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Overview

I am basically a cosmologist, interested in the Cosmic Microwave
Background, and early universe
Why am I here talking about ‘Geometric Algebra’?
Came across it several years ago — an extremely useful
approach to the mathematics of physics, that allows one to use a
common language in a huge variety of contexts
E.g. complex variables, vectors, quaternions, matrix theory,
differential forms, tensor calculus, spinors, twistors, all subsumed
under a common approach
Therefore results in great efficiency — can quickly get into new
areas
Also tends to suggest new geometrical (therefore physically
clear, and coordinate-independent) ways of looking at things
Will try today to introduce a few aspects of it in more detail —
principally applications to electromagnetism and quantum
mechanics
For further info and pointers to where else it’s useful, look at
http://www.mrao.cam.ac.uk/˜clifford



What is GA?

In 2d gives a geometric origin for
complex numbers
In 3d, gives geometrical
explanation of quaternions and
their properties
Advantages of quaternions in e.g.
spacecraft navigation and
computer graphics already well
known (more efficient than Euler
angles and rotation matrices,
which they replace)
GA effectively extends them to
the relativistic domain
And via ‘conformal geometric
algebra’ gives a whole new
language for doing geometry on
the computer (being exploited
currently in computer graphics)



Applications of GA

Works extremely well with
electromagnetism
All four Maxwell equations combine
to one: ∇F = J, in which the ∇ is
invertible
Leads to novel methods for treating
EM scattering
GA also leads to a different approach
to quantum information theory (which
can now be studied relativistically)
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Figure 5.16: Single two-path and spin components for the spin entangled state (5.52) after a local pulse
in region A. This two-path is a member of the | ↑↓〉 sub-wavepacket. The spin Sz of particle 1 (blue)
goes from 0 to 1 while the spin of particle 2 (red) goes from 0 to -1. This occurs despite there being no
motion on the part of particle 2. The effect of the localized pulse in A has a nonlocal effect on particle 2
in region B.

initial wavepacket into two sub-wavepackets. This is indeed what is observed, as the simulation
in Figure 5.15 shows.

We take a closer look at a single two-path taken from the ensemble. In Figure 5.16, the
upper plot shows a single two-path which has been projected onto the z1 and z2 spaces and
plotted as particle trajectories in the physical (t, z) space. Like every other two-path in the
ensemble, this two-path yields two projected trajectories that show particle 1 being kicked into
motion by the pulse in region A and particle 2 being left stationary in region B. In the lower
plot, we see that the spin vector components Sz for the two particles are zero prior to the pulse,
then nonzero and equal and opposite after the pulse. Since Sx = Sy = 0 throughout, it must
therefore be the case that whatever ‘rotating object’ constitutes the source of spin phenomena
in the realistic causal model of spin, it must initially be in a state of zero rotation. Then,
after the pulse has been applied, the particles begin to spin in opposite directions. When the
sub-wavepackets have separated this constitutes a measurement of the spin of particle 1 in the
{| ↑〉, | ↓〉} basis. From the realist’s point of view, the conclusion is that the measurement does
not merely reveal a preexisting spin; the measurement creates it.

The next feature we look at in this figure is even more striking. In the lower plot, we



Geometric Algebra

Know that for complex numbers there is a unit imaginary i
Main property is that i2 = −1
How can this be? (any ordinary number squared is positive)
Troubled some very good mathematicians for many years
Usually these days an object with these properties just defined to
exist, and complex numbers are defined as x + iy (x and y
ordinary numbers)
But consider following: Suppose have two directions in space

a and b (these are called vectors as usual)
And suppose we had a language in which we could use vectors
as words and string together meaningful phrases and sentences
with them So e.g. ab or bab or abab would be meaningful
phrases



Geometric Algebra (contd.)

Now introduce two rules:
If a and b perpendicular, then ab = −ba
If a and b parallel (same sense) then
ab = |a||b| (product of lengths)
Just this does an amazing amount of
mathematics!
E.g. suppose have two unit vectors at
right angles
Rules say e2

1 = e1e1 = 1 , e2
2 = e2e2 = 1

and e1e2 = −e2e1



Geometric Algebra (contd.)

