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Implementation 
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1. What is the appropriate data 
structure? 

2. How do we implement the 
geometric product? 

3. Symbolic computation with Maple 

4. Programming languages 



Large array 
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For Against 

Vectors in 3D 

Type: [Float] 

Bivector in 4D 

• Arrays are a hardware friendly data 
structure  

• Objects are fairly strongly typed 

• Do not need a separate multiplication 
matrix for each type 

• Very verbose and wasteful 

• Need to know the dimension of the 
space up front 

• Hard to move between dimensions 

• Need a separate implementation of 
the product for each dimension and 
signature 



Compact array 
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For Against 

Vectors in 3D 

Type: [Float] 

Bivector in 3D 

• Arrays are a compact data structure – 
hardware friendly 

• Most familiar 

• Difficult to imagine a more compact 
structure 

• Objects are no-longer typed 

• Size of the space needed up front 

• Hard to move between dimensions 

• Separate implementation of the 
product for each dimension, 
signature and grade 

• Sum of different grades? 



Intrinsic Representation 
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For Against 

Vectors in 3D 

As a sum of blades 

• Strongly typed 

• Dense 

• Only need to know how to multiply 
blade elements together 

• Multiplication is a map operator 

• Don’t need to know dimension of 
space…  

• Relying on typography to encode 
blades, etc. 

• Still need to compile down to a 
more basic structure 

• Need a way to calculate basis blade 
products 

a1*e[1]+a2*e[2]+a3*e[3] 



Symbolic algebra 
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Range of Symbolic Algebra packages 
are available: 
- Maple 
- Mathematica 
- Maxima 
- SymPy 
A good GA implementation for 
Maple has existed for 20 years: 
http://geometry.mrao.cam.ac.uk/20
16/11/symbolic-algebra-and-ga/ 

• SA (Euclidean space) 

• STA (Spacetime algebra) 

• MSTA (Multiparticle STA) 

• Default (e[i] has positive norm, and 
e[-i] has negative norm) 

• Multivectors are built up 
symbolically or numerically 

• Great for complex algebraic work 
(gauge theory gravity) 



Examples 
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Intersection of two lines 

res = 11*e[1]+9*e[2]+2*e[3] 

res = -e[1] 

Case of parallel lines 



Examples 
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vderiv2 := proc(mvin) 

   local tx, ty, res; 

   tx := diff(mvin,x); 

   ty := diff(mvin,y); 

   res := e[1]&@tx + e[2]&@ty; 

end: 

Maple procedure for 2d 
vector derivative for 
multivector function of x 
and y 

Boosting a null vector: n := e[0] + e[1]; 

res := psi&@nn&@reverse(psi) 

4*e[0]+4*e[1] 



GA Code 
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Want a representation where: 

• Multivectors are encoded as dense lists 

• We carry round the blade and coefficient together (in a tuple) 

• We have a geometric product and a projection operator 

• The geometric product works on the individual blades 

• Ideally, do not multiply coefficients when result is not needed 

• All expressed in a functional programming language 



Why Haskell? 
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Functions are first-class citizens 
• The can be passed around like variables 
• Output of a function can be a function 
Gives rise to the idea of higher-order functions 
Functional languages are currently generating considerable 
interest: 
• Haskell, Scala, ML, Ocaml, F# 

Functional 

(Nearly) all data is immutable: never change a variable 
• Always create a new variable, then let garbage collector 

free up memory 
• No messing around with pointers!  
Linked lists are the natural data type 

 

 

Immutable data 
  



  

Why Haskell? 
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Purity 
Functions are pure  
• Always return same output for same input 
• No side-effects 
Natural match for scientific computing 
Evaluations are thread-safe 

Strong typing 
Haskell is strongly typed, and statically typed 
All code is checked for type integrity before compilation 
• A lot of bugs are caught this way! 
Strongly typed multivectors can remove ambiguity 
• Are 4 numbers a quaternion? 
• or a projective vector … 
 



Why Haskell? 
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Recursion 
Recursive definition of functions is compact and elegant 
Supported by powerful pattern matching 
Natural to mathematicians 

Laziness 
Haskell employs lazy evaluation – call by need 
Avoids redundant computation 
Good match for GA 
 
Higher-level code 
GA is a higher-level language for mathematics 
High-level code that is clear, fast and many-core friendly 
Code precisely mirrors the mathematics 
“Programming in GA” 

  

learnyouahaskell.com 
haskell.org/platform 
wiki.haskell.org 



Bit vector representation of blades 
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Details depend on whether you want to use mixed signature space 

Best to stay as general as possible 

Blade Bit vector Integer 

1 0 0 

e1 1 1 

f1 01 2 

e2 001 4 

f2 0001 8 

e1f1 11 3 

e1e2 101 5 

Geometric product is an 
xorr operation 

Careful with typographical 
ordering here! 

