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.Three dimensions

Introduce a third vector. leq, e, e3)

These all anticommute. €163 = —eé3e|

e|e) ‘\ eres / ese
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B Bivector products

The product of a vector and a bivector ei(erey) = e
can contain two different terms.
e1(ere3) = ejeses

The product of two perpendicular (e1ez)(eqe3) = erezeses
bivectors results in a third bivector. = e1e3 = —e3e|
Now define i, j and k. We have [ = —eje3, ] = —e3e;, k=—e1e)

discovered the quaternion algebra
buried in 3 (not 4) dimensions i2 — j2 — k2 — ijk = —1
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. Unification

Quaternions arise naturally in the geometric

algebra of space.




[ = 16263

Has negative square Commutes with vectors Swaps lines and planes
[2 = e1e,e3€e1€6-e3 81[ = e1€e16,é3 181 = €763

= ée16ére3¢€] = 181
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. 3D Basis

o J T
-
Grade O Grade 1 Grade 2 Grade 3
1 Scalar 3 Vectors 3 Plane / bivector 1 Volume / trivector
1 te;} {e;Nej) e NesNes

A linear space of dimension 8
Note the appearance of the binomial coefficients - this is general

General elements of this space are called multivectors
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. Products in 3D

3 3
ab=a-b+anb a:Zaiei b=Zbiei
i=1 i=1

aANb =(arb; — bzar)ers Nes + (azby — a1bz)ezNe;
+ (a1br — arby)eyNer

We recover the cross product from duality: _
Can only do this in 3D
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. Unification

The cross product is a disguised from of the

outer product in three dimensions.
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. Vectors and bivectors

Decompose vector a=a,+a,
into terms into and
normal tothe plane B = aAb

B

aB=aj(aAb) =a (a)b) = (a||)2b sl;/iztor lying in the

a, B = aJ_(a” /\b) = aJ_a“b Product of three orthogonal vectors,
so a trivector
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. Vectors and bivectors

Write the combined product: aB =a-B+aAB

/ \
Lowest grade Highest grade

a-B = a||2b = —(ayb)a| = -B-a With a bit of work, prove that

Inner product is antisymmetric, so define _

_ 1
a-B = §(aB — Ba) A very useful result. Generalises the

vector triple product.
This always returns a vector
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. Vectors and bivectors

Symmetric component of
product gives a trivector:

aAB = 3(aB + Ba) = BAa

Can defined the outer product The outer product is associative
of three vectors

an(brc) = (a(bAc)) (anb)nc =an(bAc) =anbAc

=<(a(bc —b-c))3 % %
Vector part does not contribute A
a/ .-~
aN(bAc) ={a(bc)); ={abc); / V
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o Duality

Seen that the pseudoscalar
interchanges planes and vectors in 3D leier =

|
~
o
8

€162 =

N\
=\

Can use this in 3D to understand — Ib
product of a vector and a bivector

aB=a(lb) =1ab =1(a-b+anb)

/ \

Symmetric part is a trivector Antisymmetric part is a vector

a/\B:I(a-b):%(aB+Ba) a-B=1(anb) = %(aB—Ba)
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. Reflections

See the power of the geometric
product when looking at operations.

) . a, =(a-n)n
Decompose a into components into

and out of the plane. a=a-(a-n)n

Form the reflected vector b

a||—aL

Now re-express in terms of the b
geometric product.

a—2a-n)n

a— (an + na)n = —nan
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. Rotations

a— —m(—nan)m

Two reflections generate a rotation.
= mnanm

Define a rotor R. This is formed from
a geometric product!

Rotations now formed by

This works for higher grade objects
as well. Will prove this later.




. Rotors in 3D

Rotors are even grade,
so built out of a scalar
and the three bivectors.

These are the terms
that map directly to
guaternions.

Rotors are normalised.

Reduces the degrees of
freedom from 4 to 3.

This is precisely the
definition of a unit
guaternion.
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Rotors are elements of
a 4-dimensional space
normalised to 1.

They live on a 3-sphere.

This is the GROUP
MANIFOLD.
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o Exponential form

R=mn =cos + mAn
(aAb)* = (ab—a-b)(a-b — ba)
= —a’b* +a-b(ab+ ba —a-b)

= (a-b)2 —a’b’
2,2

Use the following
useful, general result.

= —q sin? 6

Ly

6B

Polar decomposition R = cos f + sin 0B = ¢
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o Exponential form

m-m’ = {(m(mnmmn))
Sequence of two reflections gives
a rotation through twice the angle

between the vectors

= (mnmn)

= cos” 6 — sin” 6 = cos 26

Useful result when 3 (cos @ + sin 6’3)61

vector a lies in the

plane B a(cosf —sindB) = ae 9P

Also need to check _
698162/2616 Oeier/?2 — 696’16’2

orientation el = costle; —sinbe;
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. Rotors in 3D

The rotor for a rotation through |B| with handedness of B: R = exp(—B/2)

In terms of an axis: R = exp(—60In/2)

Decompose a vector
into terms in and out of ¢
the plane

_B/z(a” + al)eB/2 = a”eB +a,

Can work in terms of Euler angles, but best avoided:

_ ,e1exd/2 —ere30/2 —ejexy/2
R=c¢ e e
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B Unification

Every rotor can be writtenas R = +exp(—B/2)

Rotations of any object, of any grade, in any
space of any signature can be writtenas A — RAR
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. Unification

Every finite Lie group can be realised as a group of rotors.

Every Lie algebra can be realised as a set of bivectors.
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