Geometric Algebra

8. Conformal Geometric Algebra

Dr Chris Doran
ARM Research

Motivation

- Projective geometry showed that there is considerable value in treating points as vectors
- Key to this is a homogeneous viewpoint where scaling does not change the geometric meaning attached to an object
- We would also like to have a direct interpretation for the inner product of two vectors
- This would be the distance between points
- Can we satisfy all of these demands in one algebra?

Inner product and distance

Suppose X and Y represent points Would like

$$
X \cdot Y \propto d_{x y}^{2}
$$

Immediate consequence: $\quad X \cdot X=X^{2}=d_{x x}^{2}=0$

Represent points with null vectors Borrow this idea from relativity

$$
\left(\gamma_{0}+\gamma_{1}\right)^{2}=1-1=0
$$

Key idea was missed in $19^{\text {th }}$ century

Also need to consider homogeneity Idea from projective geometry is to introduce a point at infinity:

$$
n, \quad n^{2}=0
$$

Inner product and distance

Natural Euclidean definition is $\left(\frac{X}{X \cdot n}-\frac{Y}{Y \cdot n}\right)^{2}=d_{x y}^{2}$

But both X and Y are null, so

$$
\frac{-2 X \cdot Y}{X \cdot n Y \cdot n}=d_{x y}^{2}=(\boldsymbol{x}-\boldsymbol{y})^{2}
$$

As an obvious check, look at the distance to the point at infinity

$$
\frac{-2 X \cdot n}{X \cdot n n \cdot n}=\infty
$$

We have a concept of distance in a homogeneous representation Need to see if this matches our Euclidean concept of distance.

Origin and coordinates

Pick out a preferred point to represent the origin $C, \quad C^{2}=0$
Look at the displacement vector $\frac{X}{X \cdot n}-\frac{C}{C \cdot n}=\frac{(X \wedge C) \cdot n}{X \cdot n C \cdot n}$

Would like a basis vector containing this, but orthogonal to C
Add back in some amount of n

$$
C \cdot\left(\frac{(X \wedge C) \cdot n}{X \cdot n C \cdot n}+\lambda n\right)=0
$$

Get this as our basis vector:

$$
\begin{array}{r}
\frac{1}{X \cdot n C \cdot n}((X \wedge C) \cdot n-X \cdot C n) \\
-(C \wedge X) \cdot n-C \cdot X n \\
=-\langle C X n\rangle_{1}
\end{array}
$$

Origin and coordinates

Now have $\quad \frac{X}{X \cdot n}=\frac{C}{C \cdot n}-\frac{\langle C X n\rangle_{1}}{X \cdot n C \cdot n}+\frac{C \cdot X}{C \cdot n X \cdot n} n$
Write as $\frac{-X}{X \cdot n}=\frac{-C}{C \cdot n}+\underset{\text { is negative }}{x+\frac{x^{2}}{2} n}$
Euclidean vector from origin

Historical convention is to write

$$
\bar{n}=\frac{2 C}{C \cdot n} \quad n \cdot \bar{n}=2
$$

$$
\begin{gathered}
e=\frac{1}{2}(n+\bar{n}) \quad \bar{e}=\frac{1}{2}(n-\bar{n}) \\
e^{2}=1, \quad \bar{e}^{2}=-1 \\
n=e+\bar{e}, \quad \bar{n}=e-\bar{e}
\end{gathered}
$$

Is this Euclidean geometry?

Look at the inner product of two Euclidean vectors

$$
\begin{aligned}
& x \cdot y=\frac{\langle C X n\rangle_{1}}{X \cdot n C \cdot n} \cdot \frac{\langle C Y n\rangle_{1}}{Y \cdot n C \cdot n}=\frac{1}{2}\left(x^{2}+y^{2}\right. \\
&\langle C X n\rangle_{1} \cdot\langle C Y n\rangle_{1}= \frac{1}{2}\langle(C X n+n C X) C Y n\rangle \\
&= \frac{1}{2}\langle C X n C Y n\rangle \\
&= C \cdot X\langle n C Y n\rangle-\frac{1}{2}\langle X C n C Y n\rangle \\
&=-C \cdot n\langle X C Y n\rangle \\
&=-C \cdot n(X \cdot C Y \cdot n-X \cdot Y C \cdot n \\
&+X \cdot n Y \cdot c)
\end{aligned}
$$

Checks out as we require The inner product is the standard Euclidean inner product

Can introduce an orthonormal basis

Summary of idea

Represent the Euclidean point x by null vectors

Distance is given by the inner product

$$
X=-\bar{n}+2 x+x^{2} n
$$

$$
\frac{-2 X \cdot Y}{X \cdot n Y \cdot n}=(x-y)^{2}
$$

Normalised form has $X \cdot n=-2$
Basis vectors are $\quad\left\{e, \bar{e}, e_{i}\right\} \quad x=x_{i} e_{i}$
Null vectors $\quad n=e+\bar{e}, \quad \bar{n}=e-\bar{e}$

