particle with
gyromagnetic ratio g = 2 was also suggested by the classical model of spin given in
Section 2.3.3 in connection with the Lorentz force law.

4.2.4 Plane-Wave States

A positive energy plane-wave state is defined by
) = e 17T (4.21)
where tg is a constant spinor. The Dirac equation (4.8) tells us that g satisfies

po = Mmoo, (4.22)
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and post-multiplying by ¢ we see that
potho = m.J. (4.23)

Writing tothy = peiﬁ, and noting that both p and J are vectors, we see that we must
have exp(:3) = £1. For positive energy states the timelike component of p is positive,
as 1s the timelike component of J, so we take the positive solution # = 0. It follows
that v is then simply a rotor with a normalisation constant. Splitting the rotor into
a pure boost L and a pure rotation U in the vy frame (see Section 2.1.4),

R=1LU, (4.24)
we see that the boost L taking m~y onto the momentum has
p=mLyLl =mL, (4.25)
which we know from Eq. (1.18) of Handout 10 is solved by
E
[—__Ttpo ____~AmEp (4.26)

2m(m +pyo)]Y/2 [2m(E +m)]'/?
where we have employed the spacetime split pyg = £ + p.

Negative energy solutions have a phase factor of et1os0' with F = ~v9-p > 0. For
these we have —piby) = mJ so it is clear that we now need = 7. Positive and negative
energy plane wave states can therefore be summarised by

positive energy ;/;("')(;1;) = L(p)Ue_I‘TBP'l‘

4.27
negative energy ;/;(—)(;1;) = L(p)UI elosp-x ( )

with L(p) given by Eq. (4.26). These are fundamental components in scattering theory.

4.2.5 The Hydrogen atom

To convert the Dirac equation Vi los = miyy into Hamiltonian form we pre-multiply
by ~o, which produces (in natural units)

10pp) = =V los + mygbyg = —1 Vi + map. (4.28)

Here 7 is a convenient abbreviation for multiplication on the right by [o3, and the bar
operation is defined by

¥ = Yo¥70. (4.29)

This flips the sign of the relative vector and pseudoscalar terms in . The right-hand
side of equation (4.28) is the free-space Dirac Hamiltonian. In the presence of an
attractive Coulomb potential we must add a term going as
Zé? VA
eV(ir)=-—"—=-22 (4.30)

4eqgr r
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where o &~ 1/137 is the dimensionless fine structure constant and Z is the atomic
charge. If we look for stationary states of energy FE, the equation we need to solve
becomes

, YA -
Ey = —iVip — —b + map. (4.31)
r
To solve this equation we start by assuming that the ground state wavefunction is
spherically-symmetric. We should therefore be able to build the wavefunction out of
combinations of real and imaginary combinations of scalars and the position vector @
At this point it is convenient to introduce a standard set of polar coordinates (r, 8, @),
and from these we define the unit polar vectors
o, = sinf(cosp oy + sing o) + cos o3
oy = cos(cosp oy + sing o2) — sinf o3 (4.32)
o4y = —sing oy + cosp os.
For our candidate spinor we take
Y =u(r)+ o.v(r)los (4.33)

where v and v are “complex”, so contain scalar and o3 terms only.

For the action of V we need

o 1 0 1 0

V =o, — 4.34
7o + 750 T s r sinf (baqb ( )
It follows that
\% 1 ! 0 2 4.35
o, 0'9—|— m90'¢sm Ty = - (4.35)
The Dirac equation for our Candldate spinor therefore reduces to
2
E(u+ovlos) =—o0,(u 4+ o0 los)los — —vioslos
" (4.36)
YA
— —(u+ovlos) + m(u—o,vios)
r
Equating the scalar and [o3 parts we obtain
2 VA
Eu=v' 4 20— 2% + mu (4.37)
r r
and the o, terms give
VA
Ev=—u—2%y _mo (4.38)
r

This results in a pair of coupled complex equations for the variables v and v. All of the
coefficients are real, however, so both the real and imaginary parts of v and v satisfy
the same equations. As we have the freedom to set an overall, constant phase, we can
use this to set u (and hence v) to be real.
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To solve our pair of coupled real equations, we employ the familiar technique of sepa-
rating out the large and small r behaviour. First at large r we have

o'~ (F —m)u, u' ~ —(E+ m)v. (4.39)

It follows that, for example,

v" & (m? — E*)v. (4.40)

Since we are looking for bound states we must have £ < m, so that the solutions to
this have exponentially growing and decaying modes. Physically we must restrict to
the decaying mode, so, with § given by

§=vVm?—E? (4.41)

the large r dependence of u and v will go as e~ 97

For the small r behaviour the equations reduce to
ru' & —Zav, ' & Zou — 2v. (4.42)
These can be solved by setting u = ugr® and v = vor®. The equations then reduce to
Bug = —Zawg, Bvg = Zaug — 2vg, (4.43)

and in matrix form we have

(—ga ﬁZf 2) (ZE) - (8) - (4.44)

