

Geometric Algebra

2. Geometric Algebra in 3 Dimensions

Dr Chris Doran ARM Research

Three dimensions

Introduce a third vector.

These all anticommute.

$$\{e_1, e_2, e_3\}$$

$$e_1e_3 = -e_3e_1 \dots$$

Bivector products

The product of a vector and a bivector can contain two different terms.

The product of two perpendicular bivectors results in a third bivector.

Now define i, j and k. We have discovered the quaternion algebra buried in 3 (not 4) dimensions

$$e_1(e_1e_2) = e_2$$

 $e_1(e_2e_3) = e_1e_2e_3$

$$(e_1e_2)(e_2e_3) = e_1e_2e_2e_3$$

= $e_1e_3 = -e_3e_1$

$$i = -e_2 e_3, \ j = -e_3 e_1, \ k = -e_1 e_2$$

 $i^2 = j^2 = k^2 = ijk = -1$

Unification

Quaternions arise naturally in the geometric algebra of space.

The directed volume element

$$I = e_1 e_2 e_3$$

Has negative square

$$I^2 = \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3$$
$$= \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_1 \mathbf{e}_2 = -1$$

Commutes with vectors

$$e_1I = e_1e_1e_2e_3$$

$$= -e_1e_2e_1e_3$$

$$= e_1e_2e_3e_1 = Ie_1$$

Swaps lines and planes

$$Ie_1 = e_2e_3$$
$$Ie_2e_3 = -e_1$$

3D Basis

A linear space of dimension 8

Note the appearance of the binomial coefficients - this is general
General elements of this space are called multivectors

Products in 3D

$$ab = a \cdot b + a \wedge b$$
 $a = \sum_{i=1}^{3} a_i e_i$ $b = \sum_{i=1}^{3} b_i e_i$
 $a \wedge b = (a_2b_3 - b_3a_2)e_2 \wedge e_3 + (a_3b_1 - a_1b_3)e_3 \wedge e_1$
 $+ (a_1b_2 - a_2b_1)e_1 \wedge e_2$

We recover the cross product from duality: Can only do this in 3D

$$a \times b = -Ia \wedge b$$

Unification

The cross product is a disguised from of the outer product in three dimensions.

Vectors and bivectors

Decompose vector into terms into and normal to the plane

$$a = a_{\parallel} + a_{\perp}$$

$$B = a_{\parallel} \wedge b$$

$$a_{\parallel}B = a_{\parallel}(a_{\parallel} \wedge b) = a_{\parallel}(a_{\parallel}b) = (a_{\parallel})^{2}b$$

A vector lying in the plane

$$a_{\perp}B = a_{\perp}(a_{\parallel} \wedge b) = a_{\perp}a_{\parallel}b$$

Product of three orthogonal vectors, so a trivector

Vectors and bivectors

Write the combined product:

$$aB = a \cdot B + a \wedge B$$

Lowest grade

Highest grade

$$\mathbf{a} \cdot \mathbf{B} = \mathbf{a}_{\parallel}^{2} \mathbf{b} = -(\mathbf{a}_{\parallel} \mathbf{b}) \mathbf{a}_{\parallel} = -\mathbf{B} \cdot \mathbf{a}$$

Inner product is antisymmetric, so define

$$\mathbf{a} \cdot B = \frac{1}{2}(\mathbf{a}B - B\mathbf{a})$$

This always returns a vector

With a bit of work, prove that

$$a \cdot (b \wedge c) = (a \cdot b)c - (a \cdot c)b$$

A very useful result. Generalises the vector triple product.

Vectors and bivectors

Symmetric component of product gives a trivector:

$$\mathbf{a} \wedge B = \frac{1}{2}(\mathbf{a}B + B\mathbf{a}) = B \wedge \mathbf{a}$$

Can defined the outer product of three vectors

$$a \wedge (b \wedge c) = \langle a(b \wedge c) \rangle_3$$

= $\langle a(bc - b \cdot c) \rangle_3$

Vector part does not contribute

$$a \wedge (b \wedge c) = \langle a(bc) \rangle_3 = \langle abc \rangle_3$$

The outer product is associative

$$(a \wedge b) \wedge c = a \wedge (b \wedge c) = a \wedge b \wedge c$$

Duality

Seen that the pseudoscalar interchanges planes and vectors in 3D

$$e_1e_2 = Ie_3$$

$$Ie_1e_2 = -e_3$$

Can use this in 3D to understand product of a vector and a bivector

$$B = Ib$$

$$aB = a(Ib) = Iab = I(a \cdot b + a \wedge b)$$

Symmetric part is a trivector

$$\mathbf{a} \wedge B = I(\mathbf{a} \cdot \mathbf{b}) = \frac{1}{2}(\mathbf{a}B + B\mathbf{a})$$

