
1

Euclidean Geometry and Geometric Algebra

1 Introduction
Geometric algebra is a very natural language for describing concepts in Euclidean
geometry, but one aspect that can confuse people at first is that there is no
single unique way to work. Different problems can require different algebras for
their optimal solution and new uses for geometric algebras are being discovered
constantly. In a recent SIGGRAPH presentation [1] Charles Gunn and Steven
De Keninck described a framework for Euclidean geometry based on planes as
geometric primitives, which they call PGA. This article describes how PGA relates
to other geometric algebras and explains why it may be the ultimate algebra for
graphics.

Most introductions to geometric algebra (GA) start with a picture of vectors as
rays out from a common origin [2]. These have an inner product, the traditional
scalar product, and an outer product that encodes the plane swept out by the two
vectors. These are united in a geometric product in the famous relationship

ab = a·b+ a∧b. (1)

The geometric product is the simplest product we can construct that is invertible.
Given ab and a, with a2 6= 0 we can recover b simply by multiplying the right-hand
side by a−1 = a/a2. Building out the algebra of 2D vectors leads us to ‘invent’
complex numbers, and in 3D to the discovery of the quaternion algebra. Indeed,
the quaternions should be understood via their embedding in the geometric algebra
of space, where they represent planes and generate rotations about the origin.

The fact that quaternions are the optimal algebra for working with rotations
is well known to graphics and games programmers, and most game engines have
an optimised quaternion library buried somewhere in their code (typically in the
physics engine). But there are at least two further structures that are often
employed in graphics code that do not sit obviously in this framework: projective
geometry and dual quaternions.

2 Projective Geometry
Projective geometry lies at the heart of the graphics pipeline and solves a funda-
mental problem. If we fix an origin and a frame, and compute the coordinates of a
vector x in this frame we find three numbers (x1, x2, x3). We can encode rotations
around the origin as 3× 3 matrices acting on these coordinates, but translations

Chris Doran, June 2020.



2

cannot be encoded as a linear transformation. We want to combine rotations and
translations to get from object space to world space to camera space and would like
to do this in a simple, unified way. The trick is to introduce a fourth coordinate
and work with 4-dimensional vectors with coordinates (x1, x2, x3, 1). In GA we
write this as working with the vector X:

X = x+ e4 (2)

where x = x1e1 + x2e2 + x3e3 is the usual Euclidean 3-vector. Projective geometry
linearises translations and from this starting point a very rich algebra can be
developed. Though most of this is irrelevant in graphics, which only really exploits
the unification of rotations and translations. The line L between two points is
described by their outer product

L = X1∧X2 (3)

and these inhabit a 6-dimensional space. Similarly, the outer product of three
points defines a plane P

P = X1∧X2∧X3. (4)

The somewhat mysterious concept of projective duality is encoded simply as
multiplication by the pseudoscalar I4 = e1e2e3e4, which interchanges outer and
inner products. As a consequence, the line L resulting from the intersection of two
planes is found by

L = I(P1 × P2) (5)

where A×B denotes the antisymmetric product of two multivectors.
The projective representation is homogeneous, so X and λX represent the same

point, for any non-zero scalar λ, and intersection algorithms are robust against
special cases. For example, two parallel planes meet in a ‘line at infinity’, which
has a finite representation. Many important geometric theorems can be proved
efficiently in this setup, and duality often gives you two proofs for the price of one.
Most of the main results were worked out by Hestenes and Ziegler [3], which built
on a rich literature on exterior theory and duality going back to the 19th century.

But one aspect of this work remained disappointing: projective transformations
exist as operations outside the algebra. One of the key unifying principles of 3D GA
is that vectors and the operations on them are all part of the same algebra. That
is lost in the projective setup.The reason for this is that projective transformations
do not preserve angles, so do not naturally sit inside GA. A further consequence of
this is that there is very little use for the geometric product, except at intermediate
steps in derivations. All results usually involve exterior products or duality.

Chris Doran, June 2020.



3

3 Dual Quaternions
There is a way to perform Euclidean transformations using GA elements that was
introduced by Clifford himself, and that is via the dual quaternions. These are
not as widely used in the graphics community as quaternions, but they are used
for skinning operations in animation, and are sometimes employed in rigid body
physics solvers. A dual quaternion is made up from a pair of quaternions:

D = q1 + εq2 (6)

where ε is an algebraic entity invented solely to have the property that

ε2 = 0. (7)

We then find that normalised dual quaternions, DD† = 1, form a group that
includes rotations and translations. These act on elements of the form

Y = 1 + ε(y1i+ y2j + y3k) (8)

though the operation is not simply DYD† as a further sign flip is required on the
ε term. None of this is very obvious or looks very natural, and dual quaternions
have tended to be a niche topic.

