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Axioms
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Elements of a geometric algebra are 

called multivectors

Space is linear over the scalars. All 

simple and natural

Multivectors can be classified by grade

Grade-0 terms are real scalars

Grading is a projection operation



Axioms
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The grade-1 elements of a geometric 

algebra are called vectors

So we define

The antisymmetric produce of r vectors 

results in a grade-r blade

Call this the outer product

Sum over all permutations with epsilon  

+1 for even and -1 for odd



Simplifying result
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Given a set of linearly-independent vectors

We can find a set of anti-commuting vectors such that

Symmetric matrix

Define

These vectors all anti-commute

The magnitude of the product is 

also correct



Decomposing products
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Make repeated use of

Define the inner product of a vector and a bivector 



General result
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Over-check means this term is missing

Grade r-1

Define the inner product of a vector 

and a grade-r term
Remaining term is the outer product

Can prove this is the same as earlier 

definition of the outer product



General product
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Extend dot and wedge symbols for 

homogenous multivectors

The definition of the outer product is consistent with the earlier definition 

(requires some proof). This version allows a quick proof of associativity:



Reverse, scalar product and commutator
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The reverse, sometimes 

written with a dagger

Useful sequence

Write the scalar product as

Scalar product is symmetric

Occasionally use the commutator product 

Useful property is that the commutator 

with a bivector B preserves grade



Rotations

L4 S9

Combination of rotations

So the product rotor is

Rotors form a group

Suppose we now rotate a blade

So the blade rotates as



Fermions?

Now take the rotor on an excursion through 360 degrees. The angle goes 

through 2�, but we find the rotor comes back to minus itself.

Take a rotated vector through a further rotation

The rotor transformation law is

This is the defining property 

of a fermion!



Unification
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One of the defining properties of spin-half particles 

drops out naturally from the properties of rotors.



Linear algebra
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Linear function f

Extend f to multivectors

This a grade-preserving linear function

The pseudoscalar is unique up to scale 

so we can define

Form the product function fg

Quickly prove the fundamental result



Projective geometry
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• Use projective geometry to emphasise 

expressions in GA have multiple 

interpretations

• Closer to Grassmann’s original view

• Our first application of 4D GA

• Core to many graphics algorithms, 

though rarely taught



Projective line
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Point x represented by homogeneous coordinates 

A point as a 

vector in a GA

Outer product of two points represents a line

Distance between 

the points

Scale factors

This representation of 

points is homogeneous



Cross ratio
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Distance between points Invariant quantity

Can see that the RHS is invariant under a general linear 

transformation of the 4 points

Ratio is invariant under rotations, translations and scaling



Projective plane
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Points on a plane represented by vectors in a 3D GA. Typically align the 3 

axis perpendicular to the plane, but this is arbitrary

Point Line Plane

Interchange points and 

lines by duality. Denoted *

Intersection (meet) defined by

For 2 lines

For 3 lines to meet at a point

Reduces to simple statement



Example
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Can prove the algebraic identity

These 3 points are collinear iff these 3 lines meet at a point

This is Desargues theorem. A complex geometric 

identity from manipulating GA elements.



Projective geometry of 3D space
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Point Line Plane

Interchange points and planes by duality. Lines transform to other lines

Volume

In 4D we can define the object

This is homogenous, but NOT a 

blade. Also satisfies

Bivectors form a 6 dimensional space

Blades represent lines

Test of intersection is

2 Bivectors with non-vanishing outer 

product are 2 lines missing each other



Plucker coordinates and intersection
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Condition that a bivector B represents a line is 

Write

Plucker’s condition

A linear representation of a line, with a non-linear constraint

Suppose we want to intersect the line L with the plane P



Resources

L4 S20

geometry.mrao.cam.ac.uk

chris.doran@arm.com

cjld1@cam.ac.uk

@chrisjldoran

#geometricalgebra

github.com/ga