Try (e1e2)
2

This is

e1e2e1e2 = −e1e1e2e2 = −1

We have found a geometrical object
(e1e2) which squares to minus 1 !
Can now see complex numbers are
objects of the form x + (e1e2)y
What is (e1e2) ? — we call it a
bivector
Can think of it as an oriented plane
segment swept out in going from e1
to e2



An algebra of geometric objects



Geometric Algebra

Consider a vector space with the usual inner product;

a·b

Also have an outer or wedge product which produces a new quantity
called a bivector

a∧b
Combine these into a single geometric product:

ab = a·b + a∧b

Unlike the inner and outer products, this product is INVERTIBLE
Note taking the geometric product as primary, we have

a·b = 1
2 (ab + ba)

and
a∧b = 1

2 (ab − ba)

This is basis for axiomatic development.



Some History

Hamilton (1840s): 3D
rotations via quaternions

Grassmann (1870s): exterior
(wedge) product; oriented
objects

Clifford (1870s): combining
products to form geometric
product

Hestenes (1960–): Formalism
taking clifford algebra to
geometric algebra (Clifford’s
own name).



3D Geometric Algebras cont...

In 3D we have three orthonormal basis vectors: e1, e2, ,e3

e2
1 = 1, e2

2 = 1, e2
3 = 1, e1·e2 = e2·e3 = e3·e1 = 0

e1e2e3 = e1∧e2∧e3 ≡ I

Again, look at the properties of this trivector, I:

I2 = (e1e2e3)(e1e2e3) = e1e1e2e3e2e3 = −(e1e1)(e2e2)(e3e3) = −1

So, we have another real geometric object which squares to -1 !
Indeed there are many such objects which square to −1 ; this means
that we seldom have need for complex numbers....
Call the highest grade object in the space the pseudoscalar – unique
up to scale



Reflections

Reflections are very easy to implement in GA and will be of crucial
importance later. Consider reflecting a vector a in a plane with unit
normal n , the reflected vector a is given by:

a′ = −nan

This can easily be seen via the
following expansion of −nan

−nan = a− 2(n·a)n

[write −nan as −(na)n and
expanding na as n·a + n∧a and
then writing 2(n∧a) = na− an].



Rotations

For many applications rotations are also an extremely important
aspect of GA first consider rotations in 3D:
Recall that two reflections form a rotation:

a 7→ −m(−nan)m = mnanm

We therefore define our rotor R to be

R = mn and rotations are given by a 7→ RaR̃

Note that this is a geometric product!
The operation of reversion is the reversing of the order of products,
eg

R̃ = nm and therefore RR̃ = 1

Works in spaces of any dimension or signature. Works for all grades
of multivectors

A 7→ RAR̃



Rotations cont...

A rotor, R, is therefore an element of the algebra and can also be
written as the exponential of a bivector.

R = e−B, B = Inθ/2

R = cos
θ

2
− In sin

θ

2

The bivector B gives us the plane of rotation (cf Lie groups and
quaternions). A rotor is a scalar plus bivector.
Comparing with quaternions

q = a0 + a1i + a2j + a3k i2 = j2 = k2 = i jk = −1

i = Ie1, j = −Ie2 k = Ie3



An Algebra for Spacetime I

Aim — to construct the geometric algebra of spacetime. Invariant
interval is

s2 = c2t2 − x2 − y2 − z2

Work in natural units, c = 1.
Need four vectors {e0,ei}, i = 1 . . .3 with properties

e0
2 = 1, ei

2 = −1
e0·ei = 0, ei ·ej = −δij

Summarised by

eµ·eν = diag(+ − − −) , µ, ν = 0 . . .3

Bivectors
4× 3/2 = 6 bivectors in algebra. Two types

1 Those containing e0, e.g. {ei∧e0},
2 Those not containing e0, e.g. {ei∧ej}.



An Algebra for Spacetime II

For any pair of vectors a and b, with a·b = 0, have

(a∧b)2 = abab = −abba = −a2b2

The two types have different squares

(ei∧ej)
2 = −ei

2ej
2 = −1

Spacelike Euclidean bivectors, generate rotations in a plane.