4 Conformal GA
In 2000 a new use for geometric algebra started to evolve based on conformal
geometry. This is now known as conformal geometric algebra (CGA). The building
blocks of CGA had also been around since the 19th century, but it wasn’t until
the start of the 21st century that all of the elements were pulled together. The
starting point for CGA is to represent the Euclidean point x as the vector

X = x+m− 1
2x

2n (9)

where m and n are a pair of new vectors, orthogonal to the ei, that satisfy:

m2 = n2 = 0, m·n = 1. (10)

Vectors with a zero norm are called ‘null’ vectors. They may be unfamiliar, but
are a standard feature of special relativity. These definitions ensure that

X2 = 0. (11)

Chris Doran, June 2020.



4

So points are also represented as null vectors in a space 2 dimensions higher. The
key concept behind the conformal model is that the inner product of two points is
related to the distance between them. Consider

X ·Y = −1
2(x2 + y2 − 2x·y) = −1

2(x− y)2. (12)

This explains why points have to be null vectors. The distance of a point from
itself must be zero.

The representation is also homogeneous, so X and λX represent the same point.
Our final expression for distance is therefore

d(x, y)2 = −2X ·Y
(X ·n)(Y ·n) . (13)

Euclidean transformations must leave distances unchanged, so in CGA they must
preserve the inner product. Transformations that achieve this can always be built
from elements in the algebra. The transformation must also leave n invariant,
which means that they are built from even elements that commute with n. With a
bit of work one finds that elements satisfying this latter requirement have the form

M = q1 + e1e2e3nq2 (14)

where q1 and q2 are quaternions in the 3D Euclidean algebra. We have rediscovered
precisely the dual quaternions, and the mysterious ε turns out to be a null 4-vector
I3n where

I3 = e1e2e3. (15)
Normalised elements, MM † = 1 are called rotors (sometimes ‘motors’) and these
act on points of the form X to perform rotations and translations.

This is another grand unification. In the same way that quaternions are best
understood in 3D GA, dual quaternions arise naturally in the 5D CGA. The CGA
has many other wonderful features. Points, lines, planes, circles and spheres all
have simple expressions, as do intersection algorithms, and both the objects and
the operations on them are contained in the same algebra.

CGA clearly has much to offer graphics, but there is a problem. The underlying
representation is built on a 5D vector space, which is quite verbose and for many
cases not as efficient as simple projective geometry. For example, the line-plane
intersection returns a point pair, with one of the points at infinity. This is technically
correct, but an unwanted complication in practice. Returning to the representation
of X (eq. 9) we see that the origin is represented by m, and in many applications
we can drop the x2n term. But the origin m is not the vector n that appears in
the dual quaternions that drive transformations. It looks very much like you need
both m and n, hence the full 5D algebra, to combine the advantages of projective
geometry and dual quaternions.

Chris Doran, June 2020.



5

5 PGA
But it turns out there is a way to work entirely in a 4D space, with points lines
and planes and the generators of rotations and translations all in the one algebra
and retaining the benefits of a homogeneous representation. The idea originated in
the robotics community [4] and it is this idea, PGA, that Gunn and De Keninck
descibed at SIGGRAPH.

We can motivate the algebra by going back to the CGA form of dual quater-
nions and noting that they are constructed entirely in an algebra generated by
{e1, e2, e3, n}. So we ask the obvious question: what objects can we build in CGA
that contain only these 4 generators? First look at vectors. We suspect that we
really want to kill off the x2 term to get back to familiar projective geometry, so
we form

X∧n = x∧n+m∧n. (16)
This still contains a factor of m. However, if we dualise in 5D space with

I5 = I3m∧n, (17)

we form
I5(X∧n) = −I3xn+ I3. (18)

This is great! We now have an object constructed entirely from our basis elements
{e1, e2, e3, n}. Euclidean rotors will commute with both I5 and n so this object will
transform correctly as a point under Euclidean transformations. In components

I5(X∧n) = n(x1e3e2 + x2e3e1 + x3e2e1) + e1e2e3 (19)

which is precisely the representation used by PGA. We can also see a close parallel
between this and the representation of points in dual quaternions. Of course, this
object is a trivector, which is an unusual thing to use to represent a point, but let’s
see where this thinking leads us.

