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Chapter 1

Electromagnetism as a Gauge
Theory

The fundamental forces of nature can all be described in terms of gauge theories. In
the early part of the 20th century physicists noticed that electromagnetic interactions
arise from demanding invariance of quantum wave equations under local changes of
phase. There the position remained until the fifties, when Yang and Mills showed
how to construct theories based on more complicated, non-commuting groups. This
is the basis for the standard model of the electroweak and strong interactions. In this
section we analyse how electromagnetism arises as a gauge theory in the context of
Dirac theory.

1.1 Phase Invariance

Consider the free-particle Dirac equation,
Since lo; commutes with 7o, a global symmetry of this equation is the transformation

b s = 1pelsl (1.2)

where 6 is a constant. This is a symmetry because if Eq. (1.1) holds for v, it also holds
for ¢'. The symmetry is ‘global’ because @ has the same value everywhere in space
and time. The quantity exp(lo38) is the STA version of a phase factor. It can also be
viewed as a rotor, corresponding to rotations in the ~37; plane through angle 26. To
exhibit the relationship between electromagnetism and other gauge theories we write
this phase change as the rotor R, so

W =R = el (1.3)
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Suppose now that # is not a constant, but depends on spacetime position x, § = 6(x).
In this case v’ will no longer be a solution of the equation if ¢ is, since

V' = (V)R + (VO Rlos (1.4)

and so V' £ mi'y. Hence Eq. (1.2) is not a local symmetry of equation (1.1) as 6
cannot be varied arbitrarily from point to point. So why do we want Eq. (1.2) to work
as a local symmetry? The answer lies in the structure of the physical statements that
can be extracted from the Dirac theory. There are two main types:

L. The values of observables, such as the current J or spin s. These are bilinear in
Y, such as J = 19, and so are invariant under phase changes.

2. Statements about the equality of two spinor expressions, for example

=1+ . (1.5)

This might decompose ¥ into two orthogonal eigenstates of some operator.

In both cases, if all spinors pick up the same locally-varying phase factor (rotor) then
the physical predictions are unchanged.

1.2 Covariant Derivatives

Now that we have understood the motivation, we must find how to modify Eq. (1.1) in
order that phase changes become a local symmetry. We first return to the component
form of V as

V =10, (1.6)

This separates out the vector and derivative characteristics of V. (A coordinate-free
development of the ideas of this section does exist, but will not be used here.) The
equation for v’ now includes the term

VY =" (0,0 R+ vO,R) . (1.7)

We clearly need to modify the ¥V operator to be able to cancel out the term in the
derivative of R. If ¢ satisfies the original equation, we find that ¢’ satisfies

V' los — "' (RO, R) s = mip'y. (1.8)

The term E’@MR is a bivector, as we know from all our work on rotor equations. To
remove this term we must add a new, bivector-valued term to the partial derivative.



Electromagnetism as a Gauge Theory 3

This new field is called a connection, and is usually written €,. We add this term to
the partial derivative operator to define a covariant derivative D,, where

D = aﬁb + %¢Qu (1'9)

(the factor 1/2 is inserted for later convenience). Our modified Dirac equation now
reads

YD, plos = mipy, (1.10)
and this is the equation we need to ensure has the desired local symmetry properties.
The behaviour we require of Eq. (1.10) is that under a local rotation, the pair ¢ and

,, should transform in such a way as to generate a new solution from the original
solution. With ¢’ = ¢)R the transformed equation must read

’y“DL;//IO'g) = (90" + %;//QL)[O’;),

. . , , (1.11)
=YW R+ YO, R+ 3¢ RO ) o3 = my'y.
For this to hold, given that miyy = v* D, ¢ [os, we require that
TR, + 0.R = QR (1.12)
)
= RkQ,R—2Rk0,R. (1.13)

This defines the transformation properties of the connection field €2, under local
changes of gauge. The connection €2, is bivector-valued, and under a change of gauge
it picks up an extra bivector term from the derivative of the rotor R. In general, €, is
also rotated by R, but this does not change its grade.

In writing the transformation law (1.13) we are not asserting that the connection can be
written in the form —2];’8#%. If it could, we could find a gauge where the connection
vanished and we would be back where we started — with no new physical effects.
The essence of the gauging process is that the Q, are arbitrary, position-dependent
bivector functions. They transform to pick up the derivative of a rotor, but they are
not restricted to this form. Indeed, it is the difference between Q,, and the derivative
of a rotor field that gives rise to physical effects. We will see how to quantify this
difference in Section (1.4). Since the gauge fields bring with them new dynamical
degrees of freedom, further equations must be found to solve for them. These new
equations must also be invariant under local changes of gauge, and this requirement
places stringent restrictions on the nature of physical interactions.