1D conformal GA

Basis algebra is

$$
1 \quad\left\{e, \bar{e}, e_{1}\right\} \quad\left\{e \bar{e}, e e_{1}, \bar{e} e_{1}\right\} \quad e \bar{e} e_{1}
$$

Simple example in 1D

$$
\begin{aligned}
X & =-\bar{n}+2 x e_{1}+x^{2} n \\
Y & =-\bar{n}+2 y e_{1}+y^{2} n \\
X \cdot Y & =4 x y-2 x^{2}-2 y^{2} \\
& =-2(x-y)^{2}
\end{aligned}
$$

Transformations

Any rotor that leaves n invariant must leave distance invariant

$$
\frac{X^{\prime} \cdot Y^{\prime}}{X^{\prime} \cdot n Y^{\prime} \cdot n}=\frac{(R X \tilde{R}) \cdot(R Y \tilde{R})}{(R X \tilde{R}) \cdot n(R Y \tilde{R}) \cdot n}=\frac{X \cdot Y}{X \cdot(\tilde{R} n R) Y \cdot(\tilde{R} n R)}=\frac{X \cdot Y}{X \cdot n Y \cdot n}
$$

Rotations around the origin work simply

$$
\begin{gathered}
x^{\prime}=R x \tilde{R}, \quad R=e^{-\theta e_{1} e_{2} / 2} \\
X^{\prime}=-\bar{n}+2 x^{\prime}+x^{\prime 2} n \\
=R X \tilde{R}
\end{gathered}
$$

Remaining generators that commute with n are of the form

$$
\begin{gathered}
B=a n, \quad a \cdot n=0 \\
B n=n B=0
\end{gathered}
$$

$$
B^{2}=0
$$

Null generators

$$
\begin{aligned}
& T_{a}=e^{n a / 2}=1+\frac{1}{2} n a \quad \text { Taylor series terminates after two } \\
& T_{a} n \tilde{T}_{a}=n+\frac{1}{2} n a n+\frac{1}{2} n a n+\frac{1}{4} \text { nanan }=n \\
& T_{a} \bar{n} \tilde{T}_{a}=\bar{n}-2 a-a^{2} n \quad \text { Since } \quad a \cdot n=a \cdot \bar{n}=0 \\
& T_{a} x \tilde{T}_{a}=x+n(a \cdot x) \\
& T_{a} X \tilde{T}_{a}=x^{2} n+2(x+a \cdot x n)-\left(\bar{n}-2 a-a^{2} n\right)
\end{aligned}
$$

$$
=(x+a)^{2} n+2(x+a)-\bar{n}
$$

Conformal representation of the translated point

Dilations

Suppose we want to dilate about the origin $\quad x \mapsto x^{\prime}=e^{-\alpha} x$

$$
X^{\prime}=e^{-\alpha} \frac{\left(x^{2} e^{-\alpha} n+2 x+e^{\alpha} \bar{n}\right)}{\uparrow}
$$

Generate this part via a rotor, then use homogeneity

$$
n \mapsto e^{-\alpha} n, \quad \bar{n} \mapsto e^{\alpha} \bar{n}
$$

Define $N=e \bar{e}=\frac{1}{2} \bar{n} \wedge n$
$D_{\alpha}=e^{\alpha N / 2}$
$D_{\alpha} n \tilde{D}_{\alpha}=e^{-\alpha} n$
$D_{\alpha} \bar{n} \tilde{D}_{\alpha}=e^{\alpha} \bar{n}$

Rotor to perform a dilation

To dilate about an arbitrary point replace origin with conformal representation of the point

$$
D_{\alpha}=\exp \left(\frac{\alpha}{2} \frac{A \wedge n}{A \cdot n}\right)
$$

Unification

> In conformal geometric algebra we can use rotors to perform translations and dilations, as well as rotations

Results proved at one point can be translated and rotated to any point

Geometric primitives

Find that bivectors don't represent lines. They represent point pairs.
Look at $\quad x=\lambda a+(1-\lambda) b$

$$
\begin{aligned}
X(\lambda) & =\left(\lambda^{2} a^{2}+2 \lambda(1-\lambda) a \cdot b+(1-\lambda)^{2} b^{2}\right) n+2 \lambda a+2(1-\lambda) b-\bar{n} \\
& =\lambda A+(1-\lambda) B+\frac{1}{2} \lambda(1-\lambda) A \cdot B n \\
& \text { Point } a \quad \text { Point } b \quad \text { Point at infinity }
\end{aligned}
$$

$$
\text { Points along the line satisfy } \quad(A \wedge B \wedge n) \wedge X=0, \quad X^{2}=0
$$

This is the line

Lines as trivectors

Suppose we took any three points, do we still get a line?

$$
A_{1}=-\bar{n}+2 e_{1}+n \quad A_{1} \wedge A_{2} \wedge A_{3}=16 e_{1} e_{2} \bar{e}
$$

$$
A_{2}=-\bar{n}+2 e_{2}+n
$$

Need null vectors in this space
$A_{3}=-\bar{n}-2 e_{1}+n$
Up to scale find
$X=\cos \theta e_{1}+\sin \theta e_{2}+\bar{e}=-\frac{1}{2} \bar{n}+\cos \theta e_{1}+\sin \theta e_{2}+\frac{1}{2} n$