Next consider a line between x and y. In CGA we form

X∧Y ∧n = x∧y∧n+ (x− y)m∧n (20)

and now we know what to do. We dualise this in CGA to form

I5(X∧Y ∧n) = −(I3x∧y)n+ I3(x− y) (21)

and again we are back in the algebra generated by {e1, e2, e3, n}. So now lines are
represented as bivectors and a pattern is starting to emerge. Finally we look at
the plane formed by three points

X∧Y ∧Z∧n = x∧y∧z∧n+ (x∧y + y∧z + z∧x)∧m∧n (22)

Chris Doran, June 2020.



6

and dualising this we get a vector of the form

I5(X∧Y ∧Z∧n) = λn+ d (23)

where d is a Euclidean vector normal to the plane. We have planes as grade
1 objects, so everything is ‘dual’ to the usual representation. But we have an
algebra with all the properties we want for graphics. Points, lines and planes are all
represented, and rotations and translations on these objects are performed by even
elements in the same algebra. The representation is homogeneous and immediately
consistent with the projective representation in graphics. Even better, given a line
L as a bivector, rotations about that line are formed simply be exponentiating it!
(See the SIGGRAPH course notes for more details [1].)

There are many useful identities that fall out from this algebra, but a key point
is that it successfully captures concepts like orthogonality, which are harder to
capture in standard projective geometry. To see this, consider the product of two
normalised planes:

p1p2 = p1 ·p2 + p1∧p2 = cos θ + L sin θ (24)

where θ is the dihedral angle between the planes, and L is the line of intersection,
which generates rotations. Both parts of the product are geometrically relevant.
We can also form decompositions of the form

X = Xpp = (X ·p)p+ (X∧p)p (25)

whereX is a point and p is a plane. This decomposesX into the point (X ·p)p, which
is the perpendicular projection of X onto the plane p, and the term (X∧p)p which
is along the direction perpendicular to the plane. This is a natural decomposition
and again shows how all aspects of the geometric product make sense.

So we have an algebra that does everything we want, and all we had to do was
make the ‘4th’ vector in projective geometry a null vector. Why is this not more
widely known? Part of the answer is that the idea that points should be represented
as trivectors seems unnatural at first. There is also a price you pay for having a
null basis element, which is that the pseudoscalar now squares to zero. You lose the
natural concept of duality as multiplication by I. PGA does have a simple notion
of duality, which is required for the join operation, though it is not performed by
an element in the algebra. But this is a small price to pay, particularly as at the
data level the duality operation is a trivial re-labeling. There is an important point
here. This duality operation does not commute with transformations. If you take
a point, dualise it to a plane, transform the plane, and dualise back you do not get
the same result as transforming the point. For practical applications we have to fix
the representation with planes as grade 1, lines grade 2 and points grade 3. Again,

Chris Doran, June 2020.



7

this is not a problem in practice, and the fact that there is only one way to work is
helpful as it uniquely fixes your data types.

This leads on to the key point that PGA is very hardware friendly. In applica-
tions you always work with elements that are purely even or purely odd. These
are 8 dimensional objects, so the absolute worst case multiplication operation
takes 8 × 8 = 64 operations. The same as 4 × 4 matrix multiplication. But in
practice a number of these products are zero so you usually end up doing better.
Also, everything fits neatly into 4 slots, which is good for both GPU and SIMD
implementations. The underlying products can be blocked up in 4s, and most boil
down to quaternion multiplication. If you already have an optimised quaternion
library, then the products are extremely fast. Finally, the entire algebra sits within
the CGA, so it is easy to jump up to the full CGA should we need to take advantage
of some of the operations there. This could be handy when using constructs like
bounding sphere hierarchies.

After much searching, it does finally look like we have found the optimal algebra
for 3D geometry computation.

References
[1] Charles Gunn and Steven De Keninck, Geometric Algebra for Computer Graph-

ics. SIGGRAPH 2019. https://bivector.net/doc.html.

[2] Chris Doran and Anthony Lasenby, Geometric Algebra for Physicists. Cambridge
University Press (2003).

[3] D. Hestenes and R. Ziegler, Projective Geometry with Clifford Algebra. Acta.
Appli. Math. 23(25), 1991.

[4] Jon Selig, Clifford algebra of points, lines and planes. Robotica 18(545), 2000.

Chris Doran, June 2020.