1.3 The Minimally Coupled Dirac Equation

Returning to electromagnetism, we are concerned with the restricted class of rotations
which take place wholly in the y2v; plane. In this case, writing R = exp([lo38), we
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have
—2RO,R = —2e71930 5 9130 [6. — 95 010, (1.14)
The connection we introduce must be restricted to this general form, so we can write
0, =aA,los, (1.15)

where A, are the components of a spacetime vector, and « is some coupling constant.
Under gauge transformations, the A, coefficients transform as

aA, = aAl = aA, — 20,0, (1.16)
or, in coordinate-free notation

aA— aA' = aA —2V0. (1.17)

At this point we are back on familiar ground. The connection coefficients A, are just
the coefficients of the electromagnetic vector potential A, and under a local change of
phase A picks up the derivative of the phase variable. This has no physically observable
consequences because the electromagnetic field strength F' = VA A is unchanged if A
is replaced by A + V.

We are now in a position to reassemble our full, covariant Dirac equation. We have
YD = (01 + %O‘AMZJUS) = Vi + %QA¢1037 (1.18)

where we see that that connection combines with the frame vectors v* to assemble a
vector A multiplying ¢ from the left. The Hamiltonian from this operator contains
a new term in ayyA/2, and the scalar part of this is aV/2. It is clear that for an
electron we require a@ = 2e, where ¢ = —|¢| is the (signed) charge of the electron, so
the ‘minimally coupled’ Dirac equation is

Viplos — eAp = miyo. (1.19)

The equation is minimally coupled because by adding an interaction term solely in
A we are making the simplest possible modification to the original equation. The
minimal coupling principle can be summarised as ‘replace all partial derivatives with
covariant derivatives’. The resulting equations will be gauge-invariant. There is nothing
preventing us, in principle, from adding extra gauge invariant terms. We could, for
example, add further terms in F, or F? multiplying 1), and the equation would still
be gauge invariant. It appears, however, that nature does not employ this possibility.
Why this should be so is far from clear.

1.4 Field Strength

The introduction of gauge fields introduces new physical degrees of freedom, and these
need to satisfy their own dynamical equations. The key to constructing these is the
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field strength. This encodes the content of the gauge fields which is not generated by
gauge transformations alone.

The field strength tensor is found in general by commuting covariant derivatives. This
defines the object

(D D] = Dy(0,80 + 590) — Dy(0ut + 59Q,)
= 2(0,, — 9,0, — Q,xQ,), (1.20)
where we recall that Ax B = (AB — BA)/2. Despite the fact that we formed com-

mutators of derivatives on v, all of the derivatives of ¢ have cancelled. The resulting
object is the gauge field strength, F,,,

Fo = 0,0, — 9,0, — Q. xQ,. (1.21)

This is bivector-valued, and is antisymmetric on its indices u, . This can be viewed
as a linear mapping of bivectors onto bivectors. The transformation properties of the
field strength are easily established from

(D, D" = 54'F,. (1.22)
This involves terms going as (setting ¢’ = ¢ R)
DL(DL) = DL(DLOR) = (D, D) R (123
and it follows that
RF', = F,,R. (1.24)

The field strength tensor therefore satisfies the covariant transformation law
F, =RF.LR. (1.25)

This is the transformation law for the field strength in a general Yang-Mills gauge
theory.

Specialising to the case of electromagnetism, where 0, = 2eA,los, we find that the
term multiplying ¢ is

e(@MAl,Iag — al,AMIO':g) — 26214#141,[0'3 X [0'3

= e(a,uAy - ayAM)[O':g = G(VUAVM)(VAA)[O.S (126)

This is a function which maps the bivector 4, A+, linearly onto a pure phase term.
The electromagnetic case has two unique features which simplify the nature of the
field strength. The first is that the commutator term €, <2, vanishes, because all the
bivector terms lie in the same plane. This means that the field strength is linear in
A. This is not the case for more complicated groups, and is one reason why the strong
and gravitational interactions are so complicated to compute. The second feature is
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that the transformation law (1.25) has no effect, since the bivector lo5 is unaffected
by rotations in its own plane. These two features of electromagnetism mean it is
convenient to lose the mapping nature of the field strength and instead work directly
with the bivector F' = VA A. For more complicated systems this is not appropriate.

In forming the commutator of covariant derivatives we have extracted the correct field
strength, F' = VA A. This encodes the physically measurable content of the electro-
magnetic field, and vanishes if A is a pure gauge field, A = V¢. The field equations for
electromagnetism are written directly in terms of F', and as such are guaranteed to be
gauge covariant. (If fact, due to the special nature of electromagnetism, the equations
are gauge invariant.) The relevant equation is VF = J, where the current J is also
gauge invariant.

1.5 Electroweak Interactions

The two main observables for the Dirac spinor 1 are the current J = Yot and the
spin vector s = ¥~v31p. If one looks for rotors which leave both of these invariant, we
are restricted to

R’Yoé = Yo, R’)/gé = V3. (127)

The only rotors satisfying both these equations are those for rotations in the /o3 plane
and, as we have just seen, gauging these gives rise to electromagnetic interactions.

If we remove the restriction about the spin current, and just look for transformations
which leave J invariant, we introduce a wider set of gauge fields. Now our only restric-
tion is Ryo R = o, which defines the group of spatial rotors in the rest-frame of vo. The
group of rotors in three dimensions form a special group denoted SU(2). This is the
group of 2 x 2 complex unitary matrices with determinant 4+1. The fact that spatial
rotors form this group can be seen by writing them in terms of the Pauli matrices.

