
Geometric Algebra

Dr Chris Doran
ARM Research

7. Implementation

Implementation

L7 S2

1. What is the appropriate data
structure?

2. How do we implement the
geometric product?

3. Symbolic computation with Maple

4. Programming languages

Large array

L7 S3

For Against

Vectors in 3D

Type: [Float]

Bivector in 4D

• Arrays are a hardware friendly data
structure

• Objects are fairly strongly typed

• Do not need a separate multiplication
matrix for each type

• Very verbose and wasteful

• Need to know the dimension of the
space up front

• Hard to move between dimensions

• Need a separate implementation of
the product for each dimension and
signature

Compact array

L7 S4

For Against

Vectors in 3D

Type: [Float]

Bivector in 3D

• Arrays are a compact data structure –
hardware friendly

• Most familiar

• Difficult to imagine a more compact
structure

• Objects are no-longer typed

• Size of the space needed up front

• Hard to move between dimensions

• Separate implementation of the
product for each dimension,
signature and grade

• Sum of different grades?

Intrinsic Representation

L7 S5

For Against

Vectors in 3D

As a sum of blades

• Strongly typed

• Dense

• Only need to know how to multiply
blade elements together

• Multiplication is a map operator

• Don’t need to know dimension of
space…

• Relying on typography to encode
blades, etc.

• Still need to compile down to a
more basic structure

• Need a way to calculate basis blade
products

a1*e[1]+a2*e[2]+a3*e[3]

Symbolic algebra

L7 S6

Range of Symbolic Algebra packages
are available:
- Maple
- Mathematica
- Maxima
- SymPy
A good GA implementation for
Maple has existed for 20 years:
http://geometry.mrao.cam.ac.uk/20
16/11/symbolic-algebra-and-ga/

• SA (Euclidean space)

• STA (Spacetime algebra)

• MSTA (Multiparticle STA)

• Default (e[i] has positive norm, and
e[-i] has negative norm)

• Multivectors are built up
symbolically or numerically

• Great for complex algebraic work
(gauge theory gravity)

Examples

L7 S7

Intersection of two lines

res = 11*e[1]+9*e[2]+2*e[3]

res = -e[1]

Case of parallel lines

Examples

L7 S8

vderiv2 := proc(mvin)

 local tx, ty, res;

 tx := diff(mvin,x);

 ty := diff(mvin,y);

 res := e[1]&@tx + e[2]&@ty;

end:

Maple procedure for 2d
vector derivative for
multivector function of x
and y

Boosting a null vector: n := e[0] + e[1];

res := psi&@nn&@reverse(psi)

4*e[0]+4*e[1]

GA Code

L7 S9

Want a representation where:

• Multivectors are encoded as dense lists

• We carry round the blade and coefficient together (in a tuple)

• We have a geometric product and a projection operator

• The geometric product works on the individual blades

• Ideally, do not multiply coefficients when result is not needed

• All expressed in a functional programming language

Why Haskell?

L7 S10

Functions are first-class citizens
• The can be passed around like variables
• Output of a function can be a function
Gives rise to the idea of higher-order functions
Functional languages are currently generating considerable
interest:
• Haskell, Scala, ML, Ocaml, F#

Functional

(Nearly) all data is immutable: never change a variable
• Always create a new variable, then let garbage collector

free up memory
• No messing around with pointers!
Linked lists are the natural data type

Immutable data

Why Haskell?

L7 S11

Purity
Functions are pure
• Always return same output for same input
• No side-effects
Natural match for scientific computing
Evaluations are thread-safe

Strong typing
Haskell is strongly typed, and statically typed
All code is checked for type integrity before compilation
• A lot of bugs are caught this way!
Strongly typed multivectors can remove ambiguity
• Are 4 numbers a quaternion?
• or a projective vector …

Why Haskell?

L7 S12

Recursion
Recursive definition of functions is compact and elegant
Supported by powerful pattern matching
Natural to mathematicians

Laziness
Haskell employs lazy evaluation – call by need
Avoids redundant computation
Good match for GA

Higher-level code
GA is a higher-level language for mathematics
High-level code that is clear, fast and many-core friendly
Code precisely mirrors the mathematics
“Programming in GA”

learnyouahaskell.com
haskell.org/platform
wiki.haskell.org

Bit vector representation of blades

L7 S13

Details depend on whether you want to use mixed signature space

Best to stay as general as possible

Blade Bit vector Integer

1 0 0

e1 1 1

f1 01 2

e2 001 4

f2 0001 8

e1f1 11 3

e1e2 101 5

Geometric product is an
xorr operation

Careful with typographical
ordering here!