(ei∧e0)
2 = −ei

2e0
2 = 1

Timelike bivectors. Generate hyperbolic geometry:

eαe1e0 = 1 + αe1e0 + α2/2! + α3/3! e1e0 + · · ·
= coshα+ sinhαe1e0

Crucial to treatment of Lorentz transformations.
Put R = eα/2e1e0 , then R is a rotor carrying out Lorentz boosts with
velocity parameter α in the x-direction.



An Algebra for Spacetime I

Generalise this to R = eB where B is any bivector in the
Spacetime Algebra.
This rotor provides general Lorentz transformations.
Given any object M in the algebra, we rotate it with M ′ = RMR̃
Very simple!

THE PSEUDOSCALAR
Define the pseudoscalar I

I = e0e1e2e3

Since I is grade 4, it has

Ĩ = e3e2e1e0 = I

Compute the square of I :

I2 = I Ĩ = (e0e1e2e3)(e3e2e1e0) = −1



An Algebra for Spacetime II

Multiply bivector by I, get grade 4− 2 = 2 — another bivector.
Provides map between bivectors with positive and negative square:

Ie1e0 = e1e0I = e1e0e0e1e2e3 = −e2e3

Have four vectors, and four trivectors in algebra. Interchanged by
duality

e1e2e3 = e0e0e1e2e3 = e0I = −Ie0

NB I anticommutes with vectors and trivectors. (In space of even
dimensions). I always commutes with even-grade.



An Algebra for Spacetime I
Now have available the basic tool for the relativistic physics — the
STA

1 {γµ} {γµ∧γν} {Iγµ} I = γ0γ1γ2γ3

1 4 6 4 1
scalar vectors bivectors trivectors pseudoscalar

The spacetime algebra or STA. Use the new name {γµ} for preferred
orthonormal frame. Also define

σi = γiγ0

Not used i for the pseudoscalar. The {γµ} satisfy

γµγν + γνγµ = 2ηµν

This is the Dirac matrix algebra! (with identity matrix on right). A
matrix representation of the STA. Explains notation, but {γµ} are
vectors, not a set of matrices in ‘isospace’.



The Even Subalgebra I

Each inertial frame defines a set of relative vectors. These are
spacetime areas swept out while moving along the velocity vector of
the frame.
Therefore model these as spacetime bivectors. Take timelike vector
γ0, relative vectors σi = γiγ0. Satisfy

σi ·σj = 1
2 (γiγ0γjγ0 + γjγ0γiγ0)

= 1
2 (−γiγj − γjγi) = δij

Generators for a 3-d algebra!
This is GA of the 3-d relative space in rest frame of γ0. Volume
element

σ1σ2σ3 = (γ1γ0)(γ2γ0)(γ3γ0) = −γ1γ0γ2γ3 = I

so 3-d subalgebra shares same pseudoscalar as spacetime. Note
have

1
2 (σiσj − σjσi) = εijk Iσk

which is the algebra of the Pauli spin matrices.



The Even Subalgebra II

Both relative vectors and relative bivectors are spacetime bivectors.
Projected onto the even subalgebra of the STA.

The 6 spacetime bivectors split into relative vectors and relative
bivectors. This split is observer dependent. A very useful technique.



Electromagnetism

The spactime vector derivative is

∇ = γµ ∂

∂xµ
= γµ∂µ

which splits as

∇γ0 = ∂t − σi∂i = ∂t −∇

where ∇ is the relative (3-d) vector derivative
Maxwell’s equations:

∇ · E = ρ ∇ · B = 0

∇ ∧ E = ∂t(IB) ∇ ∧ B = I(J + ∂tE)

Using the geometric product, reduce to

∇(E + IB) + ∂t(E + IB) = ρ− J



Electromagnetism

Defining the Lorentz-covariant field strength F = E + IB and
current J = (ρ+ J)γ0, we obtain the single, covariant equation

∇F = J

The advantage here is not merely notational - just as the
geometric product is invertible, unlike the separate dot and
wedge product, the geometric product with the vector derivative
is invertible (via Green’s functions) where the separate
divergence and curl operators are not.
Since ∇∧ F = 0, we can introduce a vector potential A such that
F = ∇∧ A
If we impose ∇ · A = 0, so that F = ∇A, then A obeys the wave
equation

∇F = ∇2A = J



Point Charge Fields

Start with wave equation,
∇2A = J
Since radiation doesn’t travel
backwards in time, we have
the electromagnetic influence
propagating along the future
light-cone of the charge.