The group SU(2) is one of the main building blocks of the electroweak theory. The
second main ingredient is a further group of phase transformations, sometimes simply
denoted as U(1). This further group can be incorporated by extending the allowed
transformations to include exponentials of the pseudoscalar I. These also leave the
current unchanged as

el 012 5, P12 = . (1.28)

Duality transformations such as this are not symmetries of the full, massive Dirac
equation, but they are symmetries of the massless equation. The electroweak theory is
constructed from an abstract internal set of SU(2) and U(1) transformations, applied
to the massless Dirac theory. Mass is then introduced in a gauge-invariant way through
a further coupling to a new field, called the Higgs field. The details of this are outside
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the scope of this course, but it is highly suggestive that the gauge groups of electroweak
theory can be justified simply from the symmetries of the Dirac current.



Physical Applications of Geometric Algebra



Chapter 2

Gravity as a Gauge Theory

Building on the success of gauge theories such as the standard model of particle physics,
many physicists and mathematicians have attempted to formulate general relativity
(GR) as a gauge theory. These attempts have met with mixed success. By the sixties
it was established that GR could be formulated as a gauge theory, but the equations
obtained always ended up looking extremely complicated. Certainly more so than
those from the traditional view of gravity arising from spacetime curvature. Geometric
algebra provides a solution to this problem. Utilising the full structure of the spacetime
algebra (STA), it is possible to construct gravity as a gauge theory in a formalism that
is actually easier to understand and work with than the curved-space viewpoint.

2.1 Gauge Principles for Gravitation

Our aim is to model gravitational interactions in terms of (gauge) fields defined in the
STA. Already, this is a radical departure from GR. The STA is the geometric algebra
of flat spacetime, and the introduction of fields cannot alter this basic property. What
then are we to make of the standard viewpoint that spacetime is curved? The answer is
that all of the arguments which lead to this conclusion involve light paths, or measuring
rods, or such like, and all of these processes are also modelled by fields defined in
the STA. Since all physical quantities correspond to fields, the absolute position and
orientation of particles or fields in the STA is not measurable. The only predictions
that can be extracted are relative relations between fields. Ensuring that this property
is true locally means there is no conflict with any of the principles by which one is
traditionally led to GR.

The preceding considerations become clearer if we consider relations between quantum
fields. Suppose that 11 (z) and ¥q(2) are spinor fields. A physical statement could be
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a simple relation of equality.,

Pi(x) = Pa(z). (2.1)
But all this statement says is that at a point where one field has a particular value,
then the second field has the same value. This statement is completely independent
of where we choose to place the fields in the STA. And, more importantly, it is totally
independent of where we choose to locate other values of the fields. We could equally
well introduce two new fields

Pi(x) =i(a’),  Pyla) = a(a’), (2.2)
where 2’ is an arbitrary function of position . The statement ¢](z) = }(x) contains
precisely the same physical content as the original equation.

The same picture emerges if both fields are acted on by a spacetime rotor at a given
point, giving rise to new fields

Py = Ripy, by = Ribs. (2.3)

Again, the statement ¢»; = ), has the same physical content as the original equation.
Similar considerations apply to the observables formed from 1, such as the vector
J = ¥y91b. Replacing ¥ by v’ produces the new vector J' = RJR. However, any
physically-defined directions in spacetime must also be derived from fields, so these
directions will rotate in the same way as J. Only the relative orientation of physical
vectors is measurable; the absolute direction of vectors in the STA has no physical
significance. We now have a clear mathematical statement of the invariance properties
we want to establish. The next task is to study the form of the gauge fields needed to
enforce this invariance.

2.2 Position Invariance

Suppose that 2’ = f(z) is some arbitrary (differentiable) map between spacetime posi-
tion vectors. The transformation we are interested in is where the field ¥ () is moved
around to the new field

P(z) = $(e'). (2.4
Since physical events must be identified by what happens there, e.g. by the values of
fields at that point, the map 2’ = f(x) can be interpreted as a reparameterisation of
physical events by position vectors in the STA. With this interpretation, the event is
originally represented by ', but this gets mapped to x under the reparameterisation.
We call this this operation of moving fields around in a general manner a ‘displacement’.