Have to take care of sign in 
geometric product 

 (Num a, Integral n) => (n,a) 



Linked list 
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For Against 

Vectors in 3D 

Type: [(Int,Float)] or [(Blade)] 

As an ordered list 

• Strongly typed 

• Dense 

• Only need to know how to multiply 
blade elements together 

• Multiplication is a map operator 

• Don’t need to know dimension of 
space…  

• Linked-lists are not always optimal  

• Depends how good the compiler is 
at managing lists in the cache 

• May need a look-up table to store 
blade products (though this is not 
always optimal) 

(1,a1):(2,a2):(8,a3):[] 



Conversion functions 
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int2bin :: (Integral n) => n -> [Int] 

int2bin 0 = [0] 

int2bin 1 = [1] 

int2bin n 

   | even n = 0: int2bin (n `div` 2) 

   | otherwise = 1: int2bin ((n-1) `div` 2) 

 

bin2int :: (Integral n) => [Int] -> n 

bin2int [0] = 0 

bin2int [1] = 1 

bin2int (x:xs)    

   | x ==0 = 2 * (bin2int xs) 

   | otherwise = 1 + 2 * (bin2int xs) 

Note the recursive 
definition of these 
functions 

A typical idiom in Haskell 
(and other FP languages) 

These are other way 
round to typical binary  



Currying 
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bladeGrade :: (Integral n) => n -> Int 

bladeGrade = sum.int2bin 

g :: (a,b) ->  c 

f :: a ->  b -> c   

f :: a-> (b -> c) 

Suppress the argument in the function 
definition. 

Haskell employs ‘currying’ – everything is 
a function with 1 variable. 

Functions with more than one variable 
are broken down into functions that 
return functions 

 

f takes in an argument 
and returns a new 
function 



Blade product 

L7 S17 

bladeProd (n,a) (m,b) = (r,x)   

   where (r,fn) = bldProd n m         

         x = fn (a*b)  

The bldProd function must (in current implementation)  

1. Convert integers to bitvector rep 

2. Compute the xorr and convert back to base 10 

3. Add up number of sign changes from 
anticommutation 

4. Add up number of sign changes from signature 

5. Compute overall sign and return this 

Can all be put into a 
LUT 

Or use memoization 

Candidate for 
hardware acceleration 



Blade Product 
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bldProd :: (Integral n, Num a) => n -> n -> (n, a->a) 

bldProd n m = ((bin2int (resBld nb mb)),fn) 

  where nb = int2bin n 

        mb = int2bin m 

        tmp = ((countSwap nb mb) + (countNeg nb mb)) `mod` 2 

        fn = if tmp == 0 then id else negate 

Returns a function 
in second slot 

Counts the number of 
swaps to bring things 
into normal order 

Counts number of 
negative norm vectors 
that are squared 



Geometric product 
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[Blades] [Blades] 

A*B=simplify([bladeprod(a,b) | a <- A, b <- B]) 

Form every combination of product 
from the two lists 

Sort by grade and then integer order 

Combine common entries 

Build up everything from 

1. Multivector product 

2. Projection onto grade 

3. Reverse 

Use * for multivector product 



Abstract Data Type 
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newtype Multivector n a = Mv [(n,a)] 

mv :: (Num a, Eq a) => [(a,String)] -> Multivector Int a   

mv xs = Mv (bladeListSimp (sortBy bladeComp (map blade xs))) 

 

longMv :: (Num a, Eq a) => [(a,String)] -> Multivector Integer a   

longMv xs = Mv (bladeListSimp (sortBy bladeComp (map blade xs)))  

Type class restrictions are put into the constructors.  

Two constructors to allow for larger spaces (Int may 
only go up to 32D) 



Class Membership 
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instance (Integral n, Num a, Eq a) => Num (Multivector n a) where 

  (Mv xs) * (Mv ys) = Mv (bladeListProduct xs ys) 

  (Mv xs) + (Mv ys) = Mv (bladeListAdd xs ys) 

  fromInteger n = Mv [(0,fromInteger n)] 

  negate (Mv xs) = Mv (bldListNegate xs) 

  abs (Mv xs) = Mv xs 

  signum (Mv xs) = Mv xs 

Can now use + and * the way we 
would naturally like to! 

Want to belong 
to Num class 



Other resources (GA wikipedia page) 
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• GA Viewer Fontijne, Dorst, Bouma & Mann 
http://www.geometricalgebra.net/downloads.html 

• Gaigen Fontijne. For programmers, this is a code generator with support for 
C, C++, C# and Java.  
http://www.geometricalgebra.net/new.html 

• Gaalop Gaalop (Geometic Algebra Algorithms Optimizer) is a software to 
optimize geometric algebra files. 
http://www.gaalop.de/ 

• Versor, by Colapinto. A lightweight templated C++ Library with an OpenGL 
interface  
http://versor.mat.ucsb.edu/ 



Resources 
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geometry.mrao.cam.ac.uk 
chris.doran@arm.com 
cjld1@cam.ac.uk 
@chrisjldoran 
#geometricalgebra 
github.com/ga 
 
 