An observer at x receives an influence from the intersection of
their past light-cone with the charge’s worldline, x0, so the
separation vector down the light-cone X = x − x0 is null.
In the rest frame of the charge, the potential is pure 1/r
electrostatic, so

A =
q

4π
v
r

=
q

4π
v

X · v
(the Liénard-Wiechert potential)



Point Charge Fields

Now we want to find F = ∇A
We need a few differential identities:
Since X 2 = 0,

0 = ∇̊(X̊ · X ) = ∇̊(x̊ · X )− ∇̊( ˚x0(τ) · X )

= X − γµ(X · ∂µx0(τ))

= X − γµ(X · (∂µτ)∂τ x0)

= X − (∇τ)(X · v)

⇒ ∇τ =
X

X · v
where we treat τ as a scalar field,
with its value at x0(τ) being extended
over the charge’s forward light-cone



Point Charge fields

To differentiate X , we need

∇x0(τ) = γµ∂µx0(τ) = γµ(∂µτ)∂τ x0 = (∇τ)v

Since A ∝ v/(X · v) we also want

∇(X · v) = ∇̊(X̊ · v) + ∇̊(X · v̊)

= ∇̊(x̊ · v)− ∇̊( ˚x0(τ) · v) + ∇̊(X · v̊)

= v −∇τ(v · v) +∇τ(X · v̇)

= v − X
X · v

+
X (X · v̇)

X · v

where the over-circles denote the term being differentiated



Point Charge Fields
Now:

F = ∇A =
q

4π

(
∇v(τ)

X · v
− 1

(X · v)2 (∇(X · v))v
)

=
q

4π

(
(∇τ)v̇
X · v

− 1
(X · v)3 ((X · v)v − X + X (X · v̇))v

)
=

q
4π

(
Xv̇

(X · v)2 −
1

(X · v)2 −
(X (X · v̇)− X )

(X · v)3 v
)

=
q

4π

(
X ∧ v̇

(X · v)2 +
X ∧ v − (X · v̇)X ∧ v

(X · v)3

)
since F is a pure bivector
Using

(X · v)X ∧ v̇ − (X · v̇)X ∧ v = −X (X · (v̇ ∧ v)) =
1
2

X (v̇ ∧ v)X

get (with Ωv = v̇ ∧ v )

F =
q

4π
X ∧ v + 1

2 XΩv X
(X · v)3



Point Charge Fields

F =
q

4π
X ∧ v + 1

2 XΩv X
(X · v)3

Equation displays clean split into Coulomb field in rest frame of
charge, and radiation term

Frad =
q

4π

1
2 XΩv X
(X · v)3

proportional to rest-frame acceleration projected down the null
vector X .
X · v is distance in rest-frame of charge, so Frad goes as
1/distance, and energy-momentum tensor T (a) = − 1

2 FaF drops
off as 1/distance2. Thus the surface integral of T doesn’t vanish
at infinity - energy-momentum is carried away from the charge by
radiation.



Point Charge Fields

For a numerical solution:
Store particle’s history (position, velocity,
acceleration)
To calculate the fields at x , find the null
vector X by bisection search (or similar)
Retrieve the particle velocity, acceleration at
the corresponding τ - above formulae give
us A and F



Quantum Theory

The algebraic structure of wave mechanics arises naturally from
the geometric algebra of spacetime
Allows us to reformulate standard QM in more geometrical way
Also suggests new lines of interpretation ...