As with electromagnetism, we now need to consider the behaviour of the derivatives of
y. To help with this, we introduce the new coordinates

o' =t (2.5)
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In terms of these we can write ¢'(x#) = ¢ (z*'). The derivatives of the displaced field

are now

0 = Db’y = (D) (). (2.6)
The Jacobian factor of d,2"" is an unwanted term which must be removed by adding
a suitable gauge field. Since this term acts directly on the partial derivatives it cannot
be removed by introducing a bivector connection. The only alternative is that we must
allow the v* vectors to transform in such a way to remove the unwanted term. The
gauge process for displacements is therefore to replace the constant v* frame with a
set of 4 vector gauge fields ¢g(z),

= gt (). (2.7)

These are defined to transform in such a way as to remove the unwanted extra term.
(The details of this are not discussed here.) At first, replacing the frame vectors with
arbitrary fields appears to be a very strange step to take. But if we think about this,
converting the v* frame vectors to gauge fields is precisely what we want to do. With
the vectors now treated as gauge fields in the STA, they cease to be physically observ-
able, in the same way that the electromagnetic vector potential A is not observable.
This removes any dependence on a fixed, global inertial frame, so achieving one of
the key goals of general relativity. And in achieving this we have not had to set foot
outside the spacetime algebra. Introducing these new gauge fields will also entail the
introduction of new physical degrees of freedom, which are described in later sections.

2.3 Rotations

The second symmetry we require is that our wave equation should be invariant under
the transformation

¥ O = Reb, (2.9)

where R is an arbitrary, position-dependent rotor in spacetime. (We refer to the rotor R
as generating rotations, understanding that boosts are now a special case of a rotation.)
So far, our Dirac equation has been modified to read

g ()0, oy = mipyo. (2.9)

If R is a constant rotor, this equation is only invariant under 3 — R if we also
transform the ¢* vectors as

¢'(x) =+ ¢"(x) = Rg"(0) 2. (2.10)

Since the ¢* are (gauge) vector fields we have introduced, we are free to set their
transformation properties under rotations. We therefore define the ¢* to transform
according to (2.10) under arbitrary local rotations.
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The final step is to modify the partial derivatives in Eq. (2.9) to ensure invariance
under local rotations. Now we are back in the familiar territory of Chapter 1, but with
the important difference that the rotor now acts to the left of ¥». We replace the partial
derivatives with the covariant derivatives

Dyp = 0, + %Qﬁb (2.11)
The gauge fields have the transformation law
O, Q= RO, R —20,RR. (2.12)

Since R is an arbitrary rotor there is now no constraint on the blades that €, can
contain, so 2, has 6 x 4 = 24 degrees of freedom.

Our final, full covariant Dirac equation now reads
g D blos = miy,. (2.13)

This incorporates all the gravitational gauge fields and is the appropriate, relativistic
equation for a Fermion in a gravitational background. The equation is covariant under
the simultaneous replacements

i R, g"— R¢"R, Q,— RQ,R—20,RR. (2.14)

The equation is also fully covariant under local displacements. This is slightly harder
to prove, and the details of this are not covered here.

2.4 Covariant Derivatives for Observables

Having seen what the covariant derivative of a spinor looks like, it is a simple matter
to establish a formula for the derivative of the observables formed from a spinor. In
general, these observables have the form

M = T4, (2.15)

where I' is a constant multivector formed from combinations of vy, v3 and [e3. The
observable M inherits its transformation properties from the spinor ¢, so under dis-
placements it transforms as

M(z) — M'(x) = M(z") (2.16)
and under rotations it transforms as

M — M' = RMR. (2.17)



Gravity as a Gauge Theory 13

Multivectors with these transformation properties are said to be covariant.

If we now form the derivatives of M we get
DuM = (9,0)T + T (utp)™. (2.18)

This immediately tells us how to construct a covariant derivative for M. We simply
replace spinor directional derivatives with their covariant version and form

(D) + 9T (D)™ = 9,070 + T (9,10)~ 4 10,070 — LTy,
= aﬂ(@bri’) + Q% (@Z’FJ’) (2.19)

The covariant derivative for obhservables therefore takes the form
DM =0,M+Q,xM. (2.20)

This is the form appropriate for acting on covariant multivectors, including observables
formed from spinors. In keeping with standard notation we use the same universal
symbol D, for the covariant derivative, and let the type of object being differentiated
dictate the explicit form of D,.

The bivector commutator in (2.20) has two important properties. This first is that it
is grade preserving, so the full D, operator preserves grade. The second is that

Qux(MN)=(Q,xM)N+ M(Q,xN). (2.21)
This ensures that D, is a derivation, that is, it satisfies Leibniz’ rule
D,MN)=(D,M)N+ M(D,N). (2.22)

Both of these are necessary properties for D, to be a suitable generalisation of a
directional derivative.

2.5 The Gravitational Field Equations

In forming a Dirac equation with all the desired local symmetries we have been forced
to introduce two new gauge fields. A set of four vector fields ¢* and a set of bivector
fields ©,. In total this is 4 x 4 + 4 x 6 = 40 degrees of freedom! We are now faced
with the daunting task of constructing field equations for all of these variables. For the
rotational gauge field these equations will involve the field strength, but the equations
for our generalised vectors are not so obvious. To form suitable equations we start by
introducing the dual vectors g, defined by

g"-g, = 6" (2.23)
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(Note that this employs the standard STA inner product — there is no ‘curved space’
product to worry about.) Suppose that we have a general curvilinear coordinate system

a*, with frame vectors
e =Vat, e,=0,x. (2.24)

In terms of these we can write V = e*d,. The ¢, vectors satisfy
oue, — 0ye, = [0,,0,]xz = 0. (2.25)