Have to take care of sign in
geometric product

 (Num a, Integral n) => (n,a)

Linked list

L7 S14

For Against

Vectors in 3D

Type: [(Int,Float)] or [(Blade)]

As an ordered list

• Strongly typed

• Dense

• Only need to know how to multiply
blade elements together

• Multiplication is a map operator

• Don’t need to know dimension of
space…

• Linked-lists are not always optimal

• Depends how good the compiler is
at managing lists in the cache

• May need a look-up table to store
blade products (though this is not
always optimal)

(1,a1):(2,a2):(8,a3):[]

Conversion functions

L7 S15

int2bin :: (Integral n) => n -> [Int]

int2bin 0 = [0]

int2bin 1 = [1]

int2bin n

 | even n = 0: int2bin (n `div` 2)

 | otherwise = 1: int2bin ((n-1) `div` 2)

bin2int :: (Integral n) => [Int] -> n

bin2int [0] = 0

bin2int [1] = 1

bin2int (x:xs)

 | x ==0 = 2 * (bin2int xs)

 | otherwise = 1 + 2 * (bin2int xs)

Note the recursive
definition of these
functions

A typical idiom in Haskell
(and other FP languages)

These are other way
round to typical binary

Currying

L7 S16

bladeGrade :: (Integral n) => n -> Int

bladeGrade = sum.int2bin

g :: (a,b) -> c

f :: a -> b -> c

f :: a-> (b -> c)

Suppress the argument in the function
definition.

Haskell employs ‘currying’ – everything is
a function with 1 variable.

Functions with more than one variable
are broken down into functions that
return functions

f takes in an argument
and returns a new
function

Blade product

L7 S17

bladeProd (n,a) (m,b) = (r,x)

 where (r,fn) = bldProd n m

 x = fn (a*b)

The bldProd function must (in current implementation)

1. Convert integers to bitvector rep

2. Compute the xorr and convert back to base 10

3. Add up number of sign changes from
anticommutation

4. Add up number of sign changes from signature

5. Compute overall sign and return this

Can all be put into a
LUT

Or use memoization

Candidate for
hardware acceleration

Blade Product

L7 S18

bldProd :: (Integral n, Num a) => n -> n -> (n, a->a)

bldProd n m = ((bin2int (resBld nb mb)),fn)

 where nb = int2bin n

 mb = int2bin m

 tmp = ((countSwap nb mb) + (countNeg nb mb)) `mod` 2

 fn = if tmp == 0 then id else negate

Returns a function
in second slot

Counts the number of
swaps to bring things
into normal order

Counts number of
negative norm vectors
that are squared

Geometric product

L7 S19

[Blades] [Blades]

A*B=simplify([bladeprod(a,b) | a <- A, b <- B])

Form every combination of product
from the two lists

Sort by grade and then integer order

Combine common entries

Build up everything from

1. Multivector product

2. Projection onto grade

3. Reverse

Use * for multivector product

Abstract Data Type

L7 S20

newtype Multivector n a = Mv [(n,a)]

mv :: (Num a, Eq a) => [(a,String)] -> Multivector Int a

mv xs = Mv (bladeListSimp (sortBy bladeComp (map blade xs)))

longMv :: (Num a, Eq a) => [(a,String)] -> Multivector Integer a

longMv xs = Mv (bladeListSimp (sortBy bladeComp (map blade xs)))

Type class restrictions are put into the constructors.

Two constructors to allow for larger spaces (Int may
only go up to 32D)

Class Membership

L7 S21

instance (Integral n, Num a, Eq a) => Num (Multivector n a) where

 (Mv xs) * (Mv ys) = Mv (bladeListProduct xs ys)

 (Mv xs) + (Mv ys) = Mv (bladeListAdd xs ys)

 fromInteger n = Mv [(0,fromInteger n)]

 negate (Mv xs) = Mv (bldListNegate xs)

 abs (Mv xs) = Mv xs

 signum (Mv xs) = Mv xs

Can now use + and * the way we
would naturally like to!

Want to belong
to Num class

Other resources (GA wikipedia page)

L7 S22

• GA Viewer Fontijne, Dorst, Bouma & Mann
http://www.geometricalgebra.net/downloads.html

• Gaigen Fontijne. For programmers, this is a code generator with support for
C, C++, C# and Java.
http://www.geometricalgebra.net/new.html

• Gaalop Gaalop (Geometic Algebra Algorithms Optimizer) is a software to
optimize geometric algebra files.
http://www.gaalop.de/

• Versor, by Colapinto. A lightweight templated C++ Library with an OpenGL
interface
http://versor.mat.ucsb.edu/

Resources

L8 S23

geometry.mrao.cam.ac.uk
chris.doran@arm.com
cjld1@cam.ac.uk
@chrisjldoran
#geometricalgebra
github.com/ga