Non-relativistic spin

For a spin- 1
2 particle, the operator returning the spin along the σk

axis (where {σk} is an orthonormal frame for 3-space) is
ŝk = 1

2~σ̂k , where σ̂k are the Pauli matrices:

σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)

These have commutation relations σ̂i σ̂j = δij I + iεijk σ̂k (where I is
the identity matrix)
But working entirely with the vectors σk , we have

σiσj = σi · σj + σi ∧ σj = δij + Iεijkσk

where I = σ1σ2σ3 is the pseudoscalar.
Pauli matrices are just a representation of the geometric algebra
of 3-space! (with the pseudoscalar acting as the unit imaginary)



Non-relativistic spin

Operators (such as Pauli matrices) act on the wavefunction,
which is (in the non-relativistic case) is a Pauli spinor, with two
complex coefficients:

|ψ〉 =

(
α
β

)
Natural question - can we represent this 4-DoF object as a
multivector, acted on by the σk vectors? Simplest choice is

|ψ〉 =

(
a0 + ia3

−a2 + ia1

)
↔ ψ = a0 + ak Iσk

so a Pauli spinor corresponds to a weighted spatial rotor! The
spin up and spin down states correspond to

| ↑〉 =

(
1
0

)
↔ 1 , | ↓〉 =

(
0
1

)
↔ −Iσ2



Non-relativistic spin

Actions of Pauli operators are

σ̂k |ψ〉 ↔ σkψσ3

where σ3 acts to keep result in the even subalgebra.
Multiplication by unit imaginary is equivalent to multiplication by
bivector Iσ3

i |ψ〉 = ψIσ3

Hermitian adjoint corresponds to 3-d reversion
Quantum inner product is given by

〈ψ|φ〉 ↔ 〈ψ†φ〉 − 〈ψ†φIσ3〉Iσ3

which projects out the 1 and Iσ3 components of ψ†φ



Non-relativistic spin

Expectation value of spin in k -direction is

〈ψ|σ̂k |ψ〉 ↔ 〈ψ†σkψσ3〉 − 〈ψ†σkψI〉Iσ3

= 〈σkψσ3ψ
†〉

since ψ†σkψ is a vector.
Defining the spin vector,

s =
1
2

~ψσ3ψ
†

this reduces to

〈ψ|ŝk |ψ〉 ↔
1
2

~〈σkψσ3ψ
†〉 = σk · s

So “forming the expectation value of the sk operator” reduces to
projecting out the σk component of the vector s



Non-relativistic spin

What exactly is the status of s? Often hear things like:
It turns out that the spin vector is not very useful in
actual quantum mechanical calculations, because it
cannot be measured directly – sx , sy and sz cannot
possess simultaneous definite values, because of a
quantum uncertainty relation between them.

[Wikipedia]



Non-relativistic spin

Remembering that Pauli spinors are weighted rotors, we can
write ψ = ρ1/2R, so that s = 1

2~ρRσ3R†

Picking out σ3 is a result of chosing the σ̂3 matrix to be diagonal,
and doesn’t break the rotational symmetry of the theory. In
rigid-body dynamics, we often choose an arbitrary reference
configuration, and formulate the dynamics in terms of the
transformation needed to rotate this configuration to the physical
one.
The situation here is analogous - we could have chosen any
constant vector, and made ψ so that it transformed this into s



Dirac Theory

In the relativistic theory of spin- 1
2 particles, things are similar

Instead of the wavefunction being a weighted spatial rotor, it’s
now a full Lorentz spinor:

ψ = ρ1/2eIβ/2R

with the addition of a slightly mysterious β term related to
antiparticle states.
Five observables in all, including the current,
J = ψγ0ψ = ρRγ0R̃, and the spin vector s = ψγ3ψ = ρRγ3R̃



Dirac Theory

The wavefunction obeys the Dirac equation:

∇ψIσ3 − eAψ = mψγ0

This implies that the current J is conserved,

∇ · J = 0

with the implication that a fermion cannot be created or
destroyed (pair annihilation / production are multiparticle
processes, not covered by the Dirac equation)
The timelike component of J is positive definite, and is interpreted
as a probability density: a normalised wavefunction has∫

d3x J0 = 1

Conservation of J implies that the probability density “flows”
along non-intersecting streamlines - useful for visualisation.