The g, vectors must satisfy some covariant extension to this equation, so we focus
attention on the object

Dyug, — D,g, = S,u. (2.26)

This defines a covariant vector, S,,, which is antisymmetric on its 2 indices. The
simplest possible field equation we could write down is to set the right-hand side to
zero, so that

D,g, — D,g, = 0. (2.27)

This is borne out by a Lagrangian analysis, which shows that S, (x) is proportional
to the quantum spin density at x. For any given solution of the field equations, the
quantum spin density will be of the order of h/L?, where L is some characteristic
length defined by the fields. Since S,, has dimensions of (length)™!, the constant of
proportionality between S, and the quantum spin density has the same dimensions as
G//c, where (i is Newton’s constant and ¢ is the speed of light. These are the natural
constants to describe the scale of gravitational interactions in a relativistic theory,
so S,, should be of the order of hG/(cL)?. The combination AG/c* has dimensions
of (length)?. Tts square root is the Planck length which evaluates to 1.6 x 107**m.
The Planck length sets the fundamental length scale for quantum gravitational effects
— it 1s clearly far smaller than any scale currently accessible to experiment. This
dimensional argument shows that, even in the presence of quantum spin, LS, will be
tiny on length scales large compared to the Planck length, and can be legitimately set
to zero.

In setting S, to zero, we might expect this to imply that the g, are pure gauge fields.
But in forming D,g, — D, g, we are coupling in the , field, so cannot set the g, to
be a coordinate frame. It is precisely this coupling which generates some dynamics. It
is also Eq. (2.27) that ensures that the equations we derive are (locally) equivalent to
those of GR! The revealing feature of this approach is that GR is only recovered in the
limit where quantum interactions are ignored. This has a number of implications for
attempts to unite quantum theory and gravity.
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2.6 Gravitational Field Strength

We follow the standard prescription of commuting covariant derivatives to form the
field strength. This gives

[DuvDu]¢ = %Ruu¢ (228)

where

Ruy = 0,0, — 8,9, + Q x Q.. (2.29)

This is a bivector-valued function, and is antisymmetric on the indices u, . This is the
gauge theory version of the Riemann tensor. We can view this as a linear map from
the bivector g, A g, onto the space of bivectors. Since there are no restrictions on the
blades present in R, , this linear function has 6 x 6 = 36 degrees of freedom.

We started with 40 degrees of freedom, and so far have introduced the field equations
D,g, — D,g, = 0. (2.30)

The left-hand side here is vector-valued and antisymmetric on the two indices. This
equation therefore contains 4 x 6 = 24 separate scalar equations. We therefore have a
further 16 equations to find, so cannot write down an equation directly for R,,. The
solution, which again is justified by a rigorous Lagrangian analysis, is to introduce the
contracted function

R, = ¢"R,,. (2.31)

This is a vector-valued function with a single index, which can be viewed as a linear
mapping from vectors to vectors. This potentially has 16 degrees of freedom, and is
the gauge theory analog of the Ricci tensor.

We still need one further ingredient before writing down our second field equation. We
carry out a final contraction to define the Ricei scalar

R=g"R,. (2.32)

This quantity is gauge invariant and forms the Lagrangian for an action principle
leading to the gravitational field equations. The second field equation can now be
written

R. — $Rg, = 87GT,. (2.33)

The right-hand side denotes the stress-energy tensor for the matter fields. This equation
therefore relates the gravitational field strength to the energy content of the fields
present. In relativistic physics, energy is a source of gravitation, and not just mass.

In the absence of any matter (appropriate, for example, when describing the gravi-
tational fields in the vacuum region outside a star), the gravitational field equations
reduce to

R, — 1Rg, = 0. (2.34)
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If we contract this equation we find that
¢"R,—1¢"g.R=R—-2R=—-R=0, (2.35)
so our vacuum equations can be more compactly stated as
R, =0. (2.36)

Equations (2.27) and (2.33) complete our set of gravitational field equations. The
challenge now is to solve them!

2.7 Relationship to General Relativity
Non-Examinable

This section is included for general interest, particularly for those who have already
attended a course in GR. Clearly, many of the structures introduced so far have coun-
terparts in GR, but equally there are some key ingredients apparently missing. The
first of these is the metric. This is defined simply by

Juw = Gu-9v- (237)

This construction is highly revealing. It shows that the metric behaves as a scalar
under the rotation gauge group. Since GR is traditionally formulated entirely from the
metric, it is blind to the existence of the rotation gauge group. This simple fact held
back the development of gravity as a gauge theory for many years. The second key
ingredient is the Christoffel connection. This is recovered through the definition

[, =" (Dugy). (2.38)

This is automatically antisymmetric on its indices u and v. This definition is also
the obvious covariant extension of the role of the Christoffel symbol in flat space for
holding information about the derivatives of a curvilinear set of frame vectors.

