
Geometric Algebra

Dr Chris Doran

ARM Research

8. Unification and Implementation



Euclidean geometry
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Represent the Euclidean 

point x by null vectors

Distance is given by the 

inner product

Read off the Euclidean vector

Depends on the concept of the origin



Spherical geometry
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Suppose instead we form 

Unit vector in an n+1 dimensional space

Instead of plotting points in 

Euclidean space, we can plot them 

on a sphere

No need to pick out a preferred 

origin any more



Spherical geometry
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Spherical distance 

Same pattern as Euclidean case

‘Straight’ lines are now

The     term now becomes essentially 

redundant and drops out of 

calculations

Invariance group are the set of rotors 

satisfying

Generators satisfy

Left with standard rotors in a Euclidean 

space. Just rotate the unit sphere



non-Euclidean geometry
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Historically arrived at by replacing the parallel postulate

‘Straight’ lines become d-lines. Intersect the unit circle 

at 90o

Model this in our conformal framework

Unit circle d-lines

d-line between X and Y is Translation along a d-line generated by

Rotor generates hyperbolic 

transformations



non-Euclidean geometry
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Generator of translation along the d-line. 

Use this to define distance.

Write

Boost factor from special relativity

Unit time-like vectors

Distance in non-Euclidean geometry



non-Euclidean distance
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Distance expands as you get near 

to the boundary

Circle represents a set of points 

at infinity

This is the Poincare disk view of 

non-Euclidean geometry



non-Euclidean circles
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Formula unchanged 

from the Euclidean case

Still have Non-Euclidean circle

Definition of the centre is not so 

obvious. Euclidean centre is

Reverse the logic above and 

define



Unification

Conformal GA unifies Euclidean, projective, 

spherical, and hyperbolic geometries in a 

single compact framework.



Geometries and Klein
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Understand geometries in terms of the 

underlying transformation groups

Euclidean Affine

Projective Conformal Mobius /Inversive

Spherical non-Euclidean



Geometries and Klein
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Projective

Affine

Euclidean

Conformal

Spherical

Euclidean

non-

Euclidean

Euclidean

Conformal

Affine

Projective viewpoint Conformal viewpoint



Groups

L8 S12

Have seen that we can perform dilations with rotors

Every linear transformation is rotation + dilation + rotation via SVD

Trick is to double size of space

Null basis

Define bivector Construct group from constraint

Keeps null spaces separate. Within 

null space give general linear group.



Unification
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Every matrix group can be realised as a rotor 

group in some suitable space. There is often 

more than one way to do this.



Design of mathematics

Coordinate geometry

Complex analysis

Vector calculus

Tensor analysis

Matrix algebra

Lie groups

Lie algebras

Spinors

Gauge theory

Grassmann algebra

Differential forms

Berezin calculus

Twistors

Quaternions

Octonions

Pauli operators

Dirac theory

Gravity…



Spinors and twistors
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Spin matrices act on 2-component 

wavefunctions

These are spinors

Very similar to qubits

Roger Penrose has put forward a 

philosophy that spinors are more 

fundamental than spacetime

Start with 2-spinors and build 

everything up from there



Twistors
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Look at dimensionality 

of objects in twistor

space

Conformal GA of 

spacetime!



Forms and exterior calculus
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Working with just the exterior product, exterior differential and duality 

recovers the language of forms

Motivation is that this is the ‘non-metric’ part of the geometric product

Interesting development to track is the subject of discrete exterior calculus

This has a discrete exterior product

This is associative! Hard to prove.
Challenge – can you 

do better?



Implementation
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1. What is the appropriate data 

structure?

2. How do we implement the 

geometric product

3. Programming languages



Large array

L8 S19

For Against

Vectors in 3D

Type: [Float]

Bivector in 4D

• Arrays are a compact data structure –

hardware friendly

• Objects are fairly strongly typed

• Do not need a separate multiplication 

matrix for each type

• Very verbose and wasteful

• Need to know the dimension of the 

space up front

• Hard to move between dimensions

• Need a separate implementation of 

the product for each dimension and 

signature



Compact array
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For Against

Vectors in 3D

Type: [Float]

Bivector in 3D

• Arrays are a compact data structure –

hardware friendly

• Most familiar

• Difficult to imagine a more compact 

structure

• Objects are no-longer typed

• Need to know the dimension of the 

space up front

• Hard to move between dimensions

• Need a separate implementation of 

the product for each dimension and 

signature and grade.



Linked list
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For Against

Vectors in 3D

Type: [(Float,Int)] or [(Blade)]

As a linked list

• Strongly typed

• Sparse

• Only need to know how to multiply 

blade elements together

• Multiplication is a map operator

• Don’t need to know dimension of 

space… 

• Linked-lists are not always optimal 

• Depends how good the compiler is 

at converting lists to arrays 

• Need a look-up table to store blade 

products

(a1,1):(a2,2):(a3,8):[]



Linked list
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Details depend on whether you want to use mixed signature space

Best to stay as general as possible

Blade Binary Integer

1 0 0

e1 1 1

f1 10 2

e2 100 4

f2 1000 8

e1f1 11 3

e1e2 101 5

Geometric product is an 

xorr operation

Implement this in a look-

up table

Have to take care of sign

Careful with typographical 

ordering



Blade product
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bladeprod (a,n) (b,m) = (x,r)

where (fn,r) = bldprod n m

x = fn (a*b)

The bldprod function must 

1. Convert integers to binary rep

2. Compute the xorr and convert back to base 10

3. Add up number of sign changes from 

anticommutation

4. Add up number of sign changes from signature

5. Compute overall sign and return this

Can all be put into a 

LUT

Or use memoization

Candidate for 

hardware acceleration



Geometric product

L8 S24

[Blades] [Blades]

A*B=simplify([bladeprod(a,b) | a <- A, b <- B])

Form every combination of product 

from the two lists

Sort by grade and then integer order

Combine common entries

Build up everything from

1. Multivector product

2. Projection onto grade

3. Reverse

Use * for multivector product



Why Haskell?
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Functions are first-class citizens

• The can be passed around like variables

• Output of a function can be a function

Gives rise to the idea of higher-order functions

Functional languages are currently generating considerable interest:

• Haskell, Scala, ML, OCaml …

• Microsoft developing F#, and supporting Haskell

Functional

(Nearly) all data is immutable: never change a variable

• Always create a new variable, then let garbage collector free up memory

• No messing around with pointers! 

Linked lists are the natural data type

Immutable data



Why Haskell?
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Purity

Functions are pure 

• Always return same output for same input

• No side-effects

Natural match for scientific computing

Evaluations are thread-safe

Strong typing
Haskell is strongly typed, and statically typed

All code is checked for type integrity before compilation

• A lot of bugs are caught this way!

Strongly typed multivectors can remove ambiguity

• Are 4 numbers a quaternion?

• or a projective vector …

learnyouahaskell.com

haskell.org/platform

wiki.haskell.org



Why Haskell?
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Recursion

Recursive definition of functions is compact and elegant

Supported by powerful pattern matching

Natural to mathematicians

Laziness
Haskell employs lazy evaluation – call by need

Avoids redundant computation

Good match for GA

Higher-level code
GA is a higher-level language for mathematics

High-level code that is clear, fast and many-core friendly

Code precisely mirrors the mathematics

“Programming in GA”



Resources
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geometry.mrao.cam.ac.uk

chris.doran@arm.com

cjld1@cam.ac.uk

@chrisjldoran

#geometricalgebra

github.com/ga