Antisymmetric part is a vector

$$\mathbf{a} \cdot \mathbf{B} = I(\mathbf{a} \wedge \mathbf{b}) = \frac{1}{2}(\mathbf{a}\mathbf{B} - \mathbf{B}\mathbf{a})$$

Reflections

See the power of the geometric product when looking at operations.

Decompose a into components into and out of the plane.

Form the reflected vector

Now re-express in terms of the geometric product.

$$a_{\perp} = (a \cdot n)n$$
 $a_{\parallel} = a - (a \cdot n)n$
 $b = a_{\parallel} - a_{\perp}$

$$b = a - 2(a \cdot n)n$$

$$= a - (an + na)n = -nan$$

Rotations

Two reflections generate a rotation.

Define a *rotor R*. This is formed from a geometric product!

Rotations now formed by

This works for higher grade objects as well. Will prove this later.

$$a \mapsto -m(-nan)m$$

= $mnanm$

$$R = mn$$

$$a \mapsto Ra\tilde{R}$$

$$A \mapsto RA\tilde{R}$$

Rotors in 3D

R = mn

Rotors are even grade, so built out of a scalar and the three bivectors.

These are the terms that map directly to quaternions.

Rotors are normalised.

$R\tilde{R} = mnnm = 1$

Reduces the degrees of freedom from 4 to 3.

This is precisely the definition of a unit quaternion.

Rotors are elements of a 4-dimensional space normalised to 1.

They live on a 3-sphere.

This is the GROUP MANIFOLD.

Exponential form

$$R = mn = \cos\theta + m \wedge n$$

Use the following useful, general result.

$$(a \wedge b)^2 = (ab - a \cdot b)(a \cdot b - ba)$$
$$= -a^2b^2 + a \cdot b(ab + ba - a \cdot b)$$
$$= (a \cdot b)^2 - a^2b^2$$
$$= -a^2b^2 \sin^2 \theta$$

Polar decomposition $R = \cos \theta + \sin \theta \hat{B} = e^{\theta \hat{B}}$

Exponential form

Sequence of two reflections gives a rotation through twice the angle between the vectors

$$m \cdot m' = \langle m(mnmmn) \rangle$$

= $\langle mnmn \rangle$
= $\cos^2 \theta - \sin^2 \theta = \cos 2\theta$

Useful result when vector *a* lies in the plane *B*

$$e^{\theta \hat{B}} a = (\cos \theta + \sin \theta \hat{B}) a$$
$$= a(\cos \theta - \sin \theta \hat{B}) = a e^{-\theta \hat{B}}$$

Also need to check orientation

$$e^{\theta e_1 e_2/2} e_1 e^{-\theta e_1 e_2/2} = e^{\theta e_1 e_2} e_1 = \cos \theta e_1 - \sin \theta e_2$$

Rotors in 3D

The rotor for a rotation through |B| with handedness of B: $R = \exp(-B/2)$

In terms of an axis: $R = \exp(-\theta I n/2)$

Decompose a vector into terms in and out of $e^{-B/2}(a_{\parallel}+a_{\perp})e^{B/2}=a_{\parallel}e^B+a_{\perp}$ the plane

Can work in terms of Euler angles, but best avoided:

$$R = e^{-\mathbf{e}_1 \mathbf{e}_2 \phi/2} e^{-\mathbf{e}_2 \mathbf{e}_3 \theta/2} e^{-\mathbf{e}_1 \mathbf{e}_2 \psi/2}$$

Unification

Every rotor can be written as $R = \pm \exp(-B/2)$

Rotations of any object, of any grade, in any space of any signature can be written as $A \mapsto RA\tilde{R}$

Unification

Every finite Lie group can be realised as a group of rotors.

Every Lie algebra can be realised as a set of bivectors.

Resources

geometry.mrao.cam.ac.uk chris.doran@arm.com cjld1@cam.ac.uk @chrisjldoran #geometricalgebra github.com/ga