The full tensor forms of the Riemann and Ricci tensors are equally simply recovered:

Ruupcr - (QM/\gu) Rcrp (239)

R, =g.R,. (2.40)

A final question relates to the symmetries of these various tensors. Some of the sym-
metries of the Riemann tensor are now obvious as they come directly from the bivector

nature of R,,. A final set of symmetries require slightly more work. We start with the
result that, for covariant multivectors,

[D,, D,]M = R, x M. (2.41)
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A special case of this is

[Dys Du]gn = Ry (2.42)

But we can also write

D,(Dugy) — Dy(Dugy) = Du(Drgy) — Dy(Drgy) (2.43)
= [Dm D/\]gu - [Duv D/\]gu + D/\(Dugu - Dugu) (2'44)

so, rearranging, we find that
g/\'Rp,u —I'gu'R/\p, —I'gu'RU/\ = 0. (245)

This vector vanishes for all antisymmetric combinations of 3 indices, which results
in 4 x 4 = 16 scalar equations. These reduce the number of independent degrees of
freedom in the Riemann tensor from 36 to the familiar 20 of GR. Contracting this
equation with ¢* establishes

(9" Agv)-Rau + (9" Agu)-Roa = =g Ry + 9uR, =0 (2.46)

This establishes that the Ricci tensor is symmetric, R,, = R,,. It follows that the
stress-energy tensor must also be symmetric, which turns out to be the case in the
absence of spin. Much of the apparatus of GR is based on this assumption that
quantum spin effects can be ignored. This assumption is necessary to set

D,g, — D,g, =0, (2-47)

without which much of the elegant structure of GR evaporates! In fact, quantum spin
is a well-observed fact of the physical world, even if it rarely leads to measurable grav-
itational effects. Many of the recent developments in GR have consisted of attempts
to incorporate spin effects while retaining as much as possible of the curved space GR
formalism. This has met with mixed success, and some researchers are now considering
the alternative of reverting to understanding gravity as a (gauge) field theory in a flat
(unobservable) background spacetime.
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Chapter 3

Point Particle Trajectories

The gauging arguments we have applied to spinor fields also apply to particle tra-
jectories, and enable us to write down a covariant equation for a point particle in a
gravitational background. This equation exposes the link between the gauge theory
approach to gravity and General Relativity (GR).

3.1 Trajectories and Tangents

A path in spacetime can be written as x(\), where X is some parameter along the tra-
jectory. Our gauge principles imply that the actual positions along this trajectory can
have no significance. But if the path is irrelevant, what happens to the velocity? The
velocity is usually encoded in the tangent vector, but this cannot have any relevance
if the path is essentially arbitrary. The answer is to convert the tangent vector to a
suitable gauge-covariant vector. To see how, we write

dx dxt

A similar argument to that applied to the Dirac equation tells us that we must replace
the v, vectors with the gauge fields g,(x). We therefore define the covariant velocity
vector

v = %gu(:ﬁ). (3.2)

Under displacements of the trajectory the velocity vector v is simply carried from
one position to the next (details not covered here). Under rotations v inherits the
transformation law of the g,(x) vectors. We know that

Gu-g" =6, (3.3)
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and under arbitrary rotations g* — Rg*R. It follows that the appropriate transforma-
tion law for the g, is also

gu — g, = Ry, R. (3.4)

The velocity vector v must transform the same way, so under rotations
v v = RuR. (3.5)

The vector v is therefore a genuine covariant object. Its absolute direction in the STA
has no significance, since it is gauge dependent, but the relationship of v to other
covariant fields does produce invariant physical predictions.

3.2 Inertial Observers and Free Fall

In the absence of gravitational effects, inertial observers are those whose velocity vector
is constant. The equation defining such an observer can therefore be written

D\(Dr(N)) = 0. (3.6)

To include gravitational effects we simply make this equation covariant. The equation
will then define the paths of observers who are not acted on by any force other than
gravity. These are observers in free fall, and they generalise the notion of an inertial
observer to gravity. To form the covariant version of (3.6) we first replace dyx(X) with
the vector v. As v — RvR under rotations, we must also convert the partial derivative
of v to a covariant derivative. To see how to do this we first write

_ 0"
)

This tells us precisely what to do. We simply replace the 9, by the covariant derivative,

) d,. (3.7)

D, producing the equation

Ozt Ozt
%(aﬂv +Q,0)=0\w+ %QM'U = 0. (3.8)
On contracting this equation with v, and using (2, - v)-v = 0, we find that v? is

constant. We therefore choose the parameter for the trajectory such that
v? =1. (3.9)

This defines the proper time for an observer along the trajectory. This definition
is gauge invariant, and reduces to the familiar relativistic definition in the absence
of gravitational fields. If 7 denotes the proper time, our trajectory equation can be
written

O+ ", v =0, v? =1, (3.10)

where the overdots denote differentiation with respect to proper time 7.
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3.3 The Metric and GR

The equation (3.10) has one immediate feature — it is independent of the mass of the
particle. It follows that, in the absence of external forces, all particles follow the same
paths, whatever their mass. This is the gauge theory implementation of the equivalence
principle. 1t is also possible to derive this result by taking the appropriate classical
limit of the Dirac theory. This is a particularly attractive feature of the gauge theory
viewpoint, as it shows that all the key features of GR are derived from a single principle
— that of local gauge invariance applied to the Dirac theory. The equivalence principle
is a consequence of the gauge theory approach, rather than having to be introduced as
an independent physical principle.