Dirac Theory

A sample application - Stern-Gerlach apparatus
Apply a delta-function magnetic field gradient to simulate the
apparatus, and numerically calculate the effect of this shock on a
wave-packet, with spin initially orthogonal to the magnetic field
Result : the wave-packet splits into two parts, spins
aligned/anti-aligned with the magnetic shock, with streamlines
bifurcating depending
Instead of viewing the device as ‘measuring’ the spin in z
direction, and obtaining one of two eigenstates, the apparatus
acts as a spin polariser, forcing the spins to align with the
magnetic shock



Dirac Theory
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Streamlines



Dirac Theory
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Spin Orientation



Dirac Theory — Tunnelling through barriers
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Figure 2: Particle streamlines and time spent in the barrier. Figure 2a shows the
streamlines for the front of the wavepacket, indicating that only the streamlines from
the front of the packet cross the barrier. Each streamline slows down as it passes
through the barrier. Figure 2b is a histogram of time the streamlines spend in the
barrier. Distance is measured in Å and time in 10−14s.

packet would have been at z = 65 Å had the barrier not been present. The size
of this advance, divided by the group velocity 4.4 × 10−3c, gives a time advance
of ∼ 0.2 fs, so that the transmitted wave appears to take 0.2 fs less time to pass
through the barrier than to pass through an equal path-length of free space. This
result is often interpreted as meaning that the electron, on average, spends less time
in the barrier region when the barrier is present, than if it were absent. But this is a
misinterpretation of the result. The only prediction that standard quantum theory
allows us to make is that if we had some device that allowed production of electrons
at a given time to the left of the barrier, and we timed the arrival of the transmitted
electrons, the peak of the resultant distribution of arrival times would be shifted to
earlier times by 0.2 fs when the barrier was inserted.

A sample set of streamlines from the initial wavepacket is shown in Figure 2,
along with a histogram of the time that the transmitted streamlines spend inside the
barrier. The histogram is calculated from (2.1) with dτ/dz0 evaluated numerically
from the streamline data. It is significant that a continuously distributed set of
initial input conditions (the positions within the initial wavefunction from which the
streamlines start) gives rise to a set of disjoint outcomes (whether or not a streamline
passes through the barrier). In this case, deterministic evolution of the wavefunction
alone is able to explain the discrete results expected in a quantum measurement.
This is of fundamental significance to the interpretation of quantum mechanics.
Some consequences of this view — though starting from the Bohmian interpretation
of non-relativistic quantum mechanics — have been explored by Dewdney et al. in
other areas of quantum measurement [25].
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Photon Tunnelling - no Superluminality!



What is Gauge Theory Gravity?

This is a version of gravity that aims to be as much like our best
descriptions of the other 3 forces of nature:

The strong force (which binds nuclei)
The weak force (e.g. responsible for radiactivity)
electromagnetism

These are all described in terms of Yang-Mills type gauge
theories (unified in quantum chromodynamics) in a flat
spacetime background
In the same way, Gauge Theory Gravity (GTG) is expressed in a
flat spacetime
Has two gauge fields
One corresponds to invariance under arbitrary remappings of
spacetime onto itself
The other corresponds to invariance under local rotations at a
point
Standard GR cannot even see changes of the latter type, since
metric is invariant under such changes



What is Gauge Theory Gravity? (contd.)

Advantages of GTG include being clear about what the physical
predictions of the theory are (since a gauge theory)
Conceptually simpler that standard GR (since works in a flat
space background)
Linked with this, all the tools of flat spacetime Geometric Algebra
are available (rotors, integral theorems, etc.)
Locally, theory reproduces predictions of an extension of GR
known as Einstein-Cartan theory (incorporates quantum spin)
Differs on global issues such as nature of horizons, and topology
A very big advantage, is that since it is as much like other forces
and gauge theories as possible, can start to do quantum
calculations is similar ways as in these
With colleagues have carried out the first calculations of this kind:



Gravitational atoms, bound states and scattering
The gravitational equivalent of the
Hydrogen atom — electrons forming
bound states with a black hole
Can get out whole spectrum of
states – black hole spectroscopy!
(Lasenby et al., Physical Review D,
72, 105014 (2005))
Also can look at scatterring - we
have produced the cross section for
the first interesting Feynman diagram
of an electron interacting with a black
hole (gravitational Mott scattering)
(Doran + Lasenby, PRD, 74, 064005
(2006))
Bremsstrahlung is next to carry out -
may solve longstanding problem of
radiation (or not) of freely falling
electrons


