
Geometric Algebra

Dr Chris Doran

ARM Research

8. Unification and Implementation

Euclidean geometry

L8 S2

Represent the Euclidean

point x by null vectors

Distance is given by the

inner product

Read off the Euclidean vector

Depends on the concept of the origin

Spherical geometry

L8 S3

Suppose instead we form

Unit vector in an n+1 dimensional space

Instead of plotting points in

Euclidean space, we can plot them

on a sphere

No need to pick out a preferred

origin any more

Spherical geometry

L8 S4

Spherical distance

Same pattern as Euclidean case

‘Straight’ lines are now

The term now becomes essentially

redundant and drops out of

calculations

Invariance group are the set of rotors

satisfying

Generators satisfy

Left with standard rotors in a Euclidean

space. Just rotate the unit sphere

non-Euclidean geometry

L8 S5

Historically arrived at by replacing the parallel postulate

‘Straight’ lines become d-lines. Intersect the unit circle

at 90o

Model this in our conformal framework

Unit circle d-lines

d-line between X and Y is Translation along a d-line generated by

Rotor generates hyperbolic

transformations

non-Euclidean geometry

L8 S6

Generator of translation along the d-line.

Use this to define distance.

Write

Boost factor from special relativity

Unit time-like vectors

Distance in non-Euclidean geometry

non-Euclidean distance

L8 S7

Distance expands as you get near

to the boundary

Circle represents a set of points

at infinity

This is the Poincare disk view of

non-Euclidean geometry

non-Euclidean circles

L8 S8

Formula unchanged

from the Euclidean case

Still have Non-Euclidean circle

Definition of the centre is not so

obvious. Euclidean centre is

Reverse the logic above and

define

Unification

Conformal GA unifies Euclidean, projective,

spherical, and hyperbolic geometries in a

single compact framework.

Geometries and Klein

L8 S10

Understand geometries in terms of the

underlying transformation groups

Euclidean Affine

Projective Conformal Mobius /Inversive

Spherical non-Euclidean

Geometries and Klein

L8 S11

Projective

Affine

Euclidean

Conformal

Spherical

Euclidean

non-

Euclidean

Euclidean

Conformal

Affine

Projective viewpoint Conformal viewpoint

Groups

L8 S12

Have seen that we can perform dilations with rotors

Every linear transformation is rotation + dilation + rotation via SVD

Trick is to double size of space

Null basis

Define bivector Construct group from constraint

Keeps null spaces separate. Within

null space give general linear group.

Unification

L8 S13

Every matrix group can be realised as a rotor

group in some suitable space. There is often

more than one way to do this.

Design of mathematics

Coordinate geometry

Complex analysis

Vector calculus

Tensor analysis

Matrix algebra

Lie groups

Lie algebras

Spinors

Gauge theory

Grassmann algebra

Differential forms

Berezin calculus

Twistors

Quaternions

Octonions

Pauli operators

Dirac theory

Gravity…

Spinors and twistors

L8 S15

Spin matrices act on 2-component

wavefunctions

These are spinors

Very similar to qubits

Roger Penrose has put forward a

philosophy that spinors are more

fundamental than spacetime

Start with 2-spinors and build

everything up from there

Twistors

L8 S16

Look at dimensionality

of objects in twistor

space

Conformal GA of

spacetime!

Forms and exterior calculus

L8 S17

Working with just the exterior product, exterior differential and duality

recovers the language of forms

Motivation is that this is the ‘non-metric’ part of the geometric product

Interesting development to track is the subject of discrete exterior calculus

This has a discrete exterior product

This is associative! Hard to prove.
Challenge – can you

do better?

Implementation

L8 S18

1. What is the appropriate data

structure?

2. How do we implement the

geometric product

3. Programming languages

Large array

L8 S19

For Against

Vectors in 3D

Type: [Float]

Bivector in 4D

• Arrays are a compact data structure –

hardware friendly

• Objects are fairly strongly typed

• Do not need a separate multiplication

matrix for each type

• Very verbose and wasteful

• Need to know the dimension of the

space up front

• Hard to move between dimensions

• Need a separate implementation of

the product for each dimension and

signature

Compact array

L8 S20

For Against

Vectors in 3D

Type: [Float]

Bivector in 3D

• Arrays are a compact data structure –

hardware friendly

• Most familiar

• Difficult to imagine a more compact

structure

• Objects are no-longer typed

• Need to know the dimension of the

space up front

• Hard to move between dimensions

• Need a separate implementation of

the product for each dimension and

signature and grade.

Linked list

L8 S21

For Against

Vectors in 3D

Type: [(Float,Int)] or [(Blade)]

As a linked list

• Strongly typed

• Sparse

• Only need to know how to multiply

blade elements together

• Multiplication is a map operator

• Don’t need to know dimension of

space…

• Linked-lists are not always optimal

• Depends how good the compiler is

at converting lists to arrays

• Need a look-up table to store blade

products

(a1,1):(a2,2):(a3,8):[]

Linked list

L8 S22

Details depend on whether you want to use mixed signature space

Best to stay as general as possible

Blade Binary Integer

1 0 0

e1 1 1

f1 10 2

e2 100 4

f2 1000 8

e1f1 11 3

e1e2 101 5

Geometric product is an

xorr operation

Implement this in a look-

up table

Have to take care of sign

Careful with typographical

ordering

Blade product

L8 S23

bladeprod (a,n) (b,m) = (x,r)

where (fn,r) = bldprod n m

x = fn (a*b)

The bldprod function must

1. Convert integers to binary rep

2. Compute the xorr and convert back to base 10

3. Add up number of sign changes from

anticommutation

4. Add up number of sign changes from signature

5. Compute overall sign and return this

Can all be put into a

LUT

Or use memoization

Candidate for

hardware acceleration

Geometric product

L8 S24

[Blades] [Blades]

A*B=simplify([bladeprod(a,b) | a <- A, b <- B])

Form every combination of product

from the two lists

Sort by grade and then integer order

Combine common entries

Build up everything from

1. Multivector product

2. Projection onto grade

3. Reverse

Use * for multivector product

Why Haskell?

L8 S25

Functions are first-class citizens

• The can be passed around like variables

• Output of a function can be a function

Gives rise to the idea of higher-order functions

Functional languages are currently generating considerable interest:

• Haskell, Scala, ML, OCaml …

• Microsoft developing F#, and supporting Haskell

Functional

(Nearly) all data is immutable: never change a variable

• Always create a new variable, then let garbage collector free up memory

• No messing around with pointers!

Linked lists are the natural data type

Immutable data

Why Haskell?

L8 S26

Purity

Functions are pure

• Always return same output for same input

• No side-effects

Natural match for scientific computing

Evaluations are thread-safe

Strong typing
Haskell is strongly typed, and statically typed

All code is checked for type integrity before compilation

• A lot of bugs are caught this way!

Strongly typed multivectors can remove ambiguity

• Are 4 numbers a quaternion?

• or a projective vector …

learnyouahaskell.com

haskell.org/platform

wiki.haskell.org

Why Haskell?

L8 S27

Recursion

Recursive definition of functions is compact and elegant

Supported by powerful pattern matching

Natural to mathematicians

Laziness
Haskell employs lazy evaluation – call by need

Avoids redundant computation

Good match for GA

Higher-level code
GA is a higher-level language for mathematics

High-level code that is clear, fast and many-core friendly

Code precisely mirrors the mathematics

“Programming in GA”

Resources

L8 S28

geometry.mrao.cam.ac.uk

chris.doran@arm.com

cjld1@cam.ac.uk

@chrisjldoran

#geometricalgebra

github.com/ga