Since v? = 1 defines the proper time parameter, the proper time (or proper distance)
along a path is defined by the invariant integral

T2

s = / V|03 dr
7—1
T2

B / |3 g9, dr

7'1

- / 19,0+ gt da”|M? | (3.11)

(|

A comparison with the equivalent formula in GR enables us to read off the metric as

Guv = Gu-9v- (312)

One can show that the equation of motion (3.10) is obtained by looking for paths
which minimise the proper distance between points. In GR the equivalent equation
is called the geodesic equation. Equation (3.10) is therefore the gauge theory analog
of the geodesic equation, and both approaches define the same trajectories. This goes
some way to establishing the equivalence between the gauge theory of gravity developed
here and GR. The remaining step is to prove that a set of gauge fields ¢, () satisfying
the gauge field equations define a metric through (3.12) which satisfies the Einstein
equations. This is indeed the case, provided spin effects are ignored, but this important
result is not easy to prove and is not covered here.
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Chapter 4

Spherically-Symmetric
Gravitational Fields

A solution to the field equations in gauge theory gravity amounts, in principle, to
specifying the ¢, vectors. These in turn define the connection bivectors €1, through
the equations

D,g, — D,g, = 0. (4.1)

These give 24 equations for the 24 degrees of freedom in §2,,, and can be solved by linear
algebra alone. Once the bivectors are known, we simply calculate the field strength
and contract it to find R, and the Ricci scalar R. These in turn specify a stress-energy
tensor, and we simply assert that we have solved the field equations for the resulting
matter distribution! Unfortunately, this is back-to-front, as we really want to specify
the stress-energy tensor first and find the gravitational fields it generates. This is far
more difficult and today only a handful of exact solutions are known. Of these, the
most important is that for a spherically-symmetric point source, which is known as
the Schwarzschild solution. This is the gravitational analog of the Coulomb potential
in electromagnetism. In this final chapter we focus on a number of properties of this
important physical solution.

4.1 The Solution

In writing down the g,, vectors for a given solution we have considerable gauge freedom
at our disposal. Both displacements and rotations affect the appearance of the g, and
we can take advantage of this by making gauge choices to simplify the g, as far as
possible. The simplest form yet found for the Schwarzschild solution has

go =Y +V2GM/r)e,, g =i, (4.2)
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where 1 = 1...3. These vectors differ from the original 7, frame through the addition
of a single term to 7o. This term is \/(2GM/r)e,, where

1 .
= -z 4.3
€ Ty (4.3)

is the unit radial vector and r is the (Euclidean) distance from the origin. The quantity
V(2GM/r) defines the Newtonian free fall velocity for observers at rest at infinity. We
shall see that aspects of the Newtonian behaviour are retained in the full, relativistic
treatment.

From here on we will work in natural units where G = ¢ = h = 1. The factors of (&
can be easily reintroduced, since they always go with the mass M. Various arguments
can be employed to justify the form of the vectors in (4.2), but only direct calculation
can confirm that these define a vacuum solution. We start by forming the reciprocal
frame to the g,, which is given by

=" g =7 = VeM/r)('/r)A. (4.4)
The connection hivectors are found to be
M
QO = T—QO'T (45)
1 /2M\'?
Q, = ~5 (T) (20, — 30,0, 0,), (4.6)
where
o, = €. (4.7)

Verifying that these solve (4.1) is left as an exercise. Notice that the g term, which
governs acceleration, goes as the Newtonian expression G M/r?. The following form of
the connection bivectors is convenient in calculations:

—1 /2M\'?
(—) (294 A0 + 39, €, 0). (4.8)

a 2r r

The next step is compute the terms in the Riemann tensor. This is laborious, and best
done with the aid of a symbolic algebra package, but the end result is strikingly simple,

M
Rp,l/ — _ﬁ(gu/\gl/ + 30-TgMAgV0-T)‘ (49)

The immediate question, then, is why is this a solution?

The vacuum equations are

g" R = 0. (4.10)
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An advantage of the form of (4.9) is that we can verify these equations in a handful of
simple steps. We first compute

9" (9.N0.) = 4g, — 6,9, = 39, (4.11)
For the remaining term we need
g"eVogu = —€rg" Yogu + 29" - € Yogu

= ¢,%9" 9 — 2¢:(9"70)g, + 270€,
= 4de,vo — 26,9 + 2v0e, = 0. (4.12)

Combining these we find that
9" (guNgy + 30,9, Ng,0,) =39, + 39" 0,(9.9, — 9. 9.) 0

— 391, - 3gugﬂ'gyo-7’0-7’
=0 (4.13)

which confirms that we have a vacuum solution. The fact that R,, # 0 also confirms
that our solution is non-trivial — there are genuine physical effects associated with the
solution. The factor of GM/r® controlling the magnitude of the field strength is to be
expected, since the Riemann tensor measures the strength of tidal forces.