This equation can only have non-zero solutions if the matrix on the left has zero
determinant. This implies that

428+ (Za)* =0 (4.45)

hence
B=—-1+£+1—-(Za) (4.46)

To choose the appropriate sign we need to consider the density at the origin. The Dirac
current is given by

;/ryo;/; = (u+o,vios)p(u+ lozve,) = (u2 + UZ)’yO + 2uv sinfo 4. (4.47)

2

so the density in the vo-frame is u? 4+ v%. The integral of this over all space must be

finite. Near the origin we have

/d?’:z;J-’yo ~ 4 /rzrwdr, (4.48)
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so we require that 23 > —3. For small Z this forces us to chose the positive root and

B=0p=—1+/1-(Za) (4.49)

For Z > 118 something unexpected happens: the negative branch becomes permissible.
This has some potentially devastating consequences for the nature of the bound state
spectrum. In practice, replacing the point source of charge with a more realistic,
smeared out model of the nucleus pushes the problem up to higher 7 values. As we
shall shortly see, these higher values hide a second problem.

set

So far, our ground state solution has the general form
u = U(r)r e 0 v =V (r)r e (4.50)

On substituting this into our original equation, we find that we can solve the equations
completely with U and V equal to the constants ug and vg. Since this represents the
simplest solution, with a single peak in the density, we expect this to be the ground
state. The equations also fix the energy by imposing an additional algebraic constraint.
This comes from the fact that our two asymptotic equations impose two constraints
on the ratio of ug and vo. Using the first of equations (4.43), which set constraints at
the origin, we have
By

Vg = Z()/uo' (451)
Out at infinity, on the other hand, equation (4.38) gives
dug = (£ + m)vo. (4.52)
Satisfying both constraints simultaneously requires
E—I—m_ Za_ YA (453)
1) B 6+_1—\/1—(Z0é)2‘ ‘
The left-hand side can be written
E+m m*—E>  6/m d/m (4.54)
5 (m—E) 1-E/m 1-/T—(6/mp2 '
so equating both sides we must have § = mZa. It follows that
E=my\1—(Za)? (4.55)

which provides a neat, simple expression for the ground state energy. Removing the
rest mass contribution the binding energy is

E' =m(y/1—(Za)? — 1) & —im(Za)?, (4.56)

where we have assumed that Za is a lot less than 1. Re-inserting the dimensional
constants recovers the familiar expression for the non-relativistic ground state energy.
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The result for the ground state energy is the lowest energy of the general formula

Za)?
E? = 2<1—(—>. 4.57
" n? + 2nv + K2 (4:57)
Here n is a non-negative integer, x = [ + 1 is a positive integer, and v = [([ + 1)? —
(Za)?])'/2. Since a ~ 1/137 is small, for low Z we can approximate to give
Za)? 1
Brom |- £ (4.58)
2 n?42n(l+ 1)+ (+1)2

Subtracting off the rest-mass contribution to the energy we recover non-relativistic
formula

B — (Za)? 1 B mZ%et 1 (4.59)
NE =TT (n+{+1)2  32r2e2h? n'? '

where n’ = n + [ + 1 is the familiar principal quantum number. Expanding to next
order we find that

(Za)? (Za)? n' 3
Exn=—m o —ml (2 - 1) (4.60)

The first relativistic correction shows that the binding energy is increased slightly
from the non-relativistic value, and also introduces some dependence on the angular
quantum number [. This lifts some degeneracies present in the non-relativistic solution.
The various corrections contributing to the energy levels are shown in Fig. 4.1. A more
complete analysis also requires replacing the electron mass m by the reduced mass of
the two-body system. This introduces corrections of the same order of the relativistic
corrections, but only affects the overall scale.

The case of large Z is interesting. As Z approaches 137 we see that the energy becomes
undefined. Another way to see that Z > 137 is unphysical is from the current in
equation (4.47). The current defines a relative velocity of

2uv

u? + v?

v= sinfoy = Zasindo 4. (4.61)
If Za > 1 the velocity in the § = 7/2 plane is greater than the speed of light, which
is also unphysical. In practice, nuclei with Z > 137 are unstable and the large electro-
magnetic fields at the nucleus are sufficient to generate pair production. This has been
observed in high-energy scattering experiments.
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Figure 4.1: Hydrogen atom energy levels. The diagram illustrates how various degen-
eracies are broken by relativistic and spin effects. The Dirac equation accounts for
the fine structure. The hyperfine structure is due to interaction with the magnetic
moment of the nucleus. The Lamb shift is explained by quantum field theory. It lifts
the degeneracy between Sy, and P/, states.