The outer product of 3 points represents the circle through all 3 points. Lines are special cases of circles where the circle include the point at infinity

Circles

$$
C=X_{1} \wedge X_{2} \wedge X_{3}
$$

$$
\rho^{2}=-\frac{C^{2}}{(C \wedge n)^{2}}
$$

Everything in the conformal GA is oriented Objects can be rescaled, but you mustn't change their sign! Important for intersection tests

Radius from magnitude.
Metric quantities in
 homogenous framework

If the three points lie in a line then
Lines are circles with infinite radius
All related to inversive geometry

$$
C \wedge n=0
$$

4-vectors

4 points define a sphere or a plane $P=A_{1} \wedge A_{2} \wedge A_{3} \wedge A_{4}$
If the points are co-planar find

$$
X=\alpha_{1} A_{1}+\alpha_{2} A_{2}+\alpha_{3} A_{3}+\delta n
$$

So P is a plane iff $P \wedge n=0$ Unit sphere is $S=e_{1} e_{2} e_{3} \bar{e}$

Radius of the sphere is

$$
\rho^{2}=\frac{P^{2}}{(P \wedge n)^{2}}
$$

Note if L is a line and A is a point, the plane formed by the line and the point is

$$
P=L \wedge A
$$

5D representation of 3D space

Object	Grade	Dimension	Interpretation
Scalar	0	1	Scalar values
Vector	1	5	Points (null), dual to spheres and planes.
Bivector	2	10	Point pairs, generators of Euclidean transformations, dilations.
Trivectors	3	10	Lines and circles
4-vectors	4	5	Planes and spheres
Pseudoscalar	5	1	Volume factor, duality generators

Angles and inversion

Angle between two lines that meet at a point or point pair

$$
\cos \theta=\frac{L_{1} \cdot L_{2}}{\left|L_{1}\right|\left|L_{2}\right|}
$$

Works for straight lines and circles!

All rotors leave angles invariant generate the conformal group

Reflect the conformal vector in e

$$
-e X e=n+2 x-x^{2} \bar{n}
$$

$$
=x^{2}\left(-\bar{n}+\frac{2 x}{x^{2}}+\frac{1}{x^{2}} n\right)
$$

The is the result of inverting space in the origin.

Can translate to invert about any point - conformal transformations

Reflection

1-2 plane is represented by $\quad P=e_{1} e_{2} N, \quad P^{2}=-1$

$$
P e_{1}=-e_{1} P \quad P e_{3}=e_{3} P
$$

In the plane Out of the plane
So if L is a line through the origin $L=a N$
The reflected line is $L^{\prime}=-P L P$

But we can translate this result around and the formula does not change

$$
L^{\prime}=-P L P
$$

Reflects any line in any plane, without finding the point of intersection

Intersection

Use same idea of the meet operator
Duality still provided by the appropriate pseudoscalar (technically needs the join)

Example - 2 lines in a plane

$$
B=\left(L_{1}^{*} \wedge L_{2}^{*}\right)^{*}=I\left(L_{1} \times L_{2}\right)
$$

$$
\begin{array}{r}
X \wedge M_{1}=X \wedge M_{2}=0 \\
X \wedge\left(M_{1}^{*} \wedge M_{2}^{*}\right)^{*}=0
\end{array}
$$

$$
B^{2}= \begin{cases}>0 & 2 \text { points of intersection } \\ 0 & 1 \text { point of intersection } \\ <0 & 0 \text { points of intersection }\end{cases}
$$

Intersection

Circle / line and sphere / plane
$B=\left(P^{*} \wedge L^{*}\right)^{*}=(I P) \cdot L=I\langle P L\rangle_{3}$
$B^{2}= \begin{cases}>0 & 2 \text { points of intersection } \\ 0 & 1 \text { point of intersection } \\ <0 & 0 \text { points of intersection }\end{cases}$

All cases covered in a single application of the geometric product
Orientation tracks which point intersects on way in and way out In line / plane case, one of the points is at infinity $n \wedge L=n \wedge P=0$

Intersection

Plane / sphere and a plane / sphere intersect in a line or circle

$$
L=I\left\langle S_{1} S_{2}\right\rangle_{2}
$$

Norm of L determines whether or not it exists.
If we normalise a plane P and sphere S to -1 can also test for intersection

$$
P \cdot S= \begin{cases}>1 & \text { Sphere above plane } \\ -1 \cdots 1 & \text { Sphere and plane intersect } \\ <-1 & \text { Sphere below plane }\end{cases}
$$

Resources

geometry.mrao.cam.ac.uk chris.doran@arm.com cjld1@cam.ac.uk @chrisjldoran \#geometricalgebra github.com/ga

Geometric Algebra

 for PhysicistsChris Doran - Anthory tasenty