4.2 Point Particle Trajectories

For radial motion we have x(7) = t(7)y + r(7)e,, so

v=1go + r—gi = tyo + (7 + V(2M/r)t)e,. (4.14)
The constraint v2 = 1 also allows us to write

v = cosh(a)yo + sinh(a)e, = 77 7, (4.15)

SO

b= o, (4.16)

The geodesic equation (3.10) includes the term #"Q,. For the connection of equa-
tion (4.8) this simplifies to

—1 [2M\"?
Q) = — (—) (2vAy + 3v-e,0,). (4.17)

2r r

For radial motion this reduces to

1 2M N\
Q, = sinh(oz)Q— (—) o, (4.18)
r

7
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so the free-fall equations reduce to the set

{ = cosh(a)
r = sinh(a) — \/(2M/r) cosh(a) (4.19)
& = —sinh(a)/(2M/r)/(2r).

We arrive at a set of three first-order equations, which are sufficient to specify a unique
trajectory, given initial values of position (r and ¢) and velocity (tanh «).

One immediate solution to the radial equations is to set @ = 0. This solution has
r=—(2M/r), (4.20)

which represents a particle in free fall from rest at infinity. The solution also has { = 1,
so the time coordinate f now has a physical interpretation: t is the proper time as
measured by observers in free fall from rest at infinity. This particular choice of time
coordinate has many attractive features. Furthermore, the velocity for these freely
falling observers is simply v = ~o! This is one of the most convenient features of this
gauge.

Taking the second derivative of the r equation, we find that

GM

2

P= (4.21)
so the Newtonian force law is still present. The differences with Newtonian physics now
lie in the meaning of the variables. The variable r is now a local observable, fixed by
the magnitude of the tidal force. Similarly, the derivatives in 7 are taken with respect
to the local particle proper time, rather than a global Newtonian time. This transition
from global to local variables is in keeping with the gauging process. Often the trick is
to find a gauge and a set of global coordinates such that the values of the coordinates
coincide with local, physical observables.

The equation for 7 contains a further surprise. On writing
r/ cosh(a) = tanh(a) — \/(2M /1) (4.22)

we see that if 2M /r > 1 then 7 is necessarily negative. There is no way for the particle
to escape. The place where this happens, r = 2M = 2GM/c?, is the radius where
the escape velocity /2GM/r is greater than the speed of light. This is called the
Schwarzschild radius, though the possibility of bodies becoming so dense that light
could not escape was first suggested by John Michell (~ 1782).
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4.3 Photon Paths

Radial photon paths are even easier to compute than for massive point particles. Pho-
tons satisfy the same geodesic equation (3.10) except that now we have

v? = 0. (4.23)
For radial paths we still have
v =1y + (7 + /(2M/7)i)e,, (4.24)
so the null condition v? = 0 forces
i ==%(r+/(2M/r)i). (4.25)

The different signs correspond to ingoing and outgoing photons. The equations can be
summarised as

dr
O M) + {

+1 outgoing (4.26)

—1 ingoing,

and these are straightforward to integrate.

A summary of the possible radial trajectories is contained in Figure 4.1, which includes
both particle and photon tracks. An immediate feature is that for » < 2M all photon
paths point inwards. This confirms that not even light can escape from inside the
horizon of a black hole.

4.4 The Dirac Equation

As a final application, we return to the Dirac equation and include the new gauge
fields. We require the frame vectors in the form of (4.4). With this frame we have

§"0, =V — o/ 2GM /1) (2" [7)0, = V — v/ (2G M [1)0,.. (4.27)
The connection term in the Dirac equation evaluates to

1 f2MN\? —3 /a2M\
%g“ﬂu25<7> 9" (29, N0 + 3gu-€r0,) = (—) Yo- (4.28)

T\

The Dirac equation therefore reduces to the simple equation

1/2
Virlos — o <%> (0, + 3/(4r)) Iors = mype. (4.29)

7
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Figure 4.1: Matter and photon trajectories in a black hole background. The solid lines
are photon trajectories, GM = 1 and the horizon lies at r=2. Outside the horizon
it is possible to send photons out to infinity, and hence communicate with the rest
of the universe. As one approaches the horizon, these photons are strongly redshifted
and take a long time to escape. Once inside the horizon, all photon paths end on the
singularity. The broken lines represent two possible trajectories for infalling matter.
Trajectory I is for a particle released from rest at r = 4. Trajectory Il is for a particle
released from rest at r = oo.

Premultiplying by ~o converts this equation to Hamiltonian form, and shows that all
of the gravitational effects are contained in the single interaction term

- (2M\'?
H; =1h (—) (6,, + 3/(47“)). (4.30)
r
This Hamiltonian has many remarkable features, some of which are explored on the
final example sheet. Despite the apparent complexity of studying relativistic quantum
mechanics in a black hole background, one can reduce the entire problem to studying
the properties of a single Hamiltonian operator!



